Übungen zur Vorlesung "Stochastik I"

Blatt 6

Abgabetermin: Freitag, 17.01.2025, bis 10.15 Uhr, Briefkästen Math. Institut (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

(a) Es seien X_1, \ldots, X_n Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum mit $\mathbb{E}[X_i^2] < \infty$ für $i = 1, \ldots, n$. Zeigen Sie, dass die Varianz

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$$

existiert und dass

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) + \sum_{i \neq j} \operatorname{cov}(X_{i}, X_{j}).$$

(b) Es seien X und Y Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum mit $\mathbb{P}(X=0,Y=1)=1/2$, sowie $\mathbb{P}(X=2,Y=0)=\mathbb{P}(X=2,Y=2)=1/4$. Bestimmen Sie $\operatorname{cov}(X,Y)$. Sind X,Y unabhängig?

Aufgabe 2 (4 Punkte)

Es seien X und Y Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum. Beweisen Sie die folgenden Aussagen:

- (a) Existiert der Erwartungswert von X und Y und gilt $X \leq Y$ mit Wahrscheinlichkeit 1, so folgt $\mathbb{E}X < \mathbb{E}Y$.
- (b) Gilt $\mathbb{E}[X^2] < \infty$ und $\mathbb{E}[Y^2] < \infty$, so existiert der Erwartungswert von XY und es gilt $|\mathbb{E}[XY]| < \sqrt{\mathbb{E}[X^2]} \sqrt{\mathbb{E}[Y^2]}$.

Aufgabe 3 (4 Punkte)

(a) Es sei X eine Zufallsvariable mit Werten in \mathbb{N}_0 , deren Erwartungswert existiert. Zeigen Sie, dass

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k).$$

(b) Es sei X eine diskrete Zufallsvariable mit X>0 und $\mathbb{E}[X^2]<\infty$. Zeigen Sie, dass für $0\leq a\leq 1$,

$$\mathbb{P}(X > a\mathbb{E}X) \ge (1 - a)^2 \frac{(\mathbb{E}X)^2}{\mathbb{E}[X^2]}.$$

HINWEIS: Die Darstellung $X = X \mathbb{1}_{\{X \le t\}} + X \mathbb{1}_{\{X > t\}}$, sowie Aufgabe 2(b) kann hier nützlich sein.

Aufgabe 4 (4 Punkte)

(a) Es seien X,Y,Z Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum mit existierenden Erwartungswerten. Beweisen Sie, dass die bedingte Erwartung linear ist, d.h. zeigen Sie, dass für $a,b\in\mathbb{R}$

$$\mathbb{E}[aY + bZ|X] = a\mathbb{E}[Y|X] + b\mathbb{E}[Z|X].$$

(b) Ein fairer Würfel wird zweimal unabhängig voneinander geworfen. Die Zufallsvariable X beschreibe das Ergebnis des ersten Wurfs, Y das Ergebnis des zweiten. Bestimmen Sie für $k = 1, \ldots, 6$ den bedingten Erwartungswert

$$\mathbb{E}[\max\{X,Y\}|Y=k].$$

Aufgabe 5 (4 Bonuspunkte)

(a) Es sei X eine diskrete Zufallsvariable. Zeigen Sie, dass für alle $a \in \mathbb{R}$,

$$\mathbb{P}(X \ge a) \le \inf_{t \in \mathbb{R}_{>0}} e^{-ta} \mathbb{E}[e^{tX}].$$

(b) Für $p\in(0,1)$ seien X_1,\ldots,X_n unabhängig und Bernoulli-verteilt zum Parameter p. Zeigen Sie, dass für beliebiges $\delta>0$ die Chernoff-Ungleichung

$$\mathbb{P}\left(\sum_{i=1}^{n} X_i \ge (1+\delta)pn\right) \le \exp\left(L(\delta)pn\right)$$

gilt, wobei $L(\delta) = \delta - (1 + \delta) \log(1 + \delta) < 0$.

Wir wünschen Ihnen frohe Weihnachten und einen guten Start ins neue Jahr!

Aufgaben zur Selbstkontrolle

- (i) Definieren Sie die Kovarianz und den Korrelationskoeffizienten zweier diskreter Zufallsvariablen X und Y.
- (ii) Was versteht man unter der bedingten Verteilung von Y gegeben X = x?
- (iii) Definieren Sie den bedingten Erwartungswert von Y gegeben X=x.
- (iv) Formulieren Sie den Satz von Fubini.
- (v) Welcher Größe entspricht $\mathbb{E}[\mathbb{E}[Y|X]]$?