${\bf Vorlesungs skript}$

Stochastik I

Angelika Rohde

Wintersemester 2024/25

Inhaltsverzeichnis

1	Diskrete Zufallsexperimente	1
2	Urnenmodelle und abgeleitete Verteilungen	4
3	Unabhängigkeit und hedingte Wahrscheinlichkeit	6

1 Diskrete Zufallsexperimente

Definition 1.1 (Diskreter Wahrscheinlichkeitsraum und diskreter Maßraum). Gegeben sei eine nicht-leere Menge Ω (genannt <u>Grundraum</u> oder <u>Stichprobenraum</u>). Eine Abbildung $\mu: \mathcal{P}(\Omega) \to [0, \infty]$ heißt diskretes <u>Maß</u>, falls folgende Eigenschaften erfüllt sind:

- (i) Nicht-Negativität: $\forall A \subset \Omega : \mu(A) \geq 0$.
- (ii) Nulltreue: $\mu(\emptyset) = 0$.
- (iii) σ -Additivität: Für $A_i \subset \Omega \ \forall i \in \mathbb{N} \ mit \ A_i \cap A_j = \emptyset \ \forall i, j \in \mathbb{N}, i \neq j \ gilt:$

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

(iv) Diskretheit: Es gibt eine abzählbare Teilmenge $\Omega_0 \subset \Omega$ mit $\mu(\Omega_0^C) = 0$.

Das Tripel $(\Omega, \mathcal{P}(\Omega), \mu)$ nennt man einen <u>diskreten Maßraum</u>. Die Abbildung μ heißt <u>diskretes Wahrscheinlichkeitsmaß</u>, falls $\mu(\Omega) = 1$ ist. In diesem Fall nennt man das Tripel $(\Omega, \mathcal{P}(\Omega), \mu)$ auch <u>diskreten Wahrscheinlichkeitsraum</u>. Für $A \subset \Omega$ heißt dann $\mu(A)$ die Wahrscheinlichkeit von A.

Bemerkung 1.2. Ein (diskretes) Wahrscheinlichkeitsmaß wird typischerweise mit \mathbb{P} bezeichnet (wobei der Buchstabe P für "Probability" steht).

Übungsaufgabe 1.3. Beweisen Sie: Eine Abbildung $\mu : \mathcal{P}(\Omega) \to [0, \infty]$ mit (i), (iii) und $\mu(\Omega) = 1$ erfüllt auch die Eigenschaft (ii). N.b.: Für abzählbares $\Omega \neq \emptyset$ werden die Eigenschaften (i), (iii) und $\mu(\Omega) = 1$ auch Axiome von Kolmogorov genannt (1933).

Bemerkung 1.4. Die Menge Ω_0 aus Definition 1.1 ist nicht eindeutig. Jede abzählbare Menge $\Omega_0 \subset \Omega$ mit $\mu(\Omega_0^C) = 0$ heißt Träger von μ . Lässt man aus einem Träger alle Elemente ω weg, die $\mu(\{\omega\}) = 0$ erfüllen, so bleibt ein Träger mit $\mu(\{\omega\}) > 0$ $\forall \omega \in \Omega_0$ übrig. Dieses Ω_0 nennt man dann Träger im strengen Sinne.

Konvention 1.5. Ist in einer endlichen oder unendlichen Summe von Zahlen aus $[0, \infty]$ mindestens ein Summand ∞ , so wird die Summe gleich ∞ gesetzt.

Notation 1.6. Sind $A_i \in \mathcal{P}(\Omega)$ für $i \in \mathbb{N}$ paarweise disjunkte Mengen (d.h. $A_i \cap A_j = \emptyset$ $\forall i, j \in \mathbb{N}, i \neq j$), so schreibt man auch:

$$\sum_{i=1}^{\infty} A_i \quad \text{für} \quad \bigcup_{i=1}^{\infty} A_i$$

Lemma 1.7 (Regel von De Morgan). Seien $\Omega \neq \emptyset$ eine beliebige Grundmenge und I eine beliebige Indexmenge. Für alle $i \in I$ sei $A_i \in \mathcal{P}(\Omega)$. Dann gilt:

$$\left(\bigcap_{i\in I} A_i\right)^C = \bigcup_{i\in I} A_i^C \text{ und } \left(\bigcup_{i\in I} A_i\right)^C = \bigcap_{i\in I} A_i^C$$

Beweis. Übungsblatt 1, Aufgabe 2.

Lemma 1.8. Gegeben seien ein Grundraum $\Omega \neq \emptyset$, ein diskretes $Ma\beta \mu : \mathcal{P}(\Omega) \to [0, \infty]$ und ein diskretes Wahrscheinlichkeitsmaß $\mathbb{P} : \mathcal{P}(\Omega) \to [0, \infty]$. Dann gelten folgende Aussagen:

(i) Endliche Additivität: Ist $n \in \mathbb{N}$ gegeben und sind A_1, \ldots, A_n paarweise disjunkte Teilmengen von Ω (diese bezeichnet man gerne als "Ereignisse"), so gilt:

$$\mu\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} \mu(A_i)$$

- (ii) <u>Isotonie</u>: Ist $A \subset B$ für $A, B \in \mathcal{P}(\Omega)$, so ist $\mu(A) \leq \mu(B)$. Speziell folgt hieraus für das Wahrscheinlichkeitsmaß \mathbb{P} , dass $\forall A \in \mathcal{P}(\Omega)$ gilt, dass $0 \leq \mathbb{P}(A) \leq 1$ ist.
- (iii) Subtraktivität: Ist $\mu(A) < \infty$ für ein $A \in \mathcal{P}(\Omega)$, so gilt die folgende Implikation $\forall B \in \mathcal{P}(\Omega)$:

$$A \subset B \Rightarrow \mu(B \setminus A) = \mu(B) - \mu(A)$$

Wegen $\mathbb{P}(\Omega) = 1$ gilt diese Implikation für Wahrscheinlichkeitsmaße immer.

- (iv) Komplementarität: Ist $\mu(A) < \infty$ für ein $A \in \mathcal{P}(\Omega)$, so folgt, dass $\mu(A^C) = \mu(\Omega) \mu(A)$ ist. Insbesondere ist $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$.
- (v) <u>Stetigkeit von unten</u>: Ist $(A_i)_{i \in \mathbb{N}}$ eine aufsteigende Folge in $\mathcal{P}(\Omega)$ (d.h. $\forall i \in \mathbb{N}$ gilt $A_i \subset A_{i+1}$), so folgt:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n)$$

(vi) Stetigkeit von oben: Ist $(A_i)_{i\in\mathbb{N}}$ eine absteigende Folge in $\mathcal{P}(\Omega)$ (d.h. $\forall i\in\mathbb{N}$ gilt $A_i\supset A_{i+1}$), und ist $\mu(A_1)<\infty$, so folgt:

$$\mu\left(\bigcap_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n)$$

(vii) Subadditivität: Für $n \in \mathbb{N}$ und $A_1, \ldots, A_n \in \mathcal{P}(\Omega)$ gilt immer:

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} \mu(A_i)$$

(viii) σ -Subadditivität: Ist $(A_i)_{i\in\mathbb{N}}$ eine Folge in $\mathcal{P}(\Omega)$, so gilt:

$$\mu\left(\bigcup_{i=1}^{\infty}\right) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Beweis. Wir weisen die Eigenschaften (i) - (iv) nach. Die Eigenschaften (v) - (viii) sind Gegenstand von Aufgabe 3 auf Übungsblatt 1.

(i) Mit $A_i := \emptyset \ \forall i > n$ gilt

$$\mu\bigg(\sum_{i=1}^n A_i\bigg) = \mu\bigg(\sum_{i=1}^\infty A_i\bigg) \stackrel{\sigma\text{-Additivität}}{=} \sum_{i=1}^{\mu(\varnothing)=0} \mu(A_i) \stackrel{\mu(\varnothing)=0}{=} \sum_{i=1}^n \mu(A_i).$$

(ii) Sei $B = A \cup (B \setminus A)$. Es folgt aus (i), dass $\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$ ist (denn $\mu(B \setminus A) \ge 0$).

$$(iii) \ \mu(B) \xrightarrow{\underline{(ii)}} \mu(A) + \mu(B \setminus A) \xrightarrow{\underline{\mu(A)} < \infty} \mu(B \setminus A) = \mu(B) - \mu(A)$$

(iv) folgt aus (iii) mit $B = \Omega$.

Diskrete Maße lassen sich leicht mithilfe von Zähldichten konstruieren.

Definition 1.9 (Zähldichte). Sei $\Omega \neq \emptyset$ ein Grundraum.

(i) Eine Abbildung $f:\Omega\to [0,\infty]$ heißt Zähldichte, wenn $T=\{\omega\in\Omega\mid f(\omega)>0\}$ abzählbar ist. Gemäß

$$\mu(A) := \sum_{\omega \in A \cap T} f(\omega) \text{ mit } \sum_{\omega \in \varnothing} f(\omega) := 0$$
 (*)

wird offenbar ein diskretes Maß auf $(\Omega, \mathcal{P}(\Omega))$ definiert, wobei $\Omega_0 = T$ gesetzt werden kann. Gilt

$$\sum_{\omega \in T} f(\omega) = 1,$$

so ist das durch (*) definierte Maß ein diskretes Wahrscheinlichkeitsmaß.

(ii) Ist umgekehrt μ ein diskretes Maß auf $(\Omega, \mathcal{P}(\Omega))$, so ist die durch

$$f: \Omega \to [0,\infty], \omega \mapsto \mu(\{\omega\})$$

definerte Funktion eine Zähldichte.

- **Beispiel 1.10.** (i) Seien $\Omega = \{1, 2, 3, 4, 5, 6\}$ und $f : \Omega \to [0, \infty], \omega \mapsto \frac{1}{|\Omega|} = \frac{1}{6}$. Das zu f assoziierte Wahrscheinlichkeitsmaß \mathbb{P} heißt Laplace-Verteilung auf $(\Omega, \mathcal{P}(\Omega))$. $(\Omega, \mathbb{P}(\Omega), \mathbb{P})$ ist ein Modell für einen einmaligen Würfelwurf.
 - (ii) Betrachten wir nun einen einmaligen Münzwurf. Dafür verwenden wir die Grundmenge $\Omega = \{\text{Kopf}, \text{Zahl}\}\$ mit der Zähldichte $f(\text{Kopf}) = \frac{1}{2},\ f(\text{Zahl}) = \frac{1}{2}.\$ Das zugehörige Wahrscheinlichkeitsmaß ist ebenfalls eine Laplace-Verteilung auf $(\Omega, \mathbb{P}(\Omega))$.

2 Urnenmodelle und abgeleitete Verteilungen

Wir betrachten n Ziehungen aus einer Urne mit N Kugeln, die mit den Zahlen $1, \ldots, N$ durchnummeriert seien.

Beispiel 2.1 (6 aus 49). Wieviele Möglichkeiten gibt es, aus 49 Zahlen 6 (unterschiedliche) Zahlen auszuwählen? Für die erste Zahl gibt es 49 Möglichkeiten; für die zweite dann nur noch 48, da eine Zahl dann ja bereits gewählt wurde; für die dritte gibt es nur noch 47 Möglichkeiten, usw.; wenn wir diese Anzahl noch durch die Anzahl der möglichen Permutationen eine 6-elementigen Menge teilen, ergibt sich schlussendlich folgende Formel:

$$\frac{49 \cdot 48 \cdot \ldots \cdot 44}{6 \cdot \ldots \cdot 1} = \binom{49}{6} = 13.983.816$$

Dies ist genau die Anzahl aller 6-elementigen Teilmengen von $\{1, \ldots, 49\}$. Allgemeiner ist $\binom{n}{k}$ genau die Anzahl aller k-elementigen Teilmengen der Menge $\{1, \ldots, n\}$. Dieses Beispiel entspricht dem Ziehen ohne Reihenfolge und ohne Zurücklegen von 6 Kugeln aus einer Urne mit (ursprünglich) 49 Kugeln.

Satz 2.2 (Kombinatorik). Wir betrachten das Ziehen einer Stichprobe vom Umfang n aus einer N-elementigen Menge. Es gilt:

	Mit Zurücklegen	Ohne Zurücklegen
Mit Reihenfolge	N^n	$N \cdot (N-1) \cdot \ldots \cdot (N-n+1) = \frac{N!}{(N-n)!}$
Ohne Reihenfolge	$\binom{N+n-1}{n}$	$\binom{N}{n}$

Ohne Beweis.

Beispiel 2.3 (Ziehen mit Zurücklegen, Binomialverteilung). Wir betrachten eine Urne mit N Kugeln; R davon seien rot, und N-R weiß. Aus dieser Urne ziehen wir n-mal hintereinander eine Kugel, wobei wir nach jedem Zug die jeweils gezogene Kugel zurücklegen. Die Kugeln seien von $1, \ldots, N$ durchnummeriert – o.B.d.A. seien die ersten R Kugeln rot. Wir betrachten dazu den Stichprobenraum

$$\Omega = \{(\omega_1, \dots, \omega_n) \mid 1 \le \omega_i \le N\}$$

(ω_1 bezeichnet dabei die Nummer der ersten gezogenen Kugel, ω_2 die der zweiten, usw.) mit Laplace-Verteilung, d.h. die Wahrscheinlichkeit jedes n-Tupels ist gleich.

Frage: Wie groß ist die Wahrscheinlichkeit, dass genau r rote Kugeln in der Stichprobe sind? Dies entspricht dem Ereignis $E_r = \{(\omega_1, \ldots, \omega_n) : |\{i : \omega_i \leq R\}| = r\}.$

Um die Mächtigkeit von E_r zu berechnen, schreiben wir E_r als Vereinigung disjunkter Ereignisse E_I , wobei $I \subseteq \{1, ..., n\}$ die Nummern der Ziehungen enthält, bei denen genau eine rote Kugel gezogen wird. Die Idee ist, dass wir von diesen Ereignissen die Wahrscheinlichkeit leichter ermitteln können. Wir setzen also

$$E_I = \{(\omega_1, \dots, \omega_n) \mid \omega_i \in \{1, \dots, R\} \text{ für } i \in I \text{ und } \omega_i \in \{R+1, \dots, N\} \text{ für } i \notin I\}$$

und

$$E_r = \bigcup_{\substack{I \subseteq \{1, \dots, n\} \\ |I| = r}} E_I.$$

Da es genau $\binom{n}{r}$ Teilmengen $I \subseteq \{1, ..., n\}$ mit Kardinalität r gibt, und da E_I für alle solchen I dieselbe Kardinalität hat, folgt:

$$|E_r| = \binom{n}{r} \cdot |E_{\{1,\dots,r\}}| = \binom{n}{r} \cdot R^r \cdot (N-R)^{n-r}$$

Mit der Laplace-Verteilung und der Tatsache, dass $|\Omega| = N^n$ ist, ergibt sich:

$$\mathbb{P}(E_r) = \frac{|E_r|}{|\Omega|} = \binom{n}{r} \cdot \left(\frac{R}{N}\right)^r \cdot \left(1 - \frac{R}{N}\right)^{n-r}$$

Da E_0, \ldots, E_n eine disjunkte Zerlegung des Ergebnisraumes Ω ist (denn irgendeine Anzahl roter Kugeln muss man ja gezogen haben, und diese Anzahl liegt bei n Kugeln zwischen 0 und n), wird durch

$$p(r) := \mathbb{P}(E_r) \ \forall r \in \{0, \dots, n\}$$

eine Zahldichte eines Wahrscheinlichkeitsmaßes auf $(\{0,\ldots,n\},\mathcal{P}(\{0,\ldots,n\}))$ definiert,

denn es gilt

$$1 = \mathbb{P}(\Omega) = \mathbb{P}\left(\sum_{i=0}^{n} E_i\right) = \sum_{i=0}^{n} \mathbb{P}(E_i) = \sum_{i=0}^{n} p(i).$$

Das zugehörige Wahrscheinlichkeitsmaß heißt <u>Binomialverteilung</u> (mit Parametern n und $\frac{R}{N}$).

3 Unabhängigkeit und bedingte Wahrscheinlichkeit

Definition 3.1 (Stochastische Unabhängigkeit). Sei $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum. Dann heißen zwei Ereignisse A und B stochastisch unabhängig, wenn gilt:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Beispiel 3.2. (i) Wir werfen einen unverfälschten Würfel und definieren folgende Ereignisse:

- A: "Die Augenzahl ist gerade".
- B: "Die Augenzahl ist durch 3 teilbar".

Nach obiger Definition sind diese Ereignisse stochastisch unabhängig, denn es gilt:

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{3}{6} = \frac{1}{2} \; ; \; \mathbb{P}(B) = \frac{|B|}{|\Omega|} = \frac{1}{3} \; ; \; \mathbb{P}(A \cap B) = \frac{1}{6} = \frac{1}{2} \cdot \frac{1}{3}$$

- (ii) Wir ziehen zwei mal mit Zurücklegen aus einer Urne mit 3 roten und 5 weißen Kugeln, und betrachten folgende Ereignisse:
 - A: "Die erste gezogene Kugel ist rot".
 - B: "Die zweite gezogene Kugel ist weiß".

Diese Ereignisse sind stochastisch unabhängig, denn es gilt:

$$\mathbb{P}(A) = \frac{3 \cdot 8}{8^2} = \frac{3}{8} \ ; \ \mathbb{P}(B) = \frac{8 \cdot 5}{8^2} = \frac{5}{8} \ ; \ \mathbb{P}(B) = \frac{15}{8^2} = \frac{3}{8} \cdot \frac{5}{8}$$