Random metric measure spaces

Peter Pfaffelhuber

University of Munich, Joint work with Andreas Greven and Anita Winter

-

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

Introduction	Metric measure spaces	Compact sets	Λ-coalescent
•0000	00000	000000	00000

Tree-like metric spaces

- In population models, relationships between individuals are modelled with trees
- ► Coalescent trees: Genealogies of a constant size population
- Brownian Continuum Random Tree: limit object of a critical branching process
- Main question: what is a good way to encode trees? Especially in the case of infinite populations?

Introduction	Metric measure spaces	Compact sets	A-coalescent
0000	00000	000000	00000

Tree-like metric spaces

Example: Kingman coalescent:

Coalescent trees are ultrametric

$$r(u,v) \lor r(v,w) \ge r(u,w)$$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

4 3 b

Introduction	Metric measure spaces	Compact sets	Λ-coalescent
0000	00000	000000	00000

Tree-like metric spaces

► A tree is a metric space (X, r):

 $r(u, v) = 2 \cdot \text{time to the common ancestor of } u, v$

- In order to be able to 'pick' individuals from a population, consider a probability measure on X.
- Metric measure space: X = (X, r, μ) where r(.,.): metric on X, μ: probability measure on X.
- M: the space of (isometry classes) of complete and separable metric measure spaces

Introduction 00000	Metric measure spaces	Compact sets	Λ-coalescent 00000

Is their a characterization of weak convergence of random metric measure spaces?

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

Introduction	Metric measure spaces	Compact sets	A-coalescent
00000	00000	000000	00000

Philosophy

- Kolmogoroff, Aldous,...
- $\blacktriangleright \mathcal{X}, \mathcal{X}_1, \mathcal{X}_2, \ldots$

ν	n→∞ `	v
λ_n	\rightarrow	Λ

if all finite dimensional distributions convergeHere:

Finite dimensional distributions = finite sampled subspaces

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Introduction 00000	Metric measure spaces •0000	Compact sets	Λ-coalescent 00000

Polynomials

► For
$$\phi : \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$$
,

$$\Phi((X, r, \mu)) := \int \mu^{\otimes n}(dx_1, ..., dx_n)\phi((r(x_i, x_j))_{1 \le i < j \le n})$$

polynomial of degree n

(->

- Examples: length, diameter of sample-subtree of *n* points
- Important fact: polynomials separate points
- Gromov-weak topology: $\mathcal{X}_n \xrightarrow{n \to \infty} \mathcal{X}$ iff

 $\Phi(\mathcal{X}_n) \xrightarrow{n \to \infty} \Phi(\mathcal{X})$ for all polynomials Φ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Introduction 00000	Metric measure spaces	Compact sets	Λ-coalescent 00000

Random Distance Distribution

Let X = (X, r, μ). Every x ∈ X defines the distribution of distances μ_x := r(x, .)_{*}μ. Call

$$\widehat{\mu} := (\mu_{\cdot})_* \mu \in \mathcal{M}_1(\mathcal{M}_1(\mathbb{R}_+))$$

the random distance distribution of \mathcal{X} .

• The distance distribution does not characterize \mathcal{X} .

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

Introduction	Metric measure spaces	Compact sets	Λ-coalescent
00000	00000	000000	00000

Distance distribution and modulus of mass distribution

Let
$$\mathcal{X} = (X, r, \mu) \in \mathbb{M}$$
.

▶ What do distances of two typical points in X look like?

$$w_{\mathcal{X}} := r_* \mu^{\otimes 2}, \text{ i.e. } w_{\mathcal{X}}(\cdot) := \mu^{\otimes 2} \{ (x, x') : r(x, x') \in \cdot \}$$

Which mass do thin points have?

$$v_{\delta}(\mathcal{X}) := \inf \Big\{ \varepsilon > 0 : \ \mu \big\{ x \in X : \ \mu(B_{\varepsilon}(x)) \leq \delta \big\} \leq \varepsilon \Big\}, \quad \delta > 0$$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

くほし くきし くきし

Introduction	Metric measure spaces	Compact sets	A-coalescent
00000	00000	000000	00000

Distance distribution and modulus of mass distribution

Let
$$\mathcal{X} = (X, r, \mu) \in \mathbb{M}$$
.

▶ What do distances of two typical points in X look like?

$$w_{\mathcal{X}} := r_* \mu^{\otimes 2}, \text{ i.e. } w_{\mathcal{X}}(\cdot) := \mu^{\otimes 2} \{ (x, x') : r(x, x') \in \cdot \}$$
$$w_{\mathcal{X}} = \int \widehat{\mu}(d\nu)\nu$$

Which mass do thin points have?

$$\begin{split} \nu_{\delta}(\mathcal{X}) &:= \inf \Big\{ \varepsilon > 0 : \, \mu \big\{ x \in X : \, \mu(B_{\varepsilon}(x)) \leq \delta \big\} \leq \varepsilon \Big\}, \quad \delta > 0 \\ &= \inf \big\{ \varepsilon > 0 : \hat{\mu}_{\mathcal{X}} \{ \nu \in \mathcal{M}_1([0,\infty)) : \, \nu([0,\varepsilon]) \leq \delta \} \leq \varepsilon \big\}. \end{split}$$

くほし くきし くきし

Introduction 00000	Metric measure spaces 0000●	Compact sets	A-coalescent

Polish

▶ **Theorem:** [Greven, P, Winter] The space M, equipped with the Gromov-weak topology, is Polish.

▶ So, \mathbb{M} is accessible to the notion of weak convergence

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

Introduction 00000	Metric measure spaces	Compact sets •00000	Λ-coalescent 00000

Pre-compact sets

- ▶ **Theorem:** [Greven, P, Winter] A sequence X₁, X₂,... is pre-compact iff:
 - Distances do not explode:

The family
$$\{w_{\mathcal{X}_1}, w_{\mathcal{X}_2}, w_{\mathcal{X}_3}, \ldots\}$$
 is tight

and

Thin points are uniformly rare:

 $\lim_{\delta\to 0}\limsup_{n\to\infty}v_{\delta}(\mathcal{X}_n)=0$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

Introduction 00000	Metric measure spaces	Compact sets	Λ-coalescent 00000

Counterexample I

Indeed,

$$w_{\mathcal{X}_n} = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_n$$
 is not tight

. . .

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

- 4 同 6 4 日 6 4 日 6

-

Introduction	Metric measure spaces	Compact sets	Λ-coalescent
00000	00000	00000	00000

Counterexample II

Indeed,

$$v_{\delta}(\mathcal{X}_n) = \begin{cases} 0, & \text{for } 2^{-n} > \delta, \\ 1, & \text{for } 2^{-n} \le \delta, \text{ i.e. } n \ge \log_2(1/\delta), \end{cases}$$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

Introduction 00000	Metric measure spaces	Compact sets	Λ-coalescent 00000

Example III

Restricted doubling property with doubling constant C:

$$\mu_X(B_{2\varepsilon}(x)) \leq C \cdot \mu_X(B_{\varepsilon}(x)) \qquad (x \in X, \varepsilon > 0)$$

- ▶ Proposition: Let X₁, X₂,... have the restricted doubling property with doubling constant C. The sequence is pre-compact iff {w_{X1}, w_{X2},...} is tight
- Let diam(\mathcal{X}_n) be bounded. For $\varepsilon > 0$ and some large $N = N_{\varepsilon}$

$$\mu(B_{\varepsilon}(x)) \ge \frac{1}{C}\mu(B_{2\varepsilon}(x)) \ge \dots \ge \frac{1}{C^{N}}\mu(B_{2^{N}\varepsilon}(x)) = \frac{1}{C^{N}}$$

Set $\delta := \frac{1}{C^{N}}$
 $\mu\{x : \mu(B_{\varepsilon}(x)) > \delta\} = 1 > 1 - \varepsilon \implies v_{\delta}(\mathcal{X}_{n}) < \varepsilon$

Introduction	Metric measure spaces	Compact sets	Λ-coalescent
00000	00000	000000	00000

Random metric measure spaces

- ▶ Proposition: A sequence P₁, P₂,... of distributions on M converges weakly iff:
 - The sequence $\mathbb{P}_1, \mathbb{P}_2, \ldots$ is tight and
 - All polynomials converge, i.e.

 $\mathbb{E}_1\big[\Phi\big],\mathbb{E}_2\big[\Phi\big],\ldots\,\,\text{converges in}\,\,\mathbb{R}$

University of Munich, Joint work with Andreas Greven and Anita Winter

- 4 回 ト 4 戸 ト 4 戸 ト

Introduction 00000	Metric measure spaces 00000	Compact sets	Λ-coalescent 00000

► Theorem: [Greven, P, Winter] A sequence P₁, P₂,... of distributions on M is tight iff

$$(w_{\cdot})_*\mathbb{P}_1, (w_{\cdot})_*\mathbb{P}_2, \ldots$$
 is tight in $\mathcal{M}_1(\mathbb{R})$

and

$$\lim_{\delta\to 0}\limsup_{n\to\infty}\mathbb{E}_n\big[\mathbf{v}_{\delta}(\mathcal{X})\big]=0$$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

イロト イポト イヨト イヨト

-

Introduction 00000	Metric measure spaces	Compact sets	Λ-coalescent ●0000

Example: A-coalescent measure trees

- Introduced by Pitman, Sagitov
- ► Start a process ξ in the partition {{1}, {2}, ...}
- ln ξ , from any b blocks, k merge at rate

$$\lambda_{b,k} := \int_0^1 \Lambda(dx) \, x^{k-2} (1-x)^{b-k}$$

for some non-negative, finite measure Λ on [0,1]

- $\Lambda = \delta_0$: Kingman coalescent
- ► Distribution on path space: P^Λ.

Example: A-coalescent measure trees

Define the (completion of the) metric space

$$r^{\xi}(i,j) := \inf \big\{ t \ge 0 : i \sim_{\xi(t)} j \big\}.$$

Define the random metric measure spaces

$$\mathbb{P}^{\Lambda,n} := (H_n)_* \mathbb{P}^{\Lambda} \quad \text{ for } \quad H_n : \xi \mapsto \left(\mathbb{N}, r^{\xi}, \mu_n := \frac{1}{n} \sum_{i=1}^n \delta_i\right)$$

University of Munich, Joint work with Andreas Greven and Anita Winter

- 4 周 ト 4 戸 ト 4 戸 ト

-

Introduction	Metric measure spaces	Compact sets	A-coalescent
00000	00000	000000	00000

Example: Λ -coalescent measure trees

► Theorem: [Greven, P, Winter] The family {P^{A,n}; n ∈ N} converges if and only if

$$\int_0^1 \Lambda(dx) \, x^{-1} = \infty. \qquad (*)$$

• Let $f = \{f(\pi) : \pi \in \xi(\varepsilon)\}$ be the ranked rearrangement of

$$\tilde{f}(\pi) := \lim_{n \to \infty} \frac{1}{n} \# \{ j \in \{1, \dots, n\} : j \in \pi \}$$

[Pitman '99] (*) is equivalent to the dust-free property

$$\sum_{i} f(\pi_{i}) = 1 \quad \Longleftrightarrow \quad \mathbb{P}^{\Lambda} \big\{ \tilde{f}(\xi(\varepsilon)^{1}) = 0 \big\} = 0$$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

ロン イボン イラン イラン 一手

Introduction	Metric measure spaces	Compact sets	Λ-coalescent
00000	00000	000000	00000

Example: Λ -coalescent measure trees

- *w_X*: Coalescence rate for any pair is *λ*_{2,2} > 0. So, expected time to coalescence bounded.
- \triangleright v_{δ} : Due to exchangeability

$$\mathbb{P}^{\Lambda,n}\left\{\mathbf{v}_{\delta}(H_n(\xi)) \geq \varepsilon\right\} = \mathbb{P}^{\Lambda}\left\{\underbrace{\mu_n(B_{\varepsilon}(1))}_{n \to \infty} \leq \delta\right\}.$$

Hence,

$$\lim_{\delta\to 0}\lim_{n\to\infty}\mathbb{P}^{\Lambda,n}\big\{\nu_{\delta}(H_n(\xi))\geq \varepsilon\big\}=\mathbb{P}^{\Lambda}\big\{\tilde{f}((\xi(\varepsilon))^1)=0\big\}.$$

Random metric measure spaces

University of Munich, Joint work with Andreas Greven and Anita Winter

- Metric measure spaces are useful in the context of (infinite) genealogical trees
- Metric measure spaces form a 'nice' space
- Pre-compactness results, as well as characterization of weak convergence can be given explicitely

(4月) イラト イラト