Existence of solutions of martingale problems using duality

Peter Pfaffelhuber joint work with Andrej Depperschmidt and Andreas Greven

University of Freiburg Abteilung für Mathematische Stochastik

August 2020

Duality and martingale problems

• Martingale problem: $G_X : \mathcal{D}_X \subseteq \mathcal{C}_b(E_X) \to \mathcal{B}(E_X);$ $X = (X_t)_{t \ge 0}$ solves the G_X -martingale problem if

$$\left(f(X_t) - \int_0^t G_X f(X_s) ds\right)_{t \ge 0}$$

is a martingale for all $f \in \mathcal{D}_X$.

- \rightarrow Uniqueness: by uniqueness of one-dimensional distributions
- \rightarrow Existence: by approximation techniques
- Duality: X and Y are dual with respect to some H if

$$\mathbb{E}_{x}[H(X_{t},y)] = \mathbb{E}_{y}[H(x,Y_{t})], \qquad t,x,y. \qquad (*)$$

REIBURG

 \rightarrow If Y exists and $\Pi_X := \{H(., y) : y \in E_Y\}$ is separating, this shows uniqueness of one-dimensional distributions for X.

• Here: Use duality to show existence of G_X -martingale problem \rightarrow Origin of the idea: Evans (1997), Dynkin (1993).

$$\mathbb{E}_{x}[H(X_{t}, y)] = \mathbb{E}_{y}[H(x, Y_{t})]$$
(*)

• If G_X is the generator for X and G_Y is the generator for Y, and

$$G_XH(.,y)(x)=G_YH(x,.)(y),$$

then, (on a probability space where X and Y are independent),

$$\frac{d}{ds}\mathbb{E}_{(x,y)}[H(X_{s}, Y_{t-s})] = \mathbb{E}_{(x,y)}[G_{X}H(., Y_{t-s})(X_{s}) - G_{Y}H(X_{s}, .)(Y_{t-s})] = 0,$$

and integrating gives (*).

Existence and duality

Theorem: (Depperschmidt, Greven, P., 2020) Let H be such that Π_X is separating, G_X be given and Y a Markov process which solves the G_Y-martingale problem. Assume that for all x, y, t, there exists μ_t(x, .) such that (some measurability condition holds and)

$$\mathbb{E}_{y}[H(x, Y_{t})] = \int \mu_{t}(x, dx')H(x', y). \qquad (\diamond)$$

REIBURG

Then, the G_X martingale problem is well-posed, its solution X satisfies $X_t \sim \mu_t(x,.)$ and

$$\mathbb{E}_{x}[H(X_{t}, y)] = \mathbb{E}_{y}[H(x, Y_{t})]$$
(*)

holds.

If Π_X is convergence determining and Y is Feller, then X is Feller as well.

• Proof: Chapman-Kolmogoroff for X follow from Y being Markov.

• For
$$x \in \mathcal{P}(I)$$
 and $y \in E_Y := \bigcup_n \mathcal{C}_b(I^n)$,

$$H(x,y) = \int x^{\otimes}(d\underline{u})y(\underline{u}) = \langle x^{\otimes}, y \rangle$$

UNI FREIBURG

• Let $Y = (Y_t)_{t \ge 0}$ be E_Y -valued, with generator, for $y \in \mathcal{C}_b(I^n)$,

$$G_Y H(x, y) = \sum_{i \neq j} H(x, y \circ \theta_{ij}) - H(x, y)$$

with

$$\theta_{ij}(u_1, u_2, ...) = (u_1, ..., u_{j-1}, u_i, u_{j+1}, ...).$$

Example: Fleming-Viot process

- Is there some $X_t \sim \mu_t(x, .)$ satisfying (\diamond)?
- Fix x. The map y → E_y[⟨x[⊗], Y_t⟩] is a linear form, which can by continuity extended to a linear form on the set C_b(I^N).

JNI REIBURG

• By the Riesz-Markov Theorem, there is $\mu \in \mathcal{P}(I^{\mathbb{N}})$ such that

$$\int \mu(d\underline{u})y(\underline{u}) = \mathbb{E}_{y}[\langle x^{\otimes}, Y_{t}\rangle].$$

• Since μ is invariant under coordinate permutations, by deFinetti's Theorem, there is an $\mathcal{P}(I)$ -valued random variable X_t such that

$$\mathbb{E}[\langle X_t^{\otimes}, y \rangle] = \int \mu(d\underline{u}) y(\underline{u}).$$

So, (\diamond) holds and well-posedness of the martingale problem for

$$\mathcal{G}_X\langle x^{\otimes},y
angle = \sum_{i
eq j}\langle (heta_{ij})_*)x^{\otimes},y
angle - \langle x^{\otimes}y
angle.$$

The solution is called the Fleming-Viot process.

• $G_X = G_X^1 + G_X^2$ allows for existence by duality using Trotters theorem;

- Use of Riesz-Markov Theorem only works on compact spaces; compactification might be required;
- Application: Tree-valued Fleming-Viot process with recombination
- The manuscript *Duality and the well-posedness of a martingale problem* at https://arxiv.org/abs/1904.01564 should be updated soon.