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Biology Statistics Mathematics Overview
: :

Evolutionary Biology

» Evolutionary Biology studies the change of inheritable
characters of populations over time

» Inheritable characters are called alleles

» To study these changes, an evolutionary biologist consults
phenotypic and genotypic data

» Studying phenotypes leads to a morphological distinction of
species

» The distinction of species according to genotypes is called
phylogenetics

» Changes in allelic frequencies within a species falls into the
field of population genetics
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Biology Statistics Mathematics Overview
: :

Questions that might be asked:

Is there a way to predict a phenotype from a genotype?
According to Darwin, the fittest will survive. Is this true?

How can we measure fitness of a genotype?

vV v.v Yy

What inferences can we make on the history of a population,
given its current genotype?

v

How can we see on a genetical level that a population adapts
to its environment?
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There are tons of data:

» The human genome has ~ 3 - 10° base pairs

» PCR, the basis for modern sequencing, was discovered only 15
years ago

» On a standard sequencer, it takes two hours to read 64 strains
of ~ 500-700 bases for a sequencer

» Latest development 454 sequencing: since 2005 it is possible
to sequence 20 - 10° bases in 4-5 hours...
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DNA data is special:

» The AdH-locus from Kreitman (1983)

Adult T’;":‘;’ Translated
Reference 5" Flanking  leader Intron 1 Laral 5 Inwon  Exon Intron regionof  3-Untranslated 3 Flanking
sequence sequence  (exon 1)  (Adult intron, larval non-coding) lcader 5 2 3 3 exon 4 region
cca CAATATGGGUICT2G {r T A€ CCCC GGAAT ETCCACTAG  AVIC AGCPCTST6
s R @ e e s AT e e e . . . TT.A CA.TA AC o o v o v v s e e e e
5 vig R e T R N LR T R R BT
B s b wmees w s 0 & ow AR s W R L e d WS 6 e X Tk v wes
“ 5w AG ... s A 6 aT e e s e 08 o st C3. .
L.c e = e w4 < . S T 5 L.T.T.CA CAL ...,
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TG C AG...A.TCFGV . c - .. .- - ..GTCTCC . cac D
TG C 46 .. A.TCUGTF .\ S [ o Eaw e w e LLaGTCETCC . €4 PR e eie @
Toc AG...A.TCUG T . @ o Vi W ¥ R E L.G6TCETCC . €56
TG C AGGGGA, » 7 .. T G . c s A FECE cwGTETEEC . c4. P P TP
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DNA data is special:

» The data structure is complex

» There is coding DNA, introns, regulatory regions, making
every base special

» In a given population, most bases agree in all individuals

» DNA samples from the same population are not independent
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Mathematical population genetics

» Mathematical population genetics is an own field

» Changes in allele frequencies are modelled by a stochastic
process

» Keywords: diffusion limit, measure-valued diffusion, Markov
process on general state spaces, dual process, martingale
problem, super-process, particle representation, resampling
model, branching process
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Applied mathematical population genetics

» Quantitative predictions help to answer biological questions
» There are standard models

» Mostly, it is easy to name all mechanisms that must be

modelled: reproduction, mutation, selection, recombination,
structure,...

» Even for simple models there are still open questions
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: :

1: Basic models: Wright-Fisher model, Moran model, neutral
theory, mutation models

2: Diffusion theory and applications

3: Applications: the Ewens sampling formula, site frequency
spectrum, mismatch distribution

4: Recombination
5: Selection

6: Neutrality tests
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Literature

» Ewens, W. J., Mathematical Population Genetics, 2002

» Wakeley, J., Coalescent Theory: An Introduction,Roberts &
Co., 2007 (visit www.coalescenttheory.com)

» Gillespie, J., Population Genetics: A Concise Guide, Johns
Hopkins University Press, Second Edition, 2004

» Hein, J., Schierupp, M. and Wiuf, C., Sequence Variation,
Genealogies and Evolution: A Primer in Coalescent Theory,
Oxford University Press, 2004

» Karlin, S. and Taylor, H.M., A Second Course in Stochastic
Processes, Academic Press, 1981

» Etheridge, A., Diffusion Process Models in Mathematical
Genetics, Lecture Notes

» Pfaffelhuber, P. and Pennings, P., Population Genetics
Tutorial, companion manuscript
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Basic models

o
o)
1
n
it
)
»
1°




Reproduction models Genetic Drift The coalescent Mutation Effective population size
:

Introduction

» Assume a large population of (haploid) size N (often used:
N diploids = 2N haploids)

» Individuals have genotypes
» Genotypes are inherited to the next generation

» Every individual has only one parent
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:

Genetic Drift
:

The coalescent

Wright-Fisher model

Effective population size

:
» standard population model of non-overlapping generations
» Example: Population size is 10

» Parents are picked at random

» Offspring gets genetic information from the parent.
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Reproduction models
:

Genetic Drift
:

The coalescent

Wright-Fisher model

Effective population size

:
The tangled and untangled versions after some generations
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Genetic Drift
:

The coalescent

Wright-Fisher model

Effective population size

» Z;: number of offspring of individual i ~ B(N, 4;) ~ Poi(1)
» Allele A frequency X; = x at time t
>

N
PIN - Xey1 = k| X; = x] = (k)xk(l — x)N=k
» Xit1 only depends on X;, but not on X;_1, X;_o,

> The process (X;)¢—o.1,.. is a Markov chain
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Exercise

Obviously the Wright-Fisher model as we introduced it here is a
model for haploid populations. (Every individual only has one
parent and one set of genes.) Assume we also want to model

diploids in the model. Can you draw a similar figure for the diploid
model?
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Moran model

» Standard population model of overlapping generations
» Every individual resamples at rate 1

» Resampling: choose second individual at random; one of them
dies, the other one reproduces




Reproduction models

Genetic Drift

The coalescent
Moran model

Mutation

Effective population size

» Individual at the tip dies, the other one reproduces
t

o
o)
I
i
it
)
»
1°




Reproduction models
:

Genetic Drift
:

The coalescent

Mutation
Cannings models

Effective population size

» Allele frequency of A is X; = x at time t
» Rates

1
Qx,x—f—l/N = Qx,x_l/N = ENX(]. — X)
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Cannings models

» Wright-Fisher model: binomial offspring distribution

» Attention: offspring distribution of different individuals are
dependent!

» But: they are exchangeable: 73, ..., Zy: numbers of offspring
of all individuals; 7: Permutation of {1,..., N}

,C(Zl, ceey ZN) = ,C(Zﬂ.(l), ceey Zﬂ.(N))

» General: exchangeable offspring distribution: Cannings model
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The coalescent

Genetic drift

Mutation

Effective population size

» Measure for speed of loss/fixation of allelels
» Wright-Fisher model, allele frequency x.

P, [loss in one generation] = (1 — x)"

V[Xt+1|Xt = X]

7 VINXe1| Xe = X]

Nx(1—x)  x(1—x)
N2 N
» Genetic drift strongest in small populations

N
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Genetic drift
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Genetic drift
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Genetic drift
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Genetic drift
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Looking backwards in time

» Usually: data obtained from sample of size n of population of
size N

» Allele A has frequency x at time 0; population evolves for
time t

» Question: What is the distribution of allelic frequency of A in
the sample?

» Possible calculation: compute random allelic frequency in the
population; sample independent from population gives
frequency in the sample
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Genetic Drift
:

The coalescent

Mutation
Looking backwards in time

Effective population size

» Question: What is the distribution of allelic frequency of A in
the sample?

» Another possibility: every individual in sample has an ancestor
at time 0
>

Individual at time t has allele A
et

Ancestor at time 0 has allele A

0

» Possible: two individuals at time t have same ancestor at time
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Genetic Drift

The coalescent
:

Mutation

Effective population size

The coalescent in the Wright-Fisher model

» Sample of size n in big population of size N

P[n different ancestors one generation ago]

=( ) ()
n

-1 (i)

IP[ less than n — 1 ancestors one generation ago|
N _ 9\n

< = o(a)

P[n — 1 different ancestors one generation ago] =

(=]

=
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Genetic Drift
:

The coalescent

Mutation

Effective population size

The coalescent in the Wright-Fisher model

>

» T, waiting time until first coalescence event [generations]
z (2)

P[T, > tN] ~ (1 — 2/

> T,:=

)" =ee (- (5))
[NV g;neT\Zt:ations]

waiting time until first coalescence event

» T, approximately Exp((é’))—distributed
» Restart argument:

T,—1: waiting time from T, until second coalescence event
approximately Exp(("§1)>—distributed
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Genetic Drift
:

The coalescent

Mutation

Effective population size
The coalescent in the Wright-Fisher model

Green lines are ancestral lines of the sample
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. .
The coalescent in the Wright-Fisher model
Lines in a sample share ancestry
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The coalescent in the Wright-Fisher model
Genealogy of the whole population
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Genetic Drift
:

The coalescent

Mutation

Effective population size

The coalescent in the Moran model

v

v

. 1
Every pair resamples at rate

Backward in time, resampling is coalescence

TH

> 7’,,: time of first coalescence event in sample of size n
> Ty~ Exp(%)
> Tp=Tn

N

~Exp((3))
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Genetic Drift
:

The coalescent

Mutation

Effective population size

The coalescent in the Moran model

t

» Easy: ancestral line of one individual
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:

Genetic Drift
:

The coalescent

Mutation

Effective population size

The coalescent in the Moran model

:
» All coalescence events at different time points
t
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:

Genetic Drift
:

The coalescent

Mutation

Effective population size

The coalescent in the Moran model

» Population MRCA different from sample MRCA
t

M)
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Kingman's coalescent

Start with n lines.

If there are k lines left, coalesce two of them at rate (g)

>

>

» Stop if only one line left

» The path of this process describes a genealogical tree
>

Time is measured in units of N generations




Reproduction models

Genetic Drift The coalescent
Kingman's coalescent

Mutation

Effective population size

» The sample genealogy for n = 4

DA
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Genetic Drift The coalescent
Kingman's coalescent

Mutation

Effective population size

» The sample genealogy for n = 4

DA
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Genetic Drift The coalescent
Kingman's coalescent

Mutation

Effective population size

» The sample genealogy for n = 20

DA
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Genetic Drift The coalescent
Kingman's coalescent

Mutation

Effective population size

» The sample genealogy for n = 20

DA




Reproduction models

Genetic Drift

The coalescent

Mutation
Kingman's coalescent

Effective population size

> Ty~ Exp(( )) time the coalescent spends with k lines

» Time to the most recent common ancestor Tyrca = Z Tk

k=2
E[Tmrcal Zﬁ:zzkil—%zz(l—i)
V[Tmrcal = Z K k

_42((k—1 1)2

2
2_;k(k—1)]
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Genetic Drift

The coalescent

Kingman's coalescent

Mutation

Effective population size

n
» Total tree length L, = Z kTy

k=2

> Ty ~ Exp((é)), kTy ~ Exp(%) So,

n n—1
2
Bl =2 =22k
k=2

k=1

n—1
1
V[I-n] =4 Z ﬁ
k=1

DA
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Mutations

» Without mutations, observed data would be extremely
boring...

» Darwin: Variation shaped by natural selection

» Kimura: Neutral models can explain much of observed
variation

» Empirical population genetics: what kind of variation is

shaped by neutrality? What is different if neutrality does not
hold?
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:

The coalescent Mutation Effective population size

Mutations in Wright-Fisher and Moran model

» Wright-Fisher model: offspring has different allele with
probability

» Moran model: every line mutates at rate p
biologically unrealistic (mutation only during reproduction)
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Mutations in the coalescent

» Recall: coalescence at rate (12‘)

» Mutations probability/rate p per line [1], i.e., rate Ny [N].
Set 0 :=2Npu

» Alternative description: given branch of length ¢ [N], no. of
mutations is Poisson with parameter g
» Recall: If X ~ Exp(a), Y ~ Exp(/3) then

a
PIX <Y]= .
[ ] a+f
» Especially:
P[coalescence before mutation] = (12() = k=1
Ky , Ok — ’
(5) + k—1+40
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Genetic Drift
:

The coalescent

Mutation

Two alleles model

Effective population size

:
» Mutations occur between two possible states, A and B.
» Mutation probability/rate are

A— B:pua,

B—A:ug.
» Leads to one-dimensional models (constant population size!);
most techniques known
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Genetic Drift
:

The coalescent

Mutation
Infinite alleles model

Effective population size

» Mutation probability/rate is

» If offspring is mutant, it carries a completely new allele
> Used for: electrophoretic data (in the old days)
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:

Genetic Drift

The coalescent

Mutation
Infinite alleles model

Effective population size

300ty

50 bp
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Stepwise mutation model

» Used for microsatellites

» Microsatellite: stretch of non-coding DNA, one short motif
rapeated for a random number of times
(TCCTAGAGAGAGAGAGAGCCCGA)

» Mutation: one repetition less or more

» Sequencing microsatellites: electrophoresis (cheap)
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Infinite sites model

» Mutation probability/rate is u
» If offspring is mutant: one new allele at a single site
» Every mutation hits a new site
» Used for: DNA sequence data
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DNA sequencer

L
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Genetic Drift

The coalescent

DNA raw data

Mutation

Effective population size
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Genetic Drift

The coalescent

Mutation

Effective population size

Infinite sites model

» Probably all mutations hit new

Adult
Reference ¥ Flanking  leader
sequence scquence (exon 1)
cce
Strain
ve-s TE
L.c
s C
.. e
TG C
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TG C
TGC
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Remarks on mutation models

» infinite sites is a refinement of infinite alleles
» sequences in infinite sites models called haplotypes

» Further models: state-dependent mutation rates, finite sites
model, indel mutations, ...
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Genetic Drift

The coalescent

Mutation
Heterozygosity

Effective population size

» Heterozygosity h(t): probability of picking two different alleles
at time t

> If x1,...,xK are allele frequencies at time 0,

K

h=1- z:x,2
k=1

» In a Wright-Fisher infinite allele model,

h(t+1) =1~ 1w +(1-p?1-

) h(t)
~2u+ (1—2p— 4)h(t).
In equilibrium h(t + 1) = h(t) and so
0
1y — -
=] F = = = 9ar




Reproduction models

Genetic Drift

The coalescent

Mutation
Heterozygosity

Effective population size

» The coalescent describes genealogies in equilibrium. Using

0k
P[mutation before coalescence] =

5> 0
k 0k — k —
B+F *1r0
for k = 2 immediately gives
0
h=—
0+1
=} = = E = A
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Segregating sites

v

Mutation rate is g per line [N]

v

How many segregating sites do you expect for a sample of size
27 ... of size n?

v

Sp: (random) number of segregating sites in sample of size n

1 n
=0
1 i

n 1

E[S,] = E[E[Ss|La]] = E[3Ls] = §2

—l
—=

i 1

\{

Especially: no. of different sites in sample of size 2 is 6, in
expecatation
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Genetic Drift

The coalescent

Segregating Sites

Mutation

Effective population size

» Moreover

V[Sn] = E[E[Sr%“n]] - E[Sn]2
—E[4L, + % 12] —ZIE[L,,]2

n—1
= SE[Ly] + G V(L] = 92 1402y 3

i=

1
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Genetic Drift

The coalescent

Mutation
Pairwise Differences

Effective population size

» O,: Average number of pairwise differences

:_ZSU

<i<j<n
Sji: number of sites different in sequences i and j
>

E[Sjl=0 =  E[b]=0
» Tajima (1983) has shown that

Vo] = 1

N 2(n® +n+3)
(n—1) 9n(n—1)
=] F = = = 9ar
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:

The coalescent

Mutation
Mutation rate estimators

Effective population size

>

» Only the combined parameter § = 2Ny can be estimated!

~ 1
971- =T S,“,
.2 S

n n
0W - En—l 1
1<i<j<n i=1 i
are unbiased estimators for 6!
» O is consistent, but 6 is not!
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Sequence data and trees

» Consider the following sequences:
1 AATCCTTTGGAATTCCCT
2 GACCCTTTAGAATCCCAT
3 GACCCTTTAGGATTCCAT
4  GACCTTCGAGAGTCCTAT
5 GACCTCCGAGAATCCTAT
» Is there a way to put mutations on a tree which has leaves
1,2,3,4 and 5 that explains the data?

» Is the tree marked by mutations as informative as the data?
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Effective population size

» Hammer (2004) sequenced the same locus (5239 bases) on 41
human X-chromosomes

v

They found 16 segregating sites

16
- = 3.74 per locus = 0.07% per base

—
Zi:l T

B =

v

Moreover,

-~

0, = 0.035% per base .

Use this to estimate the human population size!

v

v

Assume humans and chimpanzees split T = 107 years ago.
Generation time is 25 years. Mutation rate is 2 - 10~8 per base

per generation.
] = = =

it
S
yel
Q
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Effective population size

» For N humans, there are 1.5N X chromosomes.

» Advantage of X-chromosomes: males only carry one allele, so
there are no heterozygotes

» If N is the population size for diploids, ¢ = 3N

> @\W,@T are unbiased estimators for 3Ny




Reproduction models
:

Genetic Drift
:

The coalescent

Mutation
Effective population size

Effective population size

» Divergence D between humans and chimpanzees is 1.6%
(per base)

» D=2Tyu, so

. D 1.6%
= 5T = 3107 [base and year]
1 0

= 252 107 [base and generation]

= 2.10"8[base and generation]
» Population size, estimated using 0y

~

Ow

0.07% 4
— = — = 12 . 10 .
W73, 6-108
» Why is N so low?? -
=} = = = = A
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Effective population size

» Why is N so low??
» Model assumptions not met:
» overlapping generations
selection
life-times not exponentially distributed
expanding population
not randomly mating

vV vyVvYyy

» Instead of census population sizes, effective population sizes
are considered in practise
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Effective population size

Let @ be some property of a model in population genetics.
This can be e.g. the rate of loss of heterozygosity, the
offspring variance of a single individual, the speed of the
coalescent or the time of fixation of a neutral allele. If
there is a real population with census population size Ny
and behaving as a model X the effective size of the
population X is the size of an ideal (panmictic,
constant-size etc.) Wright-Fisher population such that e
is the same quantity in X and the Wright-Fisher model.
This is denoted the e-effective population size.
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Genetic Drift
:

The coalescent

Mutation
Effective population size

Effective population size

:
> e = |oss of heterozygosity
» Assume no new mutations

» h;: heterozygosity at time t,

h1:%0+(1—i)
SO

1
N hF(l_N)”O

hy = (1 Ly h
! ( B N) s
» Heterozygosity lost at rate 1 —

1
2N
» Assume a real population where heterozygosity is lost at rate a
» The real population size has N, such that
a=1-

. Nheterozygosity _ 1
-, ie., Ng = —.
Ne 1—a

=

(=]
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Genetic Drift
:

The coalescent

Mutation
Effective population size

Effective population size

:
I
» e = offspring variance

» Some model: Z; number of offspring of individual /
> V[Z,] =2

z=0

N
COV[ZZ] =) PIZ = ZB[Z:Z|Z = 2] — 1
N

=> PZ;=2zE[Z|Z =2] - 1
z=0

1o 2
D PlZi=zlz(N-z+1)-1=-
z=0

N

(=]

=
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The coalescent

Mutation
Effective population size

Effective population size

» Some allele carried by first Nix individuals at time t, X; = x
V[Xer1] =

Nx Nx
[Zz] 5 (ZV[Z] + ZZC@V[Z,,Z])
= 1
Y
2
1—
m(asz - Nzxz%) = 02X( N x)
» Wright-Fisher model
x(1—x)
X = —".
V[ t+1] N
>
Noffspring variance __ ﬂ
e 2
g =} F = = = 9ar
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Genetic Drift The coalescent
Exercise

Mutation

Effective population size

» Assume Z; = N for a randomly chosen /| each generation.

» What are the 'loss of heterozygosity' and 'offspring variance’
effective population size?
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Diffusion Theory
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Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Definition

» A strong Markov process X = (X;)¢>0 for which the sample
paths are (almost surely) continuous is called a diffusion
process.

» Diffusions we consider fulfill:

Y
> Oy := lim —EX[(Xt x)’]
t—0 t

> O3,04,...=0

exist for k =1,2,....

» 4 = Oj: infinitesimal mean

» 02 := Oy: infinitesimal variance
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:

Diffusion Approximation
:

Backward and Forward equation

Generator

Speed, Scale and Green function

> X = (X¢)t>0: real-valued Markov process.
» For f € B(R) define

(GF)(x) := lim

t—0
whenever the limit exists.

Eff(Xe) = f(x)]

t

» The set D(G) for which the limits exists: domain of G
» G: (infinitesimal) generator of X.
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:

Diffusion Approximation

Backward and Forward equation
Example

> X =

Speed, Scale and Green function

(Xt)t>0: Poisson process with rate A
» The generator is

%E [f(X¢) — f(x)]

= L(e M. f(x) + e MAL- F(x + 1) — £(x) + O(£2))
= L(= AtF(x) + At (x + 1) + O(£2))
t—0

AF(x +1) = £(x))

» X =

(Xt)e>0: Jump process with rates A(x)
(GF)(x) =

Z)\ X Xnew) f(Xnew) - f(X))




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
:

Example: Brownian motion

» X': standard Brownian motion
» For f € C2(R),

Bl = [ Aew (- Y5200y

Z="— 00 2

vt V%exp<— %)f(x—i—ﬁz)dz
(c;f)(x):t!im)/oo #exp(—%)% (F(x + Vz) — f(x))dz

00 2
—lim [ Arew (- ) HFGRVE + F00F + O )dz

— ooLeX <_z_2>lf”( ) 2d — Llgn
_oomp 22xzz—2(x).

o = -

i
it
)
»
Q




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Example: Diffusion

Speed, Scale and Green function

» X = (X¢)r>0: Diffusion with y and o2: for f € C2(R)
» Generator given by
FECF(Xe) = F(x)]
t—0

= IEJ[F (x)(Xe — x) + 37 (x)(Xe — x)? + ... (Xe — x)*]
=0

()f'(x) + 0% ()" (x)




Generators

Diffusion Approximation

Backward and Forward equation

Diffusion Approximation

Speed, Scale and Green function

» Xxt a2

strong Markov processes (on compact state
space) with generators Gi, Gy, .
> If

Gnf =2, GF
for enough functions G then Xy = X.

o
o)
I
i
it
)
»
1°




Generators

Diffusion Approximation

Backward and Forward equation

Diffusion Approximation

Speed, Scale and Green function

» Moran model with alleles A and a of size N
» XN: Frequency path of allele A
» Theorem

(XI\IYt)tZO =X
(Xt)e>0: Wright-Fisher diffusion with
u(x) = 0,0%(x) = x(1 - x)

» 'Proof’:
Gnf(x) = N-(xN)(1 — x)-
(l f(x+ & N) T
x(1

2= 7) = (%)
=) (o () + O(555))
22, Ix(1 - x)f"(x)

= N?.

o)
i




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
:

Diffusion Approximation
» XN = (X,_!V)tzg,l,._,: Frequency of allele A in Wright-Fisher
model and mutation probability u from a — A, 2Ny — 6
» Theorem:
(X(hg)ez0 = X
X = (X¢)e>0: Wright-Fisher diffusion with
p(x) = §,02%(x) = x(1 - x)
» 'Proof': NXN ~ B(N,x + u(1 — x)), so

NEXN — x] = Np(1 — x) 2=, 2(1 — x),
NE[(X{ — x)?] = N - Var[X{'] = & - Var[NX{"]

— (x + (L = ))(1— x — (1 = X)) ~ x(1 = x)

o 5 = = £ DA




Generators

Diffusion Approximation

Backward and Forward equation

Speed, Scale and Green function

Diffusion Approximation

» No distinction possible on the timescale of N generations

frequency

o
-

0.8

0.6

0.4

0.2

0.0

0.0

0.1

0.2

T T
0.3 0.4

time in N generations

0.5

0.6

0.7




Generators

Diffusion Approximation

Backward and Forward equation

Speed, Scale and Green function

Diffusion Approximation

» No distinction possible on the timescale of N generations

frequency

o
-

0.8

0.6

0.4

0.2

0.0

0.0

0.5

time in N generations

1.0

15




Generators

Diffusion Approximation

Backward and Forward equation

Speed, Scale and Green function

Diffusion Approximation

» No distinction possible on the timescale of N generations

frequency

o
-

0.8

0.6

0.4

0.2

0.0

0.0

0.1

0.2

T T
0.3 0.4

time in N generations

0.5

0.6

0.7




Generators

Diffusion Approximation

Backward and Forward equation

Speed, Scale and Green function

Diffusion Approximation

» No distinction possible on the timescale of N generations

frequency

o
-

0.8

0.6

0.4

0.2

0.0

N=100000
u=10"°

0.00

0.05

0.10

T T T T
0.15 0.20 0.25 0.30

time in N generations

0.35




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed, Scale and Green function
Chapman-Kolmogoroff equations

» The transition density function p(.,.,.) of a process
X = (Xt)tZO iS

Py [X: € A] = /Ap(t,x,y)dy.

» Chapman-Kolmogoroff equations: for any Markov process
with transition function p(.,.,.) and s < t

p(t,X,Z) = /p(t - s,x,y)p(s,y,z)dy.




Generators

Diffusion Approximation

Backward and Forward equation

The backward equation

Speed, Scale and Green function

> X =

(Xt)e>o: diffusion with 4 and o
» g : smooth function
» What is

u(t, x) := Ex[g(X)]?
» u is solution of the Kolmogoroff backward equation
ou ou 0u
ar ~ M5+ 30 )55




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
:

The backward equation
Proof:

% = I, [g(X(t + h)) — g(X(1))]

= lim FE[Ex(n[g(X(t))] - g(X(1))]
= lim FE[u(t, X(h)) = u(t, x)]

du(t,x)
Ox

= lim 1B, [((X(h) ~x)

b% 2u(t, x
:M(X)(‘)u(t, ) 0 u(t )

Ox +2()




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
: :

Example

v

X = (Xt)e>0: neutral Wright-Fisher diffusion
Consider u(t, x) = E, [Xe(1 — Xp)].

u(t, x) is the probability to pick one A and one a from the
population at time t

v

v

Ju(t,x) B
5 = —x(1 = x) = —u(0, x)
» So, u(t,x) =(1—e )x(1 — x).




Generators
:

Diffusion Approximation
:

Backward and Forward equation
Example

Speed, Scale and Green function

» We found

Ex[Xe(1 — X)) = (1 — e H)x(1 — x)
» Using the coalescent:
Ex[Xe(1 — Xi)]
= PP[coalescence by time t] -0

+ P[no coalescence by time t] - x(1 — x)
=(1—-e x(1 - x).

DA




Generators

Diffusion Approximation

Backward and Forward equation

The forward equation

Speed, Scale and Green function

» X = (X¢)e>o0: diffusion with 1 and o2

» Assume: transition density function exists.
» What is

p(t,x,y) - ]PX[Xt € dy]?
» p(.,.,.) solves the Kolmogoroff forward equation
ap(ta)(?y) 0 1 82 2
= t 1= t )
B Dy (k()p(t,x,y)) + 25,2 (o*(y)p(t.x.¥))
Derivatives applied to both the infinitesimal parameters and
the function p!




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
: :

The forward equation

Proof:
w = lim = [ p(t.x,y)p(s,y,2)dy

- / (t,x,y) Opls ’Sy’z)

2 z
= / txy %j’)"‘ia (W%)dy
= / (s y,z) (P(t X, y)i(y))
2
- 35,3 (et x.)0%()
ad 1 & 2
=~ (B(2)p(tx,2)) + 555 (0% (2)p(t, x, 2)).

it
N)
yel
)

] = = =




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
:

Stationary distribution

» Integrate forward equation

0
— <
ath[Xt _y]

y 2
= [ (- @5 2) + by (el x.2) )

oo

= —'u(y)p(t X y) -+ ‘go' ( )p(t,x,y)

> For t — oo, p(t,x,y) = ¥(y), 5 IF’ [X: <y] — 0 and so

Ll )ly) + —30 2(y)y) =0,

ie., W(y) = 02—({},)@@ <2/ :UJ(( )) )

- = =




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed, Scale and Green function

Application: Mutation-Drift balance

:
» Mutation A — a at rate

0a
» Mutation a — A at rate
> X

p(x) =

(X¢)e>0: Wright-Fisher diffusion with

0
7 X+ Ea(l —X)
» Stationary distribution

2(x) = x(1 —x)
U(y) =

1—y) (/n
= o1

y)e,q 1




Generators

Diffusion Approximation

Backward and Forward equation

Speed, Scale and Green function

Diffusion Approximation

» For small mutation rates process frequently near boundaries

frequency

o
-

0.8

0.6

0.4

0.2

0.0

N=100
p=107

W

10

20

time in N generations




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Diffusion Approximation

» Time average in simulations similar to equilibrium distribution

density
4
1

0.0 0.2 0.4 0.6 0.8 1.0

frequency




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Diffusion Approximation

» For intermediate mutation rates process purely random
frequencies

e
=

N#100
ugpx10°

0.8

frequency
0.6

0.4
L

0.2

0.0

time in N generations

o
o)
I
i
it




Generators

Diffusion Approximation

Backward and Forward equation

Speed, Scale and Green function

Diffusion Approximation

>

For intermediate mutation rates process purely random

frequencies

<
-

12

density
0.8 1.0

0.6

0.0

0.2

0.4

frequency




Generators

Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Diffusion Approximation

» For big mutation rates high heterozygosity

frequency

o
-

0.8

0.6

0.4

0.2

0.0

N=100
u=5x1072

10 20 30 40

time in N generations




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Diffusion Approximation

» For big mutation rates high heterozygosity

35

3.0

25

density
20

1.0 15
I

0.5
L

frequency




Generators

Diffusion Approximation

Backward and Forward equation
Exercise

Speed, Scale and Green function

Is heterozygosity increasing or decreasing with mutation rate?

DA




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
:

Boundary Behavior

» Analysis did not need boundary behavior (absorbing,
reflecting)

» All diffusions we consider: boundary behavior clear from finite
model




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Questions

Speed, Scale and Green function

» Assume X has absorbing states at 0 and 1
» Ty, T1: absorption times (or o) at 0 and 1
» What is

IP’X[T;[ < To]?
» What is

EX[TO A Tl]?
» What does X, conditioned on {T1 < Tp} look like?




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

> Set g(X;) := 1x,<y

» Backward equation for uy(t,x) := Ex[1x,<,]

P [Xe < yl:
DpdXe <3 = nl) LBIXe <1+ 50700

P [X: <]




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» Assume X has absorbing states at 0 and 1
> Set

Po(t, x) := Py[X absorbed at 0 at time t] = P[X; = 0],
> and

Po(t,x) L2225 Py(x) = Py[X eventually absorbed at 0]

P1(x) = P[X eventually absorbed at 1]




Generators

Diffusion Approximation

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» Lettingy — 0

0
aPo(t,x) ,u(x) Po(t x)+ = 02(x)—P0(t x)
» After infinite time

0 1 0?
0= /,L(X)aPO(X) -+ Eaz(X)WPO(X)'
=] F = = £ DA




Generators

Diffusion Approximation

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» After infinite time

0= () Polx)

1
+02

82
Sr(X) 5

» Solving is easy: observe Py(0) =1, Py(1)
For some £ € [0, 1]

=0.
0
5P0(X) =

C.op(-2 [ 202

o?(z) dz)
Po(x)= e ( “2le

w(z)
fo exp< 2 [Y ;L((Zz) dz)

2(2) dz) dy

(=]

=




Generators
:

Diffusion Approximation

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» The scale function is

S(X)z/xxexp<—2/fy

for some xg € [0, 1]
g S5(1
Po(x) = ()=
» Similar:

Especially:




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» Stop the diffusion upon hitting ag, by with
O<ag<x<by<l1

P, [X hits ag before bg] = 55((:5))__;((;)).




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» X has absorbing boundaries 0 and 1

» Random time of absorption is T
» What is

w(x) = Ey [/OTg(Xs)ds] ?

> g =1: w(x) = mean time until absorption




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» Separating the integral into [0, h] and [h, T],

w(x) = Ex[/h g(Xs)dS} +E, [W(Xh)],
. 0
B | £00)as] = he) + 02

Exe[w(Xn)] = Ex[w(x) + (X5 = x)w'(x)

» So,

1.2
§U

+3(Xn —x)?w"(x) + O(h?)]
= w(x) + h(p(x)w'(x) +

()w"(x) + O(h))
PO (x) + 302 (x)w" (%)

_g(X):

(=]

w(0) =w(1l)=0

=

DA




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
: :

Speed and Scale

» So,
pO)W (x) + 30°(x)w"(x) = —g(x)

» Equivalently,
*u(z) | \2u(x)
exp (2/§ ;(Zldz) al;(x) w'(x) X
+ exp (2 /f :2((22)) dz) w”(x) = —iggg exp (2 /5 :2((22)) dz),
C%((exp (2 /: :2((22)) dz) W’(X)) = —iggig exp <2 /ﬁx :2((22) dz).




Generators

Diffusion Approximation

Backward and Forward equation

Speed and Scale

» So,

Speed, Scale and Green function

0

x y
S(X):/ exp<—2/
X '3
and set

~ 02(x)S(x
» So,




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» Recall

2 (56) - ot

» Integrating,
W/(X) - X
o~ 2| mOe©de+ 5,

0

» Since w(0) =0 we find a = 0.

X n X
w(x) = —2 /0 S'(n) /0 m(€)g(€)dedn + 5 /0 S'(n)dn + o




Genera tors Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Speed and Scale

w(x) = —2 / / S/ () dnm(€)g(€)de + B(S(x) — 5(0))
_— /0 (S(x) — S())m(€)g(€)de + 5(S(x) — S(0))

» Since w(1) =0,

o 5 = = £ DA




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Speed and Scale

2 1
w() = gy (560 = SO) [ (S(1) = S(€) m(e)e(€)ee

- (50 - 50) [ (56) - S(€)m)e(©)ee)

1
=51 =5(0) (560 =s(0)) / (S(1) = S(€)) m(€)g(€)dé

+ / T(S() — 5(0))(5(1) - S(6)) — (5(1) - 5(0)) (5(x) — 5(©))]
m(€)(€)de
1
—2P(Ti < Tol [ (S(1) - S(€)) m(e(€)d¢

+2P[Ty < T4 /OX (S(&) — S(0))m(€&)g(&)de¢

o 5 = = £ DA




Generators Diffusion Approximation Backward and Forward equation Speed, Scale and Green function
:

Speed and Scale
» Theorem:
T 1
X S = 5 d

B [ e)es] = [ Glxoa(e)de

for the Green function
o) = {2% (S =SE©)m(e),  x<e<t,
2350 - (S(8) = S(0)) m(8), 0<¢<x,

> Take g(x) = 1}y 5] to see:

2
/ G(x,£)d¢ = mean time spent in [x1, xo].
x

] = =

it
N)
yel
)




Generators

Diffusion Approximation

Backward and Forward equation
Exercise

Speed, Scale and Green function

» Show

1 1
B [T%] =2 /0 /0 G(x,€)G(&, )dnde.

DA




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

» Consider diffusion X = (X;)t>0 with x and o2
> Let 7(t) be such that

dr = m(X:)dt.
» Then

S(Xr(t))tzo
is a Brownian motion.




Generators

Diffusion Approximation

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

p(x) =0,

» Example: Mean absorption time for Wright-Fisher diffusion

o?(x) = x(1 - x).
S(X):/Oxexp<—2/oy Hz)
m(x) = ﬁ

A =2 [ xa- o ey €)d£+2/x( g

0
—2(xlog x + (1 — x) log(1 — x))

(=]

=

2(2) dz) dy = x,

5%




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function

:
» Alternative: use the coalescent

E,[T] = /OOOIP’X[T > tdt

_ /OOO SOPK; = (1 — x" — (1— x)")dt
n=2

and

/ PX[Kt = n]dt = Ex[/ 1Kt=ndti| = ]E[Tn] = 2
0 0 n

(n—1)




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Speed and Scale

Speed, Scale and Green function
>

|
o

Zn(n—l

//Zz" 2dz = — /Xlog(l— )dy

and so

(1—y)log(l — )+1—y‘0=(1—x)|og(1—x)+1—x

E[T]= Z )(1 —(1-x)"
= —2(— 14+ (1—x)log(l—x)+1—x+ xlog(x) + x)
= —2(xlog(x) + (1 — x) log(1 — x))

(=]

=




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Conditioned Diffusions

Speed, Scale and Green function

» X' Wright-Fisher diffusion, modeling frequency of allele A
» {Fix}: event of eventual fixation of the A allele and

h(x) := Py[Fix].

E,[f(Xt)|Fix] = Ex[f(Xt), Fix]

h(x)
B [F(X)P[Fix X,
h(x)
f(Xe)h(Xt)
=B =S




Generators

Diffusion Approximation

Backward and Forward equation

Conditioned Diffusions

Speed, Scale and Green function

» Generator of the conditioned process
(G"F)(x) = lim 3 (Ex[f(Xe)[Fix] - £(x))
. f(Xe)h(Xe)
- t"ﬂb%(EX[ h(x) ] N f(x))
_ (GM)(x)
h(x)




Generators
:

Diffusion Approximation
:

Backward and Forward equation

Conditioned Diffusions

Speed, Scale and Green function

» X: diffusion with x, 02, i.e.,

(GF)(x) = p(x)F'(x) + 302 (x)f"(x).
» We computed

h(X) _ S(X) B 5(0)

-~ S(1) - S(0)
» Is conditioned process X'* again a diffusion?
> If yes, what is ;u*, (02)*?

DA




Genera tors Diffusion Approximation Backward and Forward equation Speed, Scale and Green function

Conditioned Diffusions

» Assume 5(0) =0
(6" - (G
_ O (SEIF(x) + S'()F(x))
S(x)
L 377 ((SCIF"0) + ;f’()x)f'(x) + S"(x)f(x))

)f'(x) + 30% ()" (x)

5'(x)
= (1) +20° )5y
» Conditioned diffusion has

(o) — 5'(x) (o) —
(%) = pu(x) + 30°(x) S0’ (0%)"(x) = o*(x).

o 5 = = £ DA




Generators Diffusion Approximation Backward and Forward equation

Speed, Scale and Green function
:

Conditioned Diffusions

» Assume a new allele enters a population. If it fixes, how long
does this take?

» Consider diffusion with 1(x) = 0,0?(x) = x(1 — x),
conditioned on fixation, i.e.

=T 1w (0 = x(1 -0




Generators

Diffusion Approximation

Backward and Forward equation

Conditioned Diffusions
» Thus,

Speed, Scale and Green function

—1-

5*(x)=/1Xexp<—2/1y%dz>dy=/x L

1 y2
_ 1—x

1
X X
2

m(x) = ——

X
x(1-x) 1-x
» So,

G(,6) =% 2(5(1) — S(€))m(¢) = 2

1
IEO[T]:/ 2dt— 2.
0
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The Ewens Sampling formula The site frequency spectrum
:
:

Applications

DA




The Ewens Sampling formula

Ewens Sampling Formel

The site frequency spectrum

» Sample of size n

» a; .= # alleles that appear / times in the sample
» What probability does a configuration

(a1y...,an)?
have?

» Example: n =2

(2,0) : 2 alleles with frequency 1
(0,1) : 1 alleles with frequency 2

o
o)
I
i
it
)
»
1°




The Ewens Sampling formula The site frequency spectrum
: :

Ewens-Sampling Formel
» For N — oo, u — 0, such that 2Ny — 60,

n! 023

Fl(as,- - an)l = 0---(0+n—1)a!---a,!-1%...nan

» Conjectured by W. J. Ewens (1972), proved by S. Karlin and
J. McGregor (1972)

» Examples:

n2. PRo)- 2 T _ 0

00+1)2 6+1

6—0

P[(0,...,0,1)] ——= 1  (all alleles equal)
P[(n,0,...,0)] 2221 (all alleles different)

=] F

it
N)
yel
)




The Ewens Sampling formula The site frequency spectrum
: :

The coalescent and the infinite alleles model

» Coalesce any two lines at rate 1
» Poisson process with rate g on the tree gives mutations
» Two individuals carry the same allele iff they are not separated
by a mutation event
-
» Coalesce any two lines at rate 1
» Every line is killed at rate g

» Two individuals carry the same allele iff they belong to the
same part of the tree

o
o)

I
i
it
N
»
?




The Ewens Sampling formula
:

Genealogien

The site frequency spectrum

» Mutation (Rate 6/2 pro Linie); Koaleszenz (Rate 1 pro Paar)

yor

DA




The Ewens Sampling formula
:

Genealogien

The site frequency spectrum

» Mutation (Rate 6/2 pro Linie); Koaleszenz (Rate 1 pro Paar)

T&Y\
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The Ewens Sampling formula
:

Genealogien

The site frequency spectrum

» Mutation (Rate 6/2 pro Linie); Koaleszenz (Rate 1 pro Paar)

P

o
o)
I
i
it
)
»
1°




The Ewens Sampling formula The site frequency spectrum
: :

Hoppe's urn

v

Families in the coalescent with killing
=

Urn with one colored (mass 1) and one black ball (mass 6)
Draw ball relative to its weight

Colored ball — add new ball with same color

Black ball — add new ball with new color

Stop when the urn contains n colored balls

vV V.V v v Y

Two balls are in same family <= they carry same color

o
o)

I

i
it
N
»
i)




The Ewens Sampling formula
:

Hoppe's urn

The site frequency spectrum

» Why is this the same?

» Coalescent has k + 1 lines

0
Z(k+1
P[next step is killing] = 2(k+1)

0
(TS5 +1) O+ K
» Hoppe's urn with k colored balls

P[next balls has new color] =

0
0+k
» Hoppe's urn generates coalescent with killing forward in time




The Ewens Sampling formula

Number of allleles

The site frequency spectrum

» Let 7, = 1 iff kth ball in Hoppe”s urn is black (otherwise
nk = 0)

0
Pk = 1]
» Now,

0+k—1

n n
E[number of alleles] = E[an = Z H—ij%
n
V[number of alleles] = ZV k]

k=1

-y




The Ewens Sampling formula
:

The site frequency spectrum

Ewens Sampling formula: A simple proof

» Proof of Ewens Sampling formula by induction:
» n=1P[(1)] =1

» n—1— n: Use Hoppe's urn and

n
Z kag =n
k=1

to make the induction step:

DA




The Ewens Sampling formula

The site frequency spectrum

Ewens Sampling formula: A simple proof

Pl(a1,...,an)] = P[(a1

- 17327

)] 0

0+n—1
g k(ak +1)
+;P[(a1,.. skt Lok — 1)l
_ (=1 [ L)
_9'(9"1‘”—1) (31—1)|a2|a3 232333
- gzajak-i-lk k+1
+;al|az .1a10a2 . P ]
(n—1)! 02 3 n
0---(0+n—1)alap!---12122. (a1 + ;( + )3k+1>
- = = E = wac




The Ewens Sampling formula The site frequency spectrum
: :

A fast proof

» Loss-List: at each coalescent or mutation event a line is lost
» coalescent has k lines: k possibilities which line is lost
» Number of loss-lists is n!

» Number of ways to put n objekts into families, such that a
configuration (a1, ap, . ..) arises:

n!
[Tx—q (kY)ay!




The Ewens Sampling formula
:

A fast proof

The site frequency spectrum

» Fix a loss-list and a decomposition of all individuals into
families, that leads to the configuration (a1, a2, . . .)
» Coalescent has k lines:

L ke29
P[loss by mutation] = K6j2 (,2() T k—1
(5)

k-1
ko/2+ (5) O+k-1
» => loss list has probability

10—, ((k — 1)1)2H2

@+n—-1)---(06+1)-0
» Multiplication gives the Ewens Sampling formula
] = =

P[loss by coalescence| =




The Ewens Sampling formula The site frequency spectrum
: :
Number of allels
» What is N
P[> o=«
i=1
» Observe that

nl

31!32! co.o]1@Dax ..
of length /

is the number of permutations of {1,..., n} having a; cycles
» Recall the Stirling number of the first kind

Sk

n

is the number of permutations with k cycles

(=]

=




The Ewens Sampling formula
:

Number of alleles

The site frequency spectrum

» This gives

ek
j=1
» As

P[(al,az,.. \Zaj = k]

>.7_; aj is sufficient for estimators of 6!

DA




The Ewens Sampling formula The site frequency spectrum
:

The site frequency spectrum

» Infinite sites model
» Polymorphic sites are called SNPs

» Size of a SNP is the number of individuals in the sample that
carry the mutant allele

» What is the expected number of SNPs that have size i?




The Ewens Sampling formula
;

The site frequency spectrum

The site frequency spectrum

:
» S;: number of mutations of size i
» We already computed

n—1 n—1 1
E[Z 5,-} — 0
i=1 i=1
» Coalescent is in state k <= it has k lines

i

» A branch is of size i if exactly i of the sampled individuals are
descendants of this branch




The Ewens Sampling formula
;

The site frequency spectrum

The site frequency spectrum

» We write

n k
E[Si] = Z Z]P’[/th branch at state k is of size i]-
k=2 I=1

E[number of mutations on /th branch at state k|
» The easy part:

E[number of mutations on /th branch at state k|
g - E[length of the /th branch at state k] =

0
k(k — 1)




The Ewens Sampling formula The site frequency spectrum
: :

Polya's urn

» Urn cointains some balls with different colors
» Take out one ball, put it back and add one of the same color
» Example: start with 2 balls '0’ and '1’

» Upon adding n — 2 balls, what is the probability that k are
descendants of '0'?

1-o(k—=1)-1---(n—k—1)(n—2\ 1
2---(n—1) (k—1>_n—1




The Ewens Sampling formula The site frequency spectrum
: :

Polya's urn

» Polya-urn-genealogy coincides with coalescent structure

» Reason: each line has same chance to split as each pair has
the same cahnce to coalesce

» Start Polya urn with k balls and stop it with n balls: color
counts give sizes of branches in the coalescent

P[/th line at state k is of size /]

(',tf) (i — 1)!(/;.1(),;;(1,;—/— 1)

:g(,;:f)(n—i).lj!.(n_l) - E’,E% k71~




The Ewens Sampling formula The site frequency spectrum
:

Site frequency spectrum

» Putting everything together,

o 5 = = £ DA




The Ewens Sampling formula
;

The site frequency spectrum

The site frequency spectrum

» Look at the X-chromosome dataset from Hammer (2004)

o
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The Ewens Sampling formula
;

The site frequency spectrum

The site frequency spectrum

sample?

» Why does the plot only include allele frequencies up to 207
» Why are there so many singleton mutations in the population




The Ewens Sampling formula The site frequency spectrum
: :

The mismatch distribution

» For a sample of size n there are ('2’) pairs
» Every pair (/,/) of sequences has a number of differences Sj;

> The empirical distribution of {Sj; : 1 < i < j < n} is the
mismatch distribution.

» This may be compared to

P[S; = k] = (%)kL




The Ewens Sampling formula
;

The mismatch distribution

The site frequency spectrum

» Look at the X-chromosome dataset from Hammer (2004)
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Recombination

Q>




Some biology

Consider two pairs of alleles A/a and B/b

First consider a cross AABB x aabb (P-generation)

All offspring must have AaBb (F;i-generation)

Cross one child with a homozygote AaBb x aabb

All offspring should have AaBb or aabb (F,-generation)
In fact we also find Aabb and aaBb!

Why?

vV VvV vV vV VY




Some biology

» The Fi-generation certainly has one set of chromosomes
carrying AB and one set of chrosmosomes carrying ab

» During production of germ cells, the F;i-generation rearranges
the combinations of alleles

——

D, S ———
MM ——

Fie. 64. Scheme to illustrate a method of crossing over of
the chromosomes.

] = =




The Wright-Fisher model with recombination

» Consider the evolution of two different loci on a chromosome
» We extend the Wright-Fisher model by the rule

» With probability r, the two loci choose two different ancestors




The Wright-Fisher model with recombination
aB aB AB aB aB aB AB aB

» The A-locus is
traced back
using solid lines

» The B-locus is
traced back
using dashed
lines

Time

o
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The ancestral recombination graph

» We assume that N is big and N - r — p.
» Trace back two linked loci

» Both loci have two different ancestors after an Exp(p) waiting
time




The ancestral recombination graph (two loci)

» Start with n pairs of linked loci on n lines
» Any pair of lines coalesces at rate 1

» A line carrying two loci splits at rate p

» Stop upon either

» hitting a single line (Marjoram, Griffiths)
» the MRCA at both loci is found (Hudson)




The ancestral recombination graph

» The A locus has the left, the B locus the right ancestor

—

-~
| ~
Recombination™ ~




The ancestral recombination graph

» The genealogy at the A-locus

—

-~
~
Recombination™ ~
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The ancestral recombination graph

» The genealogy at the B-locus

—

-~
~
Recombination™ ~
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Some remarks

» It is easy to construct the ancestral recombination graph on
3,4,... loci
» General notion: every locus has its own genealogy

> If 7q,...,7, are the trees at loci 1,...,n. Then (7;)1<i<p is
not a Markov chain!

» Programs like ms from Richard Hudson construct ancestral
recombination graphs along a recombining chromosome

» Most analysis done for two loci




Recombination and data

» Look at the haplotypes of the X-chromosome dataset

» Was there recombination in the sample genealogy?

1|Hap 1 Htctgtactagcgccg
2|Hap 2 . |-]-]-]|-|-|-[c|-]a]-|af-[t]-
EHapB el Al -] ]
4|Hap 4 Tl |- [-]-]|-|-[af-]O]|-]|-|-|-]-]2
EHapS - l-]- - a1 ]--1-]-]- |2
6|Hap 6 wlefalafalC]al@ala(@]afa]afa]x]~
_?Hap7 - -lal-|gf-|-|-]9]-
TEIHapB e -] f-]-]-|al-|a]-|-]|-[-]-
[ 9|Hap 9 EEARRAREORNREE
EHap'l[l S-lal-f-]-]-|af-a]-]|-]-
11|Hap 11 ala|a]a]a]a]-]- wlalala]a]=]-
[12|Hap 12 ANRRORIARANRANAE
13|Hap 13 el - |- @] a]--]-]-]-]-
WHapH - l-l-lal- - Al g - -] ]
Site Selected: 1 Window Range: 1-16
=} F = = z




The four-gamete rule

» If you can find four different gametes (which is the same as
genotype or haplotype) in a sample, by considering just two
segregating sites a recombination event must have taken place
between the two sites.

» 'Only if" also holds




Linkage Disequilibrium

» Consider two loci with allels A, a and B, b and mutations
A~ a B b
> Set

Xa = frequency of allele A
Xa = frequency of allele B
Xag =

frequency of combination AB




Linkage Disequilibrium

» Set

D2
D = Xap — XaXg, 2 =

Xa(l — Xa)Xp(1 — Xp)
» In a sample, D and r? can be estimated using the frequencies
XA,XB,XAB in the sample

E[D] 2. _

» Using the ancestral recombination graph, we can compute
o

E[D?]
E[Xa(1 — Xa)Xg(1 — Xg)]

in equilibrium

~ E[r?]
» There are two model parameters (6, p)




Linkage Disequilibrium

» E[Xag]: Probability that a randomly picked individual has A
at the A-locus and B at the B-locus

» E[XaXg]: Probability that the A and B locus of two different
individuals carry alleles A and B




Linkage Disequilibrium

» There are several explanations for

E[D] =0
in equilibrium.

DA




Linkage Disequilibrium

» We next compute

2

B 20+ p+5
20+ p+5)(20+2p—3) -4

» If we consider only single sites as loci, § < p and thus o2 is
not much incluenced by 6

» For large p,

%

T I




Linkage Disequilibrium

» f: probability that two linked pairs (i.e. they are in the same

individual) of L and R loci are heterozygous at both the L and
R locus.

» g: probability that two pairs of loci, where the first pair is
linked and the second pair is unlinked (i.e. comes from two
different individuals), is heterozygous

» h probability that two pairs of unlinked loci are heterozygous.




Linkage Disequilibrium

» Observe

E[XaXaXgXp] = 3h
E[D?] = L(E[(Xas — XaX5)(Xap — XaXb)]
+ E[(Xab — XaXp)(Xag — XaXB)]
= 3 (E[2XagXab + 2XapXag] + 4E[Xa X5 XaXp]
— 2E[XagXaXp + XapXaXp + XagXaXs + XapXaXs))
= 3(f —2g+h),




Linkage Disequilibrium

» Set

1
= 20> ——
¢ 1+46
» Using the ancestral recombination graph,
C 2p
14+204+2p 1420+2p
C 1 P
= f+———h
=3 20+p 34204, 31201 p
h= ¢ + 4
T6+20 6+20 €

» Solving the linear system gives the assertion

(=]

=
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Selection

» Selection = dependence of offspring distribution on genetic
type

meiosis random union survival
Adults = Gametes = Zygotes =
(N) fertility (00) sexual (o0)
selection selection

Adults
viability (N)
selection

o
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Some keywords

Viability selection

Sexual selection

Gametic selection

Fecundity selection

Density and frequency dependent selection
Pleiotropy

vV VvV vV vV VY

Epistasis




Modeling selection

» Assume the frequency of A is x

» What is the frequency after one generation in a Wright-Fisher
model?

» Allele a is less fit that A

Genotype  AA Aa aa

Newborns  x? 2x(1 — x) (1-x)?

Viability 1 1—sh 1-s

Adults x?/w 2x(1—x)(1—sh)/w (1 —x)*(1—s)/w
with

W = x*4+2x(1—x)(1—sh)+(1—x)?(1—s) = 1—s(1—x)(1—x(1—2h)).

] = = =

2a¢




Modeling selection

h is the dominance coefficient
h = 0: Selection against a recessive allele

h = 1: Selection against a dominant allele

vV v.v Yy

h= %: gametic selection




Selection and the Wright-Fisher model

» Assume again that all individuals choose their parents
independently at random

» Given X; = x in the last generation, the probability of picking
an individual with allele A is

x>+ (L —sh)x(1 —x) _ x(1— sh) + shx?

= w w
—XW _ 2
s xw—i—x(l_ sh) + shx
w
N —x(1—5s(1—x)(1 —x(1—2h))) + x(1 — sh) + shx?
= X —
w
ey sx(1—x)(1—x —l—_2hx) — shx(1 — x)
w
N sx(1 —x)(1 — h+x(2h — 1))
w




Exercise

» Is it biologically realistic to say that all individuals pick their
parent independently?

DA




Diffusion Approximation

» XN = (XtN)t:O’l,,_,: Frequency of allele A in Wright-Fisher
model with selection. Selection and dominance coefficient s
and h with sN — «

» Theorem:
(X(hg)e=0 = X

X = (X¢)e>0: Wright-Fisher diffusion with
p(x) = ax(1 —x)(1 — h+ x(2h — 1)), 02(x) = x(1 — x)
» 'Proof’: NXN ~ B(N, %), so
NE,[XY — x] = Nsx(1 — x)(1 — h + x(2h — 1)) + O(Ns?),
NEL[(X] — x)?] = (1 — %) = x(1 — x) + O(s)

] = -
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Fixation probability

» "Kimura's formula”
selection

with

pix) = Sx(1=x),  o*(x) =x(1=x)
» The scale function is
S(x) =

/oxexp<—2/0y 1z)

Uz(z)dz>dy
X 1
—ay —ax
/oe dy——a(l e )

Probability of fixation of an allele under

> (Xt)t>0: frequency path of the fitter allele; this is a diffusion




Selection in the Wright-Fisher model

» The scale function is

1
S(x)=—(1 —e™
()= —(1—e)
i l1—e
= P,[fix] = Pi(x) = gy
» For a finite population, Ns > 1,

e—S

P, [fix] ~ i:

K

e—a
» Even for highly beneficial mutations, the probability of loss is
high!




Genealogies under selection

» What does the genealogy under selection look like?
» How does it differ from neutral genealogies?

» Complication: coalescence probabilities depend on allelic
states, but these are unknown when looking backward in time.

» To study genealogies in equilibrium, we take a two-allele
model with two-way mutation




The Moran model with selection

» The population is
assumed to be in

° selection-mutation-drift

equilibrium

» Alleles are a and A

Time

» Each pair resamples with
rate 1

» Each lines mutates with
® rate %

» Each line creates red
arrows with rate 5




The Moran model with selection

» Black arrows can be used
by any allele

» Only A alleles can use red
arrows

Time

» The state at all times can
be read from this
] A graphical representation

o
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Generator
» X = (Xt)t>0: Frequency path of A
» Generator of X;:

Gf(x) = $Nx(1 — x)(f(x + &) — f(x))
+GNIL = x)(F(x + ) = F(x))
+ INx(f(x — &) — F(x))

+ (gl>x(1 —X)(f(x + &) + f(x — %) — 2f(x))

N—oo
_

($x(1—x) + g(l —x) — gx) f/(x) 4+ 3x(1 — x)f"(x)

=] F

£ DA




A sample of size 2

» Question: Can we trace back
the ancestry of a sample?

] » Again: for the sample only
arrows and bullets affecting the
sample are important

» Observation for a large
population: when a sample is
hit by a red arrow it almost
always comes from outside the
sample. Each line is hit at rate
%SN = 3.

UA

it
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A sample of size 2

» From the UA forwards in time
the genealogy can be found

» Determine the allele of the UA

» Red arrows can only be used by
A alleleles

» At a selection event there is a
continuing and an incoming
branch

» When a red arrow is not used
use the continuing branch

» Alleles in the sample and the
ancestry can be found

UA

] = =




The ASG

» Two lines coalesce at rate 1
¢ > Atrate 5 each line is hit by a
red arrow; thus it produces a
new line in the ancestry graph

» Mutations occur at rate g

UA




The ASG

» The allele of the UA is given by the equilibrium distribution

» Finding the true genealogy can be done going from the UA
forwards

» In simulations it takes a long time to reach the UA




The ASG
A a
[ ]
A a
[ ]
7 » Assume the UA has allele A
a
®
UA=A

DA




The ASG
A a
[ ]
A A
[ ]
» Assume the UA has allele a

A a
®
UA=a

DA




Duality

» X;: frequency of a neutral allele without new mutations
» K;: number of lines in Kingman's coalescent
» 'Duality’:

E[X]|Xo = x] = E[xX|Ko = n].
» Y;: frequency of a beneficial allele without new mutations

» L;: Number of lines in the ancestral selection graph
» 'Duality”:

E[(1 - Y:)"|Yo = y] = E[(1 — y)"*|Lo = n].




The structured coalescent

» Model: Two-allele (A/a) Wright-Fisher, two-way mutation
(probability 1) and selection with h = 3

» X;: frequency of A at time t
> Assume X = (X¢)r<o is known

» What does the genealogy of a sample at time t = 0 look like
conditioned on X7




The structured coalescent

» Pick one individual at time t

ancestor is a at|individual is A at time t,
timet—1

Xi—1=x ]
(1 —x)(1—3) 1-—x 2
- =y + O(u” + ps)
W)= 3) X110 (
» Since Xy = X;_1 + O(ﬁ)
P ancestor is a at‘individual is A at| _ 1-X;
timet —1 time t, X =R Xi
[=] = - = = o




The structured coalescent

» Pick two individuals at time t

P
Lt timet —1

common ancestor in Alboth individuals A at
time t, Xt—l =X
x(1—p)
= (5 +o(k)
p |common ancestor in Alboth individuals A at
at time t —1

21 1
T A= D)
time t, X }N 1
|

Nx — Nx
~ONX;
both ancestors in a at|both individuals
timet —1

Aattimet, X

] = O(1?)




The structured coalescent

» Rescale time by N
> Assume (X¢)ter is known

» Rates in the structured coalescent from time t backwards

1
I in A: —
coalescence in X,
coalescence in a L
nce in a:
1-X;
1— X,
jump from A to a: g ‘
Xt
Xt
j f to A: o
jump from a to 21X,
] = - =




Example

» These rates also apply for general h

» Under balancing selection (h > 1) and weak mutation the
MRCA of a sample is far in the past




Recombination in the structured coalescent

» Assume the frequency path X of allele A is known
» Look at a linked B/b-locus

» The recombination probability between A/a and B/b locus

r per generation

» What does the genealogy at the B/b locus look like
conditioned on X7

is




Recombination in the structured coalescent

» Pick an individual at time t

ancestor at A/a and B/b locus| _ 1_,
identical at time t — 1

[ancestors different and ancestor of

B/b-locus linked to a at time t —1

B/b-locus linked to A

at time t, X ]
= r(l — Xt_]_)
=] = - = = o




Recombination in the structured coalescent

» Rescale time by N, p:= Nr

» Additional rates in the structured coalescent from time t
backwards

jump from A to a: p(1—Xy)
jump from a to A:

pXt
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Example: Hitchhiking

» Assume a beneficial allele enters and fixes in a population in
small time

» What does the genealogy at a linked locus look like?




Example: Hitchhiking

» The frequency path X of the beneficial allele

time

frequency of the beneficial allele




Example: Hitchhiking

» ...and the genealogy of a linked neutral locus

time

frequency of the beneficial allele




Example: Hitchhiking

» There are several ways to detect a hitchhiking event. Can you
explain why biologists expect to find

(i) reduced diversity (e.g. measured as the total number of

mutations in a sample) close to a strongly beneficial locus
that recently fixed?

(ii) an excess of high-frequency variants close to the selected site
relative to other mutational classes?




Background selection

» Certainly some mutations are deleterious

» Neutral mutations on chromosomes carrying deleterious
mutations are quickly lost

» Hudson and Kaplan (1995) say:

ECENTLY, it has been shown that the continual

production of deleterious mutations along with
their continual elimination by natural selection can the-
oretically reduce the levels of neutral variation main-
tained at linked loci (CHARLESWORTH ¢! al. 1993).



Background selection

» Assume that in each generation every individual has
Pois(U/2) new deleterious mutations and:

We assume that every deleterious mutation has the
same selective effect, sk, and that deleterious effects
combine multiplicatively. That is, an individual hetero-
zygous for ¢ deleterious mutations will be assumed to
have fitness (1 — sh)’. We assume that the selection
coefficient, sh, is sufficiently large that individual muta-
tions never reach high frequency. With these assump-
tions, in a very large population at equilibrium, the
frequency of chromosomes with i deleterious muta-
tions, denoted f(U/2sk), is approximately

(U/ QSh)i o U/ 2sh
i

Si(U/2sh) = (2)



Background selection

» Assume that the frequency of chromosomes carrying i
deleterious mutations is f;; set § = U/2sh
> After selection

o B(—hs) e (0)(1 hsy
(1 —hsy
j=0

ile—0 § 0i( 1 hs)l
—o(1—hs)0'(1 = hs)’
il
= pois(8(1 — hs))(i) =~ pois(§ — U/2)(i)

» After accumulating new mutations, f” & pois(f)

(=]

=




Background selection

» A quick argument: Selection is like 'thinning’ out offspring
which are not fit.

» A thinned Poisson distribution is again Poisson.
» Therefore, after selection, f’ = pois(6(1 — sh))
» After mutation, " ~ pois(6).




Background selection

» How is variation reduced under background selection?
» Charlesworth, Morgan and Charlesworth (1993) give the result
T = 4foN.

where

v

7 := E[number of neutral mutations in a sample of size 2]
v: neutral mutation rate

[ 3
» N: number of diploid individuals
>

fo := e~ Y/ is the frequency of the class without deleterious
mutations




Background selection

» They have two arguments. One is based on genealogies:

An alternative way of obtaining this result is
through the coalescent method. The mean time to
coalescence of the ancestries of two genes sampled
from the population is approximately 2foN, instead of
the classical 2N, (HubpsoN 1990), since most of their
ancestry must be contributed from a period when they
were carried in mutation-free chromosomes.



Background selection

» Assume an individual carries j > 0 deleterious mutations.
What is the time 7j_1 (in generations) in the past it has an
ancestor carrying j — 1 deleterious mutations?

» Using the structured coalescent and the frequencies f;, 7j_1 is
exponentially distributed with parameter

fiir o, (U/2shy—1j!
U = Vs 1y

» So, the time in the past when the ancestor is in the
mutation-free class has expectation

= 2shj.
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Background selection

» Once two lines are in the mutation-free class they coalesce at
1 .
rate sy=. Since

2Nfy >
» Therefore,

as long as Nsh is large, most time is spent to coalesce both
lines in the mutation-free class.

E[mutations in a sample of size 2]

= 2v - E[coalescence time of two lines| ~ 4vNf




Background selection

» Can you explain why biologists

(i) expect to see patterns of a neutral evolution model with a

reduced population size under background selection?
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Background selection

» Look at a neutral locus linked to a locus under background
selection (=locus )

» Recombination probability is R per generation
» Pick two individuals and set

X;(#) = the number of deleterious mutations
at locus j on the ancestral chromosome

in the ith ancestral generation,

of the ith sampled chromosome,




Background selection

» Approximately, Xi(t) and Xa(t) are independent
» The probability of coalescence in generation t is

A5 PO =B

. 2Nfi(u(x) Ax/2sh)
where u(xj)Ax is the deleterious mutation rate at locus j.




Background selection

» We assume:

> tis large and P[Xi(t) = k] —

t—oo

oo (K)
» U/2sh is small so that we only have to worry about k = 0,1

» Recall: at locus j, if u/2 is the deleterious mutation rate,
Plancestor is in k = Olline is in k = 1] ~

1—u/2
d u/2sh ~ sh
2 u/2sh
» at the neutral locus,
P |ancestor isin k =0 line is |r.1 k : 1,
recombination

] ~1—u/2sh




Background selection

» In equilibrium,

Poo(1) = (1 — R — sh)Pso(1) + R2—leh,
uR
Poo(l) = 2sh(R — sh)
> SO’ uR 2 uR 2
NS (m) (1 - m)
% u/2sh 1—u/2sh
uR? 2uR
N+ (1-— )1 h
2sh(r + shy? ( 2sh(R + sh))( +u/sh)
1t uR? — 2uR(R + sh) + u(R + sh)? L, ush
- 2sh(R + sh)? N 2(r + sh)?

o F = A
; ;




Background selection

» The mean time to coalescence is approximately
sh
ANL~1- u s~ L1— d
2(R + sh)

4R
» Especially: the coalescence time increases with distance to the
selected locus.
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Background selection

» low recombination rate = variation reduced
» data from third chromosome of D. melanogaster:
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DNA Variation
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—u = 00002, Ty = 0.012
seses u = 0.00004, %o = 0.007
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Selection

Q>




Selection

» Selection = dependence of offspring distribution on genetic
type

meiosis random union survival
Adults = Gametes = Zygotes =
(N) fertility (00) sexual (o0)
selection selection

Adults
viability (N)
selection
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Some keywords

Viability selection

Sexual selection

Gametic selection

Fecundity selection

Density and frequency dependent selection
Pleiotropy

vV V. vV vV vV VY

Epistasis




Modeling selection

» Assume the frequency of A is x

» What is the frequency after one generation in a Wright-Fisher
model?

» Allele a is less fit than A

Genotype  AA Aa aa

Newborns  x? 2x(1 — x) (1-x)?

Viability 1 1—sh 1-s

Adults x?/w 2x(1—x)(1—sh)/w (1 —x)*(1—s)/w
with

W = x242x(1—x)(1—sh)+(1—x)?(1—s) = 1—s(1—x)(1—x(1—2h)).

] = = =

2a¢




Modeling selection

h is the dominance coefficient
h = 0: Selection against a recessive allele

h = 1: Selection against a dominant allele

vV v.v Yy

h= %: gametic selection




Selection and the Wright-Fisher model

» Assume again that all individuals choose their parents
independently at random

» Given X; = x in the last generation, the probability of picking
an individual with allele A is

x>+ (L —sh)x(1 —x) _ x(1 — sh) + shx?

= w w
—XW _ 2
N xw—i—x(l_ sh) + shx
w
N —x(1—5s(1—x)(1 —x(1—2h))) + x(1 — sh) + shx?
= X —
w
. sx(1—x)(1—x —l—_2hx) — shx(1 — x)
w
N sx(1 —x)(1 —h+x(2h — 1))
w




Exercise

» Is it biologically realistic to say that all individuals pick their
parent independently?

DA




Diffusion Approximation

and h with sN — «

» XN = (XtN)t:O’l,,_,: Frequency of allele A in Wright-Fisher
model with selection. Selection and dominance coefficient s
>

(X(hg)e=0 = X
X = (X¢)e>0: Wright-Fisher diffusion with

p(x) = ax(1 —x)(1 — h+ x(2h — 1)), 02(x) = x(1 — x)
» 'Proof’: NXN ~ B(N, %), so

NE,[XN — x] = Nsx(1 — x)(1 — h + x(2h — 1)) + O(Ns?),
NEL[(X] — x)?] = (1 — %) = x(1 — x) + O(s)

(=]

=




Fixation probability

» "Kimura's formula”
selection

with

pix) = Sx(1=x),  o*(x) =x(1=x)
» The scale function is
S(x) =

/oxexp<—2/0y 1z)

Uz(z)dz>dy
x 1
—ay P —ax
/oe dy a(l e )

Probability of fixation of an allele under

> (Xt)e>0: frequency path of the fitter allele; this is a diffusion




Selection in the Wright-Fisher model

» The scale function is

1
S(x)=—(1 —e™
() = —(1—e)
i l1—e
= P,[fix] = Pi(x) = o=
» For a finite population, Ns > 1,

e—S

P, [fix] ~ i:

K

e—a
» Even for highly beneficial mutations, the probability of loss is
high!




Genealogies under selection

» What does the genealogy under selection look like?
» How does it differ from neutral genealogies?

» Complication: coalescence probabilities depend on allelic
states, but these are unknown when looking backward in time.

» To study genealogies in equilibrium, we take a two-allele
model with two-way mutation




The Moran model with selection

» The population is
assumed to be in

° selection-mutation-drift

equilibrium

» Alleles are a and A

Time

» Each pair resamples with
rate 1

» Each lines mutates with
® rate %

» Each line creates red
arrows with rate 5




The Moran model with selection

» Black arrows can be used
by any allele

» Only A alleles can use red
arrows

Time

» The state at all times can
be read from this
] A graphical representation
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Generator
» X = (Xt)t>0: Frequency path of A
» Generator of X;:

Gf(x) = $Nx(1 — x)(f(x + &) — f(x))
+GNI = x)(F(x + ) — F(x))
+ INx(f(x — &) — F(x))

+ (gl>x(1 —X)(F(x + &) + f(x — %) — 2f(x))

N—oo
_

($x(1—x) + g(l —x) — gx) f/(x) + 3x(1 — x)f"(x)

=] F

£ DA




A sample of size 2

» Question: Can we trace back
the ancestry of a sample?

° » Again: for the sample only
arrows and bullets affecting the
sample are important

» Observation for a large
population: when a sample is
hit by a red arrow it almost
always comes from outside the
sample. Each line is hit at rate
%SN = 3.

UA

it

S
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A sample of size 2

» From the UA forwards in time
the genealogy can be found

» Determine the allele of the UA

» Red arrows can only be used by
A alleleles

» At a selection event there is a
continuing and an incoming
branch

» When a red arrow is not used
use the continuing branch

» Alleles in the sample and the
ancestry can be found

UA

] = =




The ASG

UA

» Two lines coalesce at rate 1

> At rate 5 each line is hit by a
red arrow; thus it produces a
new line in the ancestry graph

» Mutations occur at rate g

it
N)
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Q




The ASG

» The allele of the UA is given by the equilibrium distribution

» Finding the true genealogy can be done going from the UA
forwards

» In simulations it takes a long time to reach the UA




The ASG
A a
[ ]
A a
[ ]
7 » Assume the UA has allele A
a
®
UA=A

DA




The ASG
A a
[ ]
A A
®
» Assume the UA has allele a

A a
®
UA=a

DA




Duality

» X;: frequency of a neutral allele without new mutations
» K;: number of lines in Kingman's coalescent
» 'Duality’:

E[X"|Xo = x] = E[xX|Ko = n].
» Y;: frequency of a beneficial allele without new mutations

» L;: Number of lines in the ancestral selection graph
» 'Duality”:

E[(1 - Y:)"|Yo = y] = E[(1 — y)"*|Lo = n].




The structured coalescent

» Model: Two-allele (A/a) Wright-Fisher, two-way mutation
(probability 1) and selection with h = 3

» X;: frequency of A at time t
> Assume X = (X¢)r<o is known

» What does the genealogy of a sample at time t = 0 look like
conditioned on X7




The structured coalescent

» Pick one individual at time t

ancestor is a at|individual is A at time t,
timet—1

Xi—1=x ]
(1 —x)(1—3) 1-—x 2
- =y + O(u” + ps)
W)= 3) XL 1) (
» Since Xy = X;_1 + O(ﬁ)
P ancestor is a at‘individual is A at| _ 1-X;
timet —1 time t, X ~H Xi
[=] = - = = o




The structured coalescent

» Pick two individuals at time t

P
Lt timet —1

common ancestor in Alboth individuals A at
time t, Xt—l =X
x(1—p)
= (5 +o(k)
p |common ancestor in A|both individuals A at
at time t —1

21 1
T A= D)
time t, X }N 1
|

Nx — Nx
~ONX,
both ancestors in a at|both individuals
time t —1

Aattimet, X

] = O(1?)




The structured coalescent

» Rescale time by N
> Assume (X¢)tcr is known

» Rates in the structured coalescent from time t backwards

1
coalescence in A: —
i X
coalescence in a L
nce in a:
1-X;
1-— X,
jump from A to a: g ‘
Xt
Xt
j f to A: 0
jump from a 21X,
] = - =




Example

» These rates also apply for general h

» Under balancing selection (h > 1) and weak mutation the
MRCA of a sample is far in the past




Recombination in the structured coalescent

» Assume the frequency path X" of allele A is known
» Look at a linked B/b-locus

» The recombination probability between A/a and B/b locus

r per generation

» What does the genealogy at the B/b locus look like
conditioned on X7

is




Recombination in the structured coalescent

» Pick an individual at time t

ancestor at A/a and B/b locus| _ 1_,
identical at time t — 1

[ancestors different and ancestor of

B/b-locus linked to a at time t —1

B/b-locus linked to A

at time t, X ]
= r(l — Xt_]_)
=] = - = = o




Recombination in the structured coalescent

» Rescale time by N, p:= Nr

» Additional rates in the structured coalescent from time t
backwards

jump from A to a: p(1—Xt)
jump from a to A:

pXt
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Example: Hitchhiking

» Assume a beneficial allele enters and fixes in a population in
small time

» What does the genealogy at a linked locus look like?




Example: Hitchhiking

» The frequency path X of the beneficial allele

time

frequency of the beneficial allele




Example: Hitchhiking

» ...and the genealogy of a linked neutral locus

time

frequency of the beneficial allele




Example: Hitchhiking

» There are several ways to detect a hitchhiking event. Can you
explain why biologists expect to find

(i) reduced diversity (e.g. measured as the total number of

mutations in a sample) close to a strongly beneficial locus
that recently fixed?

(ii) an excess of high-frequency variants close to the selected site
relative to other mutational classes?




Background selection

» Certainly some mutations are deleterious

» Neutral mutations on chromosomes carrying deleterious
mutations are quickly lost

» Hudson and Kaplan (1995) say:

ECENTLY, it has been shown that the continual

production of deleterious mutations along with
their continual elimination by natural selection can the-
oretically reduce the levels of neutral variation main-
tained at linked loci (CHARLESWORTH e¢f al. 1993).



Background selection

» Assume that in each generation every individual has
Pois(U/2) new deleterious mutations and:

We assume that every deleterious mutation has the
same selective effect, sh, and that deleterious effects
combine multiplicatively. That is, an individual hetero-
zygous for ¢ deleterious mutations will be assumed to
have fitness (1 — sh)’. We assume that the selection
coefficient, sh, is sufficiently large that individual muta-
tions never reach high frequency. With these assump-
tions, in a very large population at equilibrium, the
frequency of chromosomes with i deleterious muta-
tions, denoted f(U/2sk), is approximately

(U/ QSh)i o U/ 2sh
i

Si(U/2sh) = (2)



Background selection

» Assume that the frequency of chromosomes carrying i
deleterious mutations is f;; set § = U/2sh
> After selection

o B(—hs) e (0)(1 hsy
S 1 —hsy
j=0

ile—0 § 0i( 1 hs)l
—o(1—hs)0'(1 = hs)’
il
= pois(§(1 — hs))(i) =~ pois(§ — U/2)(i)

» After accumulating new mutations, f” & pois(f)

(=]

=




Background selection

» A quick argument: Selection is like 'thinning' out offspring
which are not fit.

» A thinned Poisson distribution is again Poisson.
» Therefore, after selection, f’ = pois(6(1 — sh))
» After mutation, " ~ pois(6).




Background selection

» How is variation reduced under background selection?
» Charlesworth, Morgan and Charlesworth (1993) give the result
T = 4foN.

where

v

7 := E[number of neutral mutations in a sample of size 2]
v: neutral mutation rate

[ 3
» N: number of diploid individuals
>

fo .= e~ Y/25" is the frequency of the class without deleterious
mutations




Background selection

» They have two arguments. One is based on genealogies:

An alternative way of obtaining this result is
through the coalescent method. The mean time to
coalescence of the ancestries of two genes sampled
from the population is approximately 2foN, instead of
the classical 2N, (HubpsoN 1990), since most of their
ancestry must be contributed from a period when they
were carried in mutation-free chromosomes.



Background selection

» Assume an individual carries j > 0 deleterious mutations.
What is the time 7j_1 (in generations) in the past it has an
ancestor carrying j — 1 deleterious mutations?

» Using the structured coalescent and the frequencies f;, 7;_1 is
exponentially distributed with parameter

fiir o, (U/2shy=1j)
R (V75 (]

» So, the time in the past when the ancestor is in the
mutation-free class has expectation

= 2shj.

o
o)
I
i
it
<
¢




Background selection

» Once two lines are in the mutation-free class they coalesce at
1 .
rate sy=. Since

2Nfy >
» Therefore,

as long as Nsh is large, most time is spent to coalesce both
lines in the mutation-free class.

E[mutations in a sample of size 2]

= 2v - E[coalescence time of two lines| ~ 4vNf




Background selection

» Can you explain why biologists

(i) expect to see patterns of a neutral evolution model with a

reduced population size under background selection?
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Background selection

» Look at a neutral locus linked to a locus under background
selection (=locus j)

» Recombination probability is R per generation
» Pick two individuals and set

X;(#) = the number of deleterious mutations
at locus j on the ancestral chromosome

in the ith ancestral generation,

of the ith sampled chromosome,




Background selection

» Approximately, Xi(t) and Xa(t) are independent
» The probability of coalescence in generation t is

A5 PO =B

. 2Nfi(u(x) Ax/2sh)
where u(xj)Ax is the deleterious mutation rate at locus j.




Background selection

» We assume:

> tis large and P[Xy(t) = k] =% P (k)
» U/2sh is small so that we only have to worry about k = 0,1

» Recall: at locus j, if u/2 is the deleterious mutation rate,
Plancestor is in k = Olline is in k = 1] ~

1— u/2sh
d uj/2s ~ sh
2 u/2sh

» at the neutral locus,
P |ancestor isin k =0 line is |r.1 k : 1,
recombination

] ~1—u/2sh




Background selection

» In equilibrium,

Poo(1) = (1 — R — sh)Pso(1) + R2—leh,
uR
Poo(l) = 2sh(R — sh)
> SO’ uR 2 uR 2
NS (m) (1 - m)
%" u/2sh 1—u/2sh
uR? 2uR
N+ (1-— )1 h
2sh(r + shy? © ( 25h(R + sh))( +u/sh)
1t uR? — 2uR(R + sh) + u(R + sh)? L, ush
- 2sh(R + sh)? N 2(r + sh)?

o F = A
; ;




Background selection

» The mean time to coalescence is approximately
h
/\go:l ~1-— us 5>~ 1— 4
2(R + sh)

4R
» Especially: the coalescence time increases with distance to the
selected locus.
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Background selection

» low recombination rate = variation reduced
» data from third chromosome of D. melanogaster:
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DNA Variation
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—u = 00002, Ty = 0.012
seses u = 0.00004, %o = 0.007
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Neutrality tests

Hao




General task

» Assume you have gathered sequence variation data from a
species. How can you decide statistically if the population
evolved neutrally?

» If you are sure that the population did not evolve neutrally,
which forces were responsible for the shape of the sequence
variation data?




Statistical Inference

» Every statistical test consists of:

» A null hypothesis Hy (which is to be rejected)

> A test statistic T (which must be computed from data)

» The distribution of T under Hy (which must be known from
theory)

» According to these ingredients one computes

p = P[T more extreme than the given data]
which is the p-value.

» If p < 0.05 the null hypothesis is rejected. This means that

one assumption of Hy is probably not satisfied.




Tajima’'s D

» Under neutrality,

e XS

2 1<i<j<n
are unbiased estimators of 0

» Tajima’'s D compares these two

d::@r

~

and §W :

—Ow




Tajima’'s D

» Tajima (1989) computed

V[d] = c10 + c6?
with
C1=b1—l, Cz—bz—n+2
1 ain
by = n+1




Tajima’'s D

» Since

E[S(S — 1)] = (a2 + (a1)?)6?,
we have the unbiased esimator

V[d] = :—15 422

—-1).
af-l—azs(s )

» So,

D := OWA_ O
VD]
roughly has E[D] ~ 0 and V[D] ~ 1




Tajima’'s D

» O is equal in both trees, on average

> 57, is higher for the right tree, on average
LI

L |
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Tajima’'s D

» Tajima's D is expected to be negative in expanding
populations

time

population size
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Tajima’'s D

» Tajima’s D is expected to be negative after a hitchhiking event

DA




Tajima’'s D

» Tajima's D is expected to be positive in structured
populations populations

Deme 1

Deme 2
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Tajima’'s D

» Tajima’'s D can be negative after a population botleneck
populations

time

frequency




Tajima’'s D

» Tajima’s D can also be positive after a population botleneck
populations

time

frequency




Tajima’'s D

» Tajima argued that the distribution of Tajima’s D might be
close to a 3 distribution

» In practise, the distribution is found by simulation




Fu and Li's D

» Consider the result

0
E[Si] = R
» Other unbiased estimators for 6 are
~ ~ o Si
051 = 517 05>1 = Zn_2

=




Fu and Li's D

» Fu and Li (1993) use

~ ~ d
d=0s_,—0s,

D=—~—

Vid]
with some expression for V[d] for a statistic testing the
neutral model

» Again, approximately,

E[D] =~ 0, V[D] =1




Fu and Li's D

» Fu and Li's D is expected to be negative in expanding
populations

time

population size




Fu and Li's D

event

» Fu and Li's D is expected to be negative after a hitchhiking

DA




Fu and Li's D

» Fu and Li's D is expected to be positive in structured
populations populations

Deme 1

Deme 2
= & - DA
e




Exercise

» Can you draw a genealogical tree (with mutations on the tree)
for the case that

» Tajima's D is negative and Fu and Li's D is approximately 07
» Fu and Li's D is positive and Tajima's D is approximately 07

» Why are Tajima's and Fu and Li's D said to be statistics
based on the site frequency spectrum?




The McDonald-Kreitman test

» Look at coding regios on a chromosome

» The genetic code: translation table from 43 = 64 possible
tripels of bases (codons) to 20 different amino acids (plus
start and stop states

» Example: Lysin encoded by AAA and AAG

» Some mutations in the DNA sequence do not change the
amino acid sequence (synonymous mutations)

» Others change in the amino acid sequence (non-synonymuos
mutations)
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The McDonald-Kreitman test

» Assume you have sequences from the same coding regions in
two different species

» Some mutations are 'private’ to one species
— polymorphism within a species

» Some mutations are fixed between the species (substitutions)
— divergence between species




The McDonald-Kreitman test

» Synonymous mutations occur at rate ps

» Non-synonymous mutations occur at rate u,

DA




The McDonald-Kreitman test

> t4: time in the tree for substitutions

> t,: time in the tree for private mutations

(=]

=




The McDonald-Kreitman test

» Data can be arranged in a 2x2 contingency table
diverged polymorphic | Total
synonymous Wsty Usty Lst
non-synonymous Unty Wntw Unt
Total ty Wty ut
o F = = A




The McDonald-Kreitman test

12 from D. yakuba.

» Example from McDonald, Kreitman (1991): Adh gene in 12
sequences from D. melanogaster and 6 from D. simulans and

diverged polymorphic | Total
synonymous 17 42 59
non-synonymous 7 2 9
Total 24 44 68
CIRY= = = = 9ace




The McDonald-Kreitman test

» Example: Fisher's exact test gives p < 0.01
» Interpretation: Excess of non-synonymous divergence
» These indicate adaptively driven mutations

» An excess of non-synonymous private mutations would
indicate background selection




