Introduction and Result	The Ancestral Selection Graph	Sketch of proof	Summary and Outlook 0

Adaptation in structured populations

Peter Pfaffelhuber

University of Freiburg

joint work with Andreas Greven, Cornelia Pokalyuk and Anton Wakolbinger

LMU, July 2014

Population genetic models

Populations of constant size have been modelled by

- Markov Chains (Wright-Fisher-model, Moran model)
- Diffusion approximations (Fisher-Wright diffusion)

$$dX = \alpha X(1-X)dt + \sqrt{X(1-X)}dW$$

or measure-valued diffusions (Fleming-Viot superprocess)

 Keywords: Superprocess, duality of Markov processes, random tree

The Moran model with selection

- Alleles are b and w
 (beneficial, wild-type)
- Each pair resamples with rate 1
- Each line creates red arrows with rate α

The Moran model with selection

- Black arrows can be used by any allele
- Only b alleles can use red arrows
- The state at all times can be read from this graphical representation

- A 🗐 🕨

Introduction and Result	The Ancestral Selection Graph	Sketch of proof	Summary and Outlook
00000000	000000	00000000000	0

The Wright-Fisher diffusion

Frequency path of beneficial allele is

$$dX = \alpha X(1-X)dt + \sqrt{X(1-X)}dW, \qquad X_0 = x$$

Conditioned on fixation

$$dX = \alpha X \coth(\alpha X)(1-X)dt + \sqrt{X(1-X)}dW, \qquad X_0 \downarrow 0$$

Selective sweeps: Classical case

- A highly beneficial mutant eventually fixes in a panmictic population
- Fixation time $T := \inf\{t \ge 0 : X(t) = 1\}$

Selective sweeps: Classical case

- A highly beneficial mutant eventually fixes in a panmictic population
- Fixation time $T := \inf\{t \ge 0 : X(t) = 1\}$

Selective sweeps: Case considered in this talk

- A highly beneficial mutant eventually fixes in a structured population
- Fixation time $T := \inf\{t \ge 0 : X_i(t) = 1, i = 1, ..., \nu\}$

▶ What is the distribution of *T*?

Selective sweeps: Case considered in this talk

Conditioned on eventual fixation, on 2 islands

 $dX_1 = (\mu(X_2 - X_1) + \alpha X_1(1 - X_1) \coth(\alpha(X_1 + X_2))) dt + \sqrt{X_1(1 - X_1)} dW_1$ $dX_2 = (\mu(X_1 - X_2) + \alpha X_2(1 - X_2) \coth(\alpha(X_1 + X_2))) dt + \sqrt{X_2(1 - X_2)} dW_2$

• Theorem: Let $T := \inf\{t \ge 0 : X_1(t)_t = X_2(t) = 1\}.$

$$\frac{\alpha}{\log \alpha} \mathcal{T} \xrightarrow{\alpha \to \infty} \begin{cases} 3 - p, & \text{if } \mu \approx c \alpha^p \text{ for } p \in [0, 1], \\ 3 + X, & \text{if } \mu \approx \frac{c}{\log \alpha}, \end{cases}$$

where $X \sim \exp(2c)$.

- ▲日 > ▲園 > ▲屋 > ▲屋 > 一屋 - めんの

Selective sweeps: Case considered in this talk

• Fixation time $T := \inf\{t \ge 0 : X_i(t) = 1, i = 1, ..., \nu\}$

- イロト (部) (注) (注) (注) き ろくぐ

Selective sweeps on ν islands

► Theorem: Condition on eventual fixation, on ν islands. Let $T := \inf\{t \ge 0 : X_i(t) = 1, i = 1, ..., \nu\}$. Then,

$$\frac{\alpha}{\log \alpha} T \xrightarrow{\alpha \to \infty} \begin{cases} 2 + (1 - p)S_Y, & \text{if } \mu \approx c\alpha^p \text{ for } p \in [0, 1], \\ 1 + S_Z, & \text{if } \mu \approx \frac{c}{\log \alpha}. \end{cases}$$

Introduction and Result	The Ancestral Selection Graph	Sketch of proof	Summary and Outlook
000000000	000000	000000000000	0

Take home

Even if the population is only weakly structured (i.e. μ is large), fixation can take a lot longer than under panmixia.

▲口▶▲圖▶▲臣▶▲臣▶ 臣 めんぐ

- Two lines coalesce at rate 1
- At rate α each line is hit by a red arrow; thus it produces a new line in the ancestral graph

- ▲日 > ▲ 国 > ▲ 国 > ▲ 国 > ▲ 日 > ▲ 国 > ▲ 国 >

Introduction and Result	The Ancestral Selection Graph	Sketch of proof	Summary and Outlook
000000000	00000	00000000000	0

- Two lines coalesce at rate 1
- At rate α each line is hit by a red arrow; thus it produces a new line in the ancestry graph

- ▶ Two lines coalesce at rate 1
- At rate α each line is hit by a red arrow; thus it produces a new line in the ancestry graph

Sketch of proof

 $\underset{O}{\text{Summary and Outlook}}$

- Two lines coalesce at rate 1
- At rate α each line is hit by a red arrow; thus it produces a new line in the ancestry graph

- Two lines coalesce at rate 1
- At rate α each line is hit by a red arrow; thus it produces a new line in the ancestry graph

Introduction and Result	The Ancestral Selection Graph	Sketch of proof	Summary and Outlook
000000000	00000	00000000000	0

- An individual has b iff there is an ancestor • which has b
- Reason: only *b*-alleles can use every branch

- * ロ > * @ > * 注 > * 注 > … 注 … の & @

► Consider 2 demes.

Assume that deme 1 carries the immortal line at time 0.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ● 今 Q @

• Lemma 1: Start ASG with ∞ many lines in all demes. Wait until time t and mark a random line from deme 1 with b. Let

 $C_t := \{ \text{marked line potential ancestor of all starting lines} \}.$

Then,

$$\lim_{\varepsilon \to 0} \mathbf{P}_{\varepsilon}(T < t | \text{fixation}) = \mathbf{P}(C_t).$$

 Reason: Conditioning on eventual fixation means that at least one line is b at time 0.

<ロ> < 団> < 団> < E> < E> E のQの

• \mathcal{K} : line counting process of the ASG has the dynamics

$$\mathcal{K}_t
ightarrow egin{cases} \mathcal{K}_t + 1 & ext{ at rate } lpha \mathcal{K}_t, \ \mathcal{K}_t - 1 & ext{ at rate } inom{\mathcal{K}_t}{2} \end{pmatrix}$$

in each deme, and migration events.

- Lemma 2: K_∞ ~ π_{2α}, a vector of Poi(2α) distributions, conditioned on being positive.
 - $\pi_{2\alpha}$ is reversible for \mathcal{K} .
 - The full graph is reversible in its equilibrium.
- Corollary: Up to a small error, Lemma 1 still holds if ASG is started in equilibrium.

・ 同 ト ・ ヨ ト ・ ヨ ト …

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─の < @

<ロ> < 団> < 団> < E> < E> E のQの

Some observations on a single deme

- Use reversibility of equilibrium in order to construct ASG from past to present.
- Start ASG in the past with equilibrium number of lines, one b allele in deme 1
- b-allele increases on deme 1 approximately according to a Yule process with rate α, up to having α^{1-ε} copies of b.
- If w-allele has ~ α^{1−ε} copies, w-allele decreases on deme 1 approximately according to a subcritical branching process.
- Fixation occurs iff all lines carry allele b.

Introduction and Result	The Ancestral Selection Graph	Sketch of proof	Summary and Outlook 0

- Number of lines with allele *b* is about $e^{\alpha t}$ for $t < \frac{\log \alpha}{\alpha}$.
- Q: At what time T
 [˜] does the first migrant (occurring at rate
 α^p) move from deme 1 to 2 in the ASG?

▲口 ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Number of lines with allele *b* is about $e^{\alpha t}$ for $t < \frac{\log \alpha}{\alpha}$.
- Q: At what time T
 [˜] does the first migrant (occurring at rate
 α^p) move from deme 1 to 2 in the ASG?
- A: Not before t' = (1 − p − ε) log α/α : Expected number of migration marks on Yule process before t' is

$$\mu \sum_{i=1}^{\alpha^{1-p-\varepsilon}} i \frac{1}{\alpha i} = \alpha^p \frac{\alpha^{1-p-\varepsilon}}{\alpha} = \alpha^{-\varepsilon} \xrightarrow{\alpha \to \infty} 0.$$

- Number of lines with allele *b* is about $e^{\alpha t}$ for $t < \frac{\log \alpha}{\alpha}$.
- Q: At what time T
 [˜] does the first migrant (occurring at rate
 α^p) move from deme 1 to 2 in the ASG?
- A: Not after time t" = (1 − p + ε) log α/α: Expected number of migration marks on rate-α Yule process up to time t" is

$$\mu \sum_{i=1}^{\alpha^{1-p+\varepsilon}} i \frac{1}{\alpha i} = \dots = \alpha^{\varepsilon} \xrightarrow{\alpha \to \infty} \infty.$$

- Number of lines with allele *b* is about $e^{\alpha t}$ for $t < \frac{\log \alpha}{\alpha}$.
- Q: At what time \tilde{T} does the first migrant (occurring at rate α^{p}) move from deme 1 to 2 in the ASG?

A: Combining the arguments,

$$\frac{\alpha}{\log \alpha} \tilde{T} \xrightarrow{\alpha \to \infty} 1 - p.$$

- *b* allele increases in frequency up to time $\tilde{T} \approx (1-p) \frac{\log \alpha}{\alpha}$.
- First migrants infects deme 2 at time \tilde{T}
- Fixation on island 2 after duration $2\frac{\log \alpha}{\alpha}$.

Summary and outlook

• If the migration rate is $\sim \alpha^p$, the fixation time of a beneficial mutant is $\frac{\log \alpha}{\alpha}(2 + (1 - p)S_Y)$, where S_Y is maximal graph distance from the founder island.

 Ancestral selection graph can be extended to include recombination in order to compute other statistics.