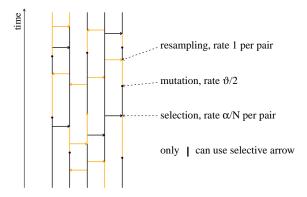
The tree-valued Fleming-Viot process with mutation and selection

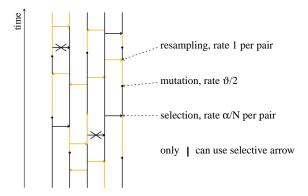
Peter Pfaffelhuber University of Freiburg

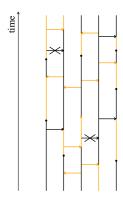
Joint work with Andrej Depperschmidt and Andreas Greven

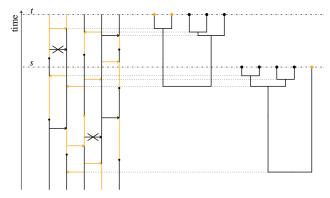
Population genetic models

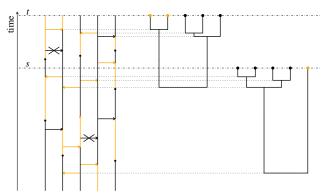
Populations of constant size have been modelled by


- Markov Chains (Wright-Fisher-model, Moran model)
- Diffusion approximations (Fisher-Wright diffusion)


$$dX = \alpha X(1-X)dt + \sqrt{X(1-X)}dW$$


or Measure-valued diffusions (Fleming-Viot superprocess)


New: Extend Fleming-Viot process by genealogical information → Tree-valued Fleming-Viot process



Goal: construct a tree-valued stochastic process $\mathcal{U} = (\mathcal{U}_t)_{t \geq 0}$

- describe genealogical relationships dynamically
- make forward and backward picture implicit

Summary: The tree-valued Fleming-Viot process

- ▶ Theorem: The (Ω, Π) -martingale problem is well-posed. Its solution the tree-valued Fleming-Viot process arises as weak limit of tree-valued Moran models.
- ▶ **Theorem:** Tree-valued processes for different α are absolutely continuous with respect to each other.
- ► Theorem: The measure-valued Fleming-Viot process is ergodic iff the tree-valued Fleming-Viot process is ergodic.
- ▶ **Theorem:** The distribution of R_{12}^{α} , the distance of **two** randomly sampled points in equilibrium, can be computed.

► Leaves in genealogical trees form a metric space; leaves are marked by elements of *I* (compact)

A tree is given by:

- (X, r) complete and separable **metric** space
- ▶ $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x_2

► Leaves in genealogical trees form a metric space; leaves are marked by elements of *I* (compact)

A tree is given by:

```
(X, r) complete and separable metric space, \mu \in \mathcal{P}(X)
```

- $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x_2
- \blacktriangleright μ marks currently living individuals

► Leaves in genealogical trees form a metric space; leaves are marked by elements of *I* (compact)

A tree is given by:

```
(X, r) complete and separable metric space, \mu \in \mathcal{P}(X \times I)
```

- ▶ $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x_2
- $ightharpoonup \mu$ marks currently living individuals

► Leaves in genealogical trees form a metric space; leaves are marked by elements of *I* (compact)

State space of \mathcal{U} :

```
\mathbb{X} := \{ \text{isometry class of } (X, r, \mu) : \\ (X, r) \text{ complete and separable } \text{metric space}, \ \mu \in \mathcal{P}(X \times I) \}
```

- ▶ $r(x_1, x_2)$ defines the genealogical distance of individuals x_1 and x_2
- $\blacktriangleright \mu$ marks currently living individuals

Martingale Problem

▶ Given: Markov process $\mathcal{X} = (\mathcal{X}_t)_{t \geq 0}$. The generator is

$$\Omega\Phi(x) := \lim_{h\to 0} \frac{1}{h} \mathbf{E}_x [\Phi(\mathcal{X}_h) - \Phi(x)].$$

▶ Given: Operator Ω on Π . A solution of the (Ω, Π) -martingale problem is a process $\mathcal{X} = (\mathcal{X}_t)_{t \geq 0}$ if for all $\Phi \in \Pi$,

$$\left(\Phi(\mathcal{X}_t) - \int_0^t \Omega\Phi(\mathcal{X}_s) ds\right)_{t \geq 0}$$

is a martingale. The MP is **well-posed** if there is exactly one such process.

Polynomials on $\mathcal{P}(I)$

 Π : functions of the form (polynomials)

$$\Phi(\qquad \mu) := \langle \boldsymbol{\mu}^{\mathbb{N}}, \boldsymbol{\phi} \rangle := \int \phi(\qquad \underline{\boldsymbol{u}}) \mu^{\mathbb{N}} (\boldsymbol{d} \quad \underline{\boldsymbol{u}})$$

for $\underline{u}=(u_1,u_2,\ldots),\phi\in\mathcal{C}_b(U^\mathbb{N})$ depending on finitely many coordinates

▶ Π separates points in $\mathcal{P}(I)$

Polynomials on $\mathbb U$

 Π : functions on \mathbb{U} of the form (polynomials)

$$\Phi(X, r, \mu) := \langle \mu^{\mathbb{N}}, \phi \rangle := \int \phi(r(\underline{x}, \underline{x}), \underline{u}) \mu^{\mathbb{N}}(d(\underline{x}, \underline{u}))$$

for
$$(\underline{x},\underline{u}) = ((x_1,u_1),(x_2,u_2),\ldots), \phi \in \mathcal{C}_b(\mathbb{R}^{\binom{\mathbb{N}}{2}} \times I^{\mathbb{N}})$$
 depending on finitely many coordinates

► Π separates points in X

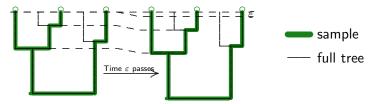
Generator for the Fleming-Viot process: measure-valued

$$\Omega := \Omega^{res} + \Omega^{mut} + \Omega^{sel}$$

 $\blacktriangleright \ \Omega^{res} : resampling$

 $ightharpoonup \Omega^{\text{mut}}$: mutation

 $ightharpoonup \Omega^{sel}$: selection


Generator for the Fleming-Viot process: tree-valued

$$\Omega := \Omega^{\mathrm{grow}} + \Omega^{\mathrm{res}} + \Omega^{\mathrm{mut}} + \Omega^{\mathrm{sel}}$$

- $ightharpoonup \Omega^{grow}$: tree growth
- $ightharpoonup \Omega^{\text{res}}$: resampling
- $ightharpoonup \Omega^{\text{mut}}$: mutation
- $ightharpoonup \Omega^{sel}$: selection

Tree Growth

When no resampling occurs the tree **grows**

Distances in the sample grow at speed 2

$$\Omega^{\mathsf{grow}}\Phi(X,r,\mu) = 2 \cdot \left\langle \mu^{\mathbb{N}}, \sum_{i < i} \frac{\partial}{\partial r_{ij}} \phi \right\rangle.$$

Resampling: measure-valued

$$\Omega^{\mathrm{res}} \Phi(\qquad \mu) := \sum_{\mathsf{k} < \mathsf{l}} \langle \mu^{\mathbb{N}}, \phi \circ heta_{\mathsf{k}, \mathsf{l}} - \phi
angle$$

with

$$(\theta_{k,l}(\underline{u}))_i := \begin{cases} u_i, & i \neq l \\ u_k, & i = l \end{cases}$$

Resampling: tree-valued

$$\Omega^{\mathrm{res}}\Phi(\mathsf{X},\mathsf{r},\!\mu) := \sum_{\mathsf{k}<\mathsf{l}} \langle \mu^{\mathbb{N}},\phi\circ heta_{\mathsf{k},\mathsf{l}}-\phi
angle$$

with

$$(\theta_{k,l}(\underline{u}))_i := \begin{cases} u_i, & i \neq l \\ u_k, & i = l \end{cases}$$

In addition,

$$(\theta_{k,l}r(\underline{x},\underline{x}))_{i,j} := \begin{cases} r(x_i,x_j), & \text{if } i,j \neq l, \\ r(x_i,x_k), & \text{if } j=l, \\ r(x_k,x_j), & \text{if } i=l, \end{cases}$$

Mutation: measure-valued

- $\triangleright \vartheta$: total mutation rate
- $\triangleright \vartheta \cdot \beta(u, dv)$: mutation rate from u to v

$$\Omega^{\mathsf{mut}}\Phi(\qquad \mu) = \vartheta \cdot \sum_{\mathsf{k}} \langle \mu^{\mathbb{N}}, eta_{\mathsf{k}}\phi - \phi
angle$$

with $\beta_k(\underline{u}, dv)$ acting on kth variable

Mutation: tree-valued

- $\triangleright \vartheta$: total mutation rate
- $\triangleright \vartheta \cdot \beta(u, dv)$: mutation rate from u to v

$$\Omega^{\mathsf{mut}}\Phi(\mathsf{X},\mathsf{r},\!\mu) = \vartheta \cdot \sum_{\mathsf{k}} \langle \mu^{\mathbb{N}}, eta_{\mathsf{k}}\phi - \phi
angle$$

with $\beta_k(\underline{u}, dv)$ acting on kth variable

Selection: measure-valued

- α: selection coefficient
- ▶ $\chi(u) \in [0,1]$: fitness of type u (continuous)

$$\Omega^{\mathrm{sel}}\Phi(\qquad \mu) := lpha \cdot \sum_{\mathsf{k}=1}^\mathsf{n} \langle \mu^\mathbb{N}, \chi_\mathsf{k} \cdot \phi - \chi_\mathsf{n+1} \cdot \phi
angle$$

where ϕ only depends on sample of size n with χ_k acting on kth variable

Selection: tree-valued

- α: selection coefficient
- ▶ $\chi(u) \in [0,1]$: fitness of type u (continuous)

$$\Omega^{\mathrm{sel}}\Phi(\mathsf{X},\mathsf{r},\!\mu) := lpha \cdot \sum_{\mathsf{k}=1}^\mathsf{n} \langle \mu^\mathbb{N}, \chi_\mathsf{k} \cdot \phi - \chi_\mathsf{n+1} \cdot \phi
angle$$

where ϕ only depends on sample of size n with χ_k acting on kth variable

Selection: tree-valued

- Why is selection the same as for measure-valued case?
- $ightharpoonup \Omega_N^{\text{sel}}$: generator for finite model of size N
- ϕ : only depends on first $\mathbf{n} \ll \mathbf{N}$ individuals

$$\Omega_{N}^{\text{sel}}\Phi(X,r,\mu) \approx \frac{\alpha}{N} \sum_{k,l=1}^{N} \langle \mu^{N}, \chi_{k}(\phi \circ \theta_{k,l} - \phi) \rangle
\approx \alpha \cdot \sum_{l=1}^{n} \langle \mu^{N}, \chi_{n+1}(\phi \circ \theta_{n+1,l} - \phi) \rangle
= \alpha \cdot \sum_{l=1}^{n} \langle \mu^{N}, \chi_{l} \cdot \phi - \chi_{n+1} \cdot \phi \rangle$$

The tree-valued Fleming-Viot process

- ▶ Theorem: The (Ω, Π) -martingale problem is well-posed. Its solution $\mathcal{X} = (\mathcal{X}_t)_{\geq 0}$, $\mathcal{X}_t = (X_t, r_t, \mu_t)$ the tree-valued Fleming-Viot process arises as weak limit of tree-valued Moran models and satisfies:
 - ▶ $P(t \mapsto \mathcal{X}_t \text{ is continuous}) = 1$,
 - ▶ $P((X_t, r_t)$ is compact for all t > 0) = 1,
 - X is Feller (hence strong Markov)

Girsanov transform: measure-valued

Theorem: Let $\alpha, \alpha' \in \mathbb{R}$,

 ${\mathcal X}$ solution of (Ω,Π) -MP for selection coefficient α ,

$$\Psi(\qquad \mu) := (lpha' - lpha) \cdot \langle \mu^{\mathbb{N}}, \chi_1
angle$$

and

$$\mathcal{M} = \left(\Psi(\qquad \mu_t) - \Psi(\qquad \mu_0) - \int_0^t \Omega \Psi(\qquad \mu_s) ds \right)_{t \geq 0}.$$

Then, Q, defined by

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = \mathrm{e}^{\mathcal{M}_t - \frac{1}{2}[\mathcal{M}]_t}$$

solves (Ω, Π) -MP for selection coefficient α'

Girsanov transform: tree-valued

Theorem: Let $\alpha, \alpha' \in \mathbb{R}$,

 ${\mathcal X}$ solution of (Ω,Π) -MP for selection coefficient α ,

$$\Psi(\mathsf{X},\mathsf{r},\!\mu) := (\alpha' - \alpha) \cdot \langle \mu^{\mathbb{N}}, \chi_1 \rangle$$

and

$$\mathcal{M} = \left(\Psi(X_t, r_t, \mu_t) - \Psi(X_0, r_0, \mu_0) - \int_0^\tau \Omega \Psi(X_s, r_s, \mu_s) ds\right)_{t \geq 0}.$$

Then, Q, defined by

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = e^{\mathcal{M}_t - \frac{1}{2}[\mathcal{M}]_t}$$

solves (Ω, Π) -MP for selection coefficient α'

Long-time behavior

Theorem:

The tree-valued Fleming-Viot process is **ergodic** iff the **measure-valued** Fleming-Viot process is **ergodic**

Application: distances is equilibrium

- ► Theorem:
 - ► $I = \{\bullet, \bullet\}, \chi(u) = 1_{\{u = \bullet\}} (\bullet \text{ is fit, } \bullet \text{ is unfit})$
 - $\frac{\vartheta}{2}$: mutation rate \rightarrow and \rightarrow •
 - $ightharpoonup ilde{R}_{12}^{lpha}$: distance of two randomly sampled points in equilibrium

$$\begin{aligned} \mathbf{E}[e^{-\lambda R_{12}^{\alpha}/2}] &= \frac{1}{1+\lambda} \\ &+ \frac{4\vartheta(2+\lambda+2\vartheta)\lambda}{(1+\vartheta)(1+\lambda+\vartheta)(6+\lambda+\vartheta)(1+\lambda)(6+2\lambda+\vartheta)} \alpha^2 + \mathcal{O}(\alpha^3) \end{aligned}$$

Proof: Use

$$\mathbf{E}[\Omega\langle\mu_{\infty}^{\mathbb{N}},e^{-\lambda r(x_1,x_2)/2}\rangle]=0$$

Summary and outlook

- Once the right state-space is chosen, construction of tree-valued Fleming-Viot process straight-forward
- ► Genealogical distances can be **computed** using generators
- Next step: Include recombination