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1 Stochastic Exponential

For a semimartingale X with X0 = 0, the stochastic exponential of X, written E(X), is the
(unique) semimartingale Z that is a solution of

Zt = 1 +

∫ t

0

Zs− dXs.

The stochastic exponential is also known as the Doléans-Dade exponential. An important
special case is when the semimartingale X is continuous. Then the stochastic exponential
is given by

E(X)t = exp

{
Xt −

1

2
[X,X]t

}
.

The stochastic exponential is used to define a density process. In this context, consider
also Girsanov’s theorem. A central question that arises here is the following: Let M be
a local martingale. When is E(M) a martingale? The only known general conditions that
solve this problem are Kazamaki’s criterion and Novikov’s criterion. Moreover, these criteria
apply only to local martingales with continuous paths. Novikov’s criterion is a little less
powerful than Kazamaki’s, but it is much easier to check in practice. Since Novikov’s
criterion follows easily from Kazamaki’s, we present both criteria here. Note that if M is
a continuous local martingale, then E(M) is also a continuous local martingale. However,
even if it is a uniformly integrable local martingale, it still need not be a martingale.

Lemma 1.1. Let M be a continuous local martingale with M0 = 0. Then E(M) is a
supermartingale, hence E(E(M)t) ≤ 1 for all t ≥ 0.
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Proof. Recall that E(M)0 = 1. Since M is a local martingale, E(M) is a nonnegative local
martingale, whence a supermartingale.

Let Tn be a sequence of stopping times reducing E(M). Then E(E(M)t∧Tn) = 1, and
using Fatou’s Lemma,

E(E(M)t) = E
(
lim inf
n→∞

E(M)t∧Tn

)
≤ lim inf

n→∞
E(E(M)t∧Tn

) = 1.

Theorem 1.2. Let M be a continuous local martingale and T a bounded stopping time.
Then

E
[
e
1
2MT

]
≤ E

[
e
1
2 [M,M ]T

]1/2
Proof. Recall that

(E(M)T )
1/2 =

(
eMT− 1

2 [M,M ]T
)1/2

= e
1
2MT

(
e−

1
2 [M,M ]T

)1/2
,

which implies that

e
1
2MT = (E(M)T )

1/2
(
e−

1
2 [M,M ]T

)1/2
This, together with the Cauchy-Schwarz inequality and the fact that E(E(M)T ) ≤ 1, gives
the result.

Lemma 1.3. Let M be a continuous local martingale. Let 1 < p < ∞, and set 1
p + 1

q = 1.
Taking the supremum below over all bounded stopping times, assume that

sup
T

E
(
e

( √
p

2
√

p−1

)
MT

)
< ∞.

Then E(M) is an Lq-bounded martingale.

Proof. Let 1 < p < ∞ and r =
√
p+1√
p−1 . Then s =

√
p+1

2 and 1
r + 1

s = 1. Also, we note that

(q −
√

q
r )s =

√
p

2(
√
p−1) , which we use in the last equality of the proof. We have

E(M)q = eqM− q
2 [M,M ]T = e

√
q
rM− q

2 [M,M ]T e(q−
√

q
r )M .

Now, we apply Hölder’s inequality for a stopping time S:

E(E(M)q) ≤ E
(
e
√
qrMS− qr

2 [M,M ]S
)1/r

E
(
es(q−

√
q
r )MS

)1/s

≤ E
(
e
√
qrMS− qr

2 [M,M ]S
)1/r

E
(
e

√
p

2(
√

p−1)
MS

)1/s

.

Recalling that E
(
erMS

)
≤ 1, we have the result.

Theorem 1.4 (Kazamaki’s Criterion). Let M be a continuous local martingale. Suppose

sup
τ

E
{
e

1
2Mτ

}
< ∞,

where the supremum is taken over all bounded stopping times. Then E(M) is a uniformly
integrable martingale.
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Proof. Let 0 < a < 1, and p > 1 be such that
√
p√

p−1 < 1/a. Our hypothesis combined with

the preceding lemma implies that E(aM) is an Lq bounded martingale, where 1
p + 1

q = 1,
which in turn implies it is a uniformly integrable martingale. However,

E(aM) = eaM− a2

2 [M,M ] = ea
2M− a2

2 [M,M ]ea(1−a)M

= E(aM)a
2

ea(1−a)M .

Using Hölder’s inequality with exponents a−2 and (1− a2)−1 yields (where the 1 on the left
side comes from the uniform integrability):

1 = E{E(aM)∞} ≤ E(E(M)∞)a
2
(
E((ea(1−a)M∞)1/(1−a2))

)1−a2

= E(E(M)∞)a
2
(
E{e 1

2M∞}
)2a(1−a)

Now let a → 1; the second term on the right-hand side of the inequality converges to 1
since 2a(1− a) → 0. Thus,

1 ≤ E(E(M)∞),

and since it is always true that 1 ≥ E(E(M)∞), we are done.

Theorem 1.5 (Novikov’s Criterion). Let M be a continuous local martingale, and suppose
that

E
(
e

1
2 [M,M ]∞

)
< ∞.

Then E(M) is a uniformly integrable martingale.

Proof. We have

E (E(M)T ) ≤
(
E
(
e

1
2 [M,M ]T

)) 1
2

,

where T is a stopping time.
Now, applying Kazamaki’s criterion, we conclude that E(M) is a uniformly integrable

martingale.

2 Lévy’s Theorem

Theorem 2.1 (Lévy’s Theorem). A stochastic process X = (Xt)t≥0 is a standard Brownian
motion if and only if it is a continuous local martingale with [X,X]t = t.

Proof. We have already observed that a Brownian motion B is a continuous local martingale
and that [B,B]t = t. Thus, it remains to show sufficiency.

Fix u ∈ R and set F (x, t) = exp{iux + 1
2u

2t}. Let Zt = F (Xt, t) = exp{iuXt +
1
2u

2t}.
Since F ∈ C2, we can apply Itô’s formula to obtain

Zt = 1 + iu

∫ t

0

Zs dXs +
u2

2

∫ t

0

Zs ds−
u2

2

∫ t

0

Zs d[X,X]s.

Using [X,X]t = t, this simplifies to

Zt = 1 + iu

∫ t

0

Zs dXs,
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which is the exponential equation. Since X is a continuous local martingale, we now have
that Z is also one (complex-valued, of course) by the martingale preservation property.

Moreover, stopping Z at a fixed time τ0, Zτ0 , we have that Zτ0 is bounded and hence a
martingale. It then follows for 0 ≤ s < t that

E{exp{iu(Xt −Xs)} | Fs} = exp

{
−1

2
u2(t− s)

}
.

Since this holds for any u ∈ R, we conclude that Xt − Xs is independent of Fs and that
it is normally distributed with mean zero and variance t − s. Therefore, X is a Brownian
motion.

Theorem 2.2 (Lévy’s Theorem: Multi-dimensional Version). Let X = (X1, . . . , Xn) be
continuous local martingales such that

[Xi, Xj ]t =

{
t, if i = j,

0, if i ̸= j.

Then X is a standard n-dimensional Brownian motion.

3 Arbitrage and Duality in Nondominated Discrete-time
Models

3.1 Existence of optimal superhedging strategies

In this section, we obtain the existence of optimal superhedging strategies via an elementary
closedness property with respect to pointwise convergence. For the remainder of this section,
P is any nonempty collection of probability measures on a general measurable space (Ω,F)
with filtration {Ft}t∈{0,1,...,T}, and S = (S0, S1, . . . , ST ) is any collection of F-measurable,

Rd-valued random variables St.
Denote by H of trading strategies, i.e., the set of all predictable processes. For H ∈ H,

the wealth process H • S is defined by the discrete stochastic integral, and the condition
NA(P) says that H • ST ≥ 0 P-q.s. implies H • ST = 0 P-q.s.

We write L0
+ for the set of all nonnegative random variables. The following result states

that the cone C of all claims which can be superreplicated from initial capital x = 0 is closed
under pointwise convergence.

Theorem 3.1. Let C := {H • ST | H ∈ H} − L0
+. If NA(P) holds, then C is closed

under P-q.s. convergence; that is, if {Wn}n≥1 ⊆ C and W is a random variable such that
Wn → W P-q.s., then W ∈ C.

Proof. Let
Wn = Hn • ST −Kn

be a sequence in C which converges P-q.s. to a random variable W ; we need to show that
W = H • ST −K for some H ∈ H and K ∈ L0

+. We shall use an induction over the number
of periods in the market. The claim is trivial when there are zero periods. Hence, we show
the passage from T−1 to T periods; more precisely, we shall assume that the claim is proved
for any market with dates {1, 2, . . . , T}, and we deduce the case with dates {0, 1, . . . , T}.
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For any real matrix M , let index(M) be the number of rows in M which vanish iden-
tically. Now let H1 be the random (d × ∞)-matrix whose columns are given by the vec-
tors H1

1 , H
2
1 , . . . . Then index(H1) is a random variable with values in {0, 1, . . . , d}. If

index(H1) = d P-q.s., we have Hn
1 = 0 for all n, so that setting H1 = 0, we conclude imme-

diately by the induction assumption. For the general case, we use another induction over
i = d, d− 1, . . . , 0; namely, we assume that the result is proved whenever index(H1) ≥ i P-
q.s., and we show how to pass to i− 1.

Indeed, assume that index(H1) ≥ i− 1 ∈ {0, . . . , d− 1}; we shall construct H separately
on finitely many sets forming a partition of Ω. Consider first the set

Ω1 :=
{
lim inf

∣∣Hn
1

∣∣ < ∞
}
∈ F0.

We can find F0-measurable random indices nk such that on Ω1, H
nk
1 converges pointwise to

a (finite) F0-measurable random vector H1. As the sequence

W̃ k := Wnk −Hnk
1 ∆S1 =

T∑
t=2

Hnk
t ∆St −Knk

converges to W −H1∆S1 =: W̃ P-q.s. on Ω1, we can now apply the induction assumption
to obtain H2, . . . ,HT and K ≥ 0 such that

W̃ =

T∑
t=2

Ht∆St −K

and therefore W = H • ST −K on Ω1. It remains to construct H on

Ω2 := Ωc
1 =

{
lim inf

∣∣Hn
1

∣∣ = +∞
}
.

Let

Gn
1 :=

Hn
1

1 + |Hn
1 |

.

As |Gn
1 | ≤ 1, there exist F0-measurable random indices nk such that Gnk

1 converges pointwise
to an F0-measurable random vector G1, and clearly |G1| = 1 on Ω2. Moreover, on Ω2, we
have Wnk/(1 + |Hnk

1 |) → 0 and hence −G1∆S1 is the P-q.s. limit of

T∑
t=2

Hnk
t

1 + |Hnk
1 |

∆St −
Knk

1 + |Hnk
1 |

.

By the induction assumption, it follows that there exist H̃2, . . . , H̃T such that
∑T

t=2 H̃t∆St ≥
−G1∆S1 on Ω2 ∈ F0. Therefore,

G1∆S1 +

T∑
t=2

H̃t∆St = 0 on Ω2, (1)

since otherwise the trading strategy (G1, H̃2, . . . , H̃T )1Ω2 would violate
NA(P). As |G1| = 1 on Ω2, we have that for every ω ∈ Ω2, at least one component
Gj

1(ω) of G1(ω) is nonzero. Therefore,

Λ1 := Ω2 ∩
{
G1

1 ̸= 0
}
,

Λj :=
(
Ω2 ∩

{
Gj

1 ̸= 0
})

\ (Λ1 ∪ · · · ∪ Λj−1), j = 2, . . . , d
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defines an F0-measurable partition of Ω2. We then consider the vectors

H̄n
t := Hn

t −
d∑

j=1

1Λj

Hn,j
1

Gj
1

(G11{t=1} + H̃t1{t≥2}), t = 1, . . . , T.

Note that H̄n • ST = Hn • ST by (1). Hence, we still have W = lim H̄n • ST − Kn.
However, on Ω2, the resulting matrix H̄1 now has index(H̄1) ≥ i since we have created
an additional vanishing row: the jth component of H̄n

1 vanishes on Λj by construction,

while the jth row of H1 cannot vanish on Λj ⊆ {Gj
1 ̸= 0} by the definition of G1. We can

now apply the induction hypothesis for indices greater or equal to i to obtain H on Ω2.
Recalling that Ω = Ω1 ∪ Ω2, we have shown that there exist H ∈ H and K ≥ 0 such that
W = H • ST −K.

Theorem 3.2. Let NA(P) hold, and let f be a random variable. Then

π(f) := inf{x ∈ R | ∃H ∈ H such that x+H • ST ≥ f P-q.s.} > −∞,

and there exists H ∈ H such that π(f) +H • ST ≥ f P-q.s.

Proof. The claim is trivial if π(f) = ∞. Suppose that π(f) = −∞. Then, for all n ≥ 1,
there exists Hn ∈ H such that −n+Hn • ST ≥ f P-q.s. and hence

Hn • ST ≥ f + n ≥ (f + n) ∧ 1 P-q.s.

That is, Wn := (f + n) ∧ 1 ∈ C for all n ≥ 1. Now Theorem 3.1 yields that 1 = limWn is
in C, which clearly contradicts NA(P).

On the other hand, if π(f) is finite, then Wn := f − π(f) − 1/n ∈ C for all n ≥ 1 and
thus f − π(f) = limWn ∈ C by Theorem 3.1, which yields the existence of H.

3.2 The one-period case

In this section, we prove the First Fundamental Theorem and the Superhedging Theorem
in the one-period case; these results could also be generalized to the multi-period case. We
consider an arbitrary measurable space (Ω,F) with a filtration (F0,F1), where F0 = {∅,Ω},
and a nonempty convex set P ⊆ P(Ω). The stock price process is given by a deterministic
vector S0 ∈ Rd and an F1-measurable, Rd-valued random vector S1. We write ∆S for
S1−S0 and note that Q is a martingale measure simply if EQ[∆S] = 0; with the convention
∞−∞ := −∞. Moreover, we have H = Rd. We write Q ≪ P if there is a P ∈ P such that
Q ≪ P . We define Q = {Q ∈ P(Ω) | Q ≪ P, EQ[∆S] = 0}.

3.2.1 First fundamental theorem

Theorem 3.3. The following are equivalent:

(i) NA(P) holds;

(ii) for all P ∈ P there exists Q ∈ Q such that P ≪ Q.

Proof. Exercise 10.1.
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In the following, we will use a separation theorem in Rk. First, the following definitions:
For any two convex subsets C1 and C2 of Rk, a hyperplane H is said to separate C1 and
C2 if C1 is contained in one of the halfspaces corresponding to H and C2 is contained in
the other halfspace. A hyperplane separates C1 and C2 properly if both are not wholly
contained in the hyperplane. For Γ ⊆ Rk we define the affine hull aff(Γ) by

aff(Γ) := {x ∈ Rk | x =

n∑
i=1

αixi, n ∈ N, xi ∈ γ,

n∑
i=1

αi = 1}.

The relative interior ri(Γ) of Γ is defined by

ri(Γ) := {x ∈ Γ | ∃ε > 0 s.t. Bε(x) ∩ aff(Γ) ⊂ γ}.

If Γ is convex then its relative interior is given by

ri(Γ) = {x ∈ Γ | ∀y ∈ Γ \ {x} ∃z ∈ Γ, λ ∈ (0, 1) s.t. x = λy + (1− λ)z}.

Theorem 3.4. Let C1 and C2 be non-empty convex subsets of Rk. There exists a hyperplane
properly separating C1 and C2 if and only if riC1 ∩ riC2 = ∅.

Lemma 3.5 (Fundamental lemma). Let NA(P) hold, and let f be a random variable. Then

0 ∈ ri
{
ER[∆S] | R ∈ P(Ω), R ≪ P, ER

[
|∆S|+ |f |

]
< ∞

}
⊆ Rd.

Similarly, given P ∈ P, we also have

0 ∈ ri
{
ER[∆S] | R ∈ P(Ω), P ≪ R ≪ P, ER

[
|∆S|+ |f |

]
< ∞

}
⊆ Rd.

Proof. We show only the second claim; the first one can be obtained by omitting the lower
bound P in the subsequent argument. We fix P and f ; moreover, we set Ik := {1, . . . , d}k
for k = 1, . . . , d and

Θ :=
{
R ∈ P(Ω) | P ≪ R ≪ P, ER

[
|∆S|+ |f |

]
< ∞

}
.

Note that Θ ̸= ∅ by a standard construction of an equivalent measure R ∼ P under which
∆S and f is integrable. Given I ∈ Ik, we denote

ΓI :=
{
ER

[(
∆Si

)
i∈I

]
| R ∈ Θ

}
⊆ Rk;

then our claim is that 0 ∈ ri ΓI for I = (1, . . . , d) ∈ Id. It is convenient to show more
generally that 0 ∈ ri ΓI for all I ∈ Ik and all k = 1, . . . , d. We proceed by induction.

Consider first k = 1 and I ∈ Ik; then I consists of a single number i ∈ {1, . . . , d}.
If ΓI = {0}, the result holds trivially, so we suppose that there exists R ∈ Θ such that
ER[∆Si] ̸= 0. We focus on the case ER[∆Si] > 0; the reverse case is similar. Then, NA(P)
implies that A := {∆Si < 0} satisfies R1(A) > 0 for some R1 ∈ P. By replacing R1 with
R2 := (R1 + P )/2 we also have that R2 ≫ P , and finally we replace R2 with an equivalent
probability R3 such that ER3

[|∆S|+ |f |] < ∞; as a result, we have found R3 ∈ Θ satisfying
ER3 [1A∆Si] < 0. But then R′ ∼ R3 ≫ P defined by

dR′

dR3
=

1A + ε

ER3
[1A + ε]

(2)
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satisfies R′ ∈ Θ and ER′ [∆Si] < 0 for ε > 0 chosen small enough. Now set

Rλ := λR+ (1− λ)R′ ∈ Θ

for each λ ∈ (0, 1); then

0 ∈
{
ERλ

[
∆Si

]
| λ ∈ (0, 1)

}
⊆ ri

{
ER

[
∆Si

]
| R ∈ Θ

}
,

which was the claim for k = 1.
Let 1 < k ≤ d be such that 0 ∈ ri ΓI for all I ∈ Ik−1; we show hat 0 ∈ ri ΓI for all I ∈ Ik.

Suppose that there exists I = (i1, . . . , ik) ∈ Ik such that 0 /∈ ri ΓI . Then, the convex set ΓI

can be separated from the origin, see Theorem 3.4; that is, we can find y = (y1, . . . , yk) ∈ Rk

such that |y| = 1 and

0 ≤ inf

{
ER

[
k∑

j=1

yj∆Sij

]
| R ∈ Θ

}
.

Using an argument similar to that which precedes (2) (Exercise 10.2), this implies that∑k
j=1 y

j∆Sij ≥ 0 P-q.s., and thus
∑k

j=1 y
j∆Sij = 0 P-q.s. by NA(P). As |y| = 1, there

exists 1 ≤ l ≤ k such that yl ̸= 0, and we obtain that

∆Sl = −
k∑

j=1

δj ̸=l

(
yj/yl

)
∆Sij P-q.s.

Using the definition of the relative interior, the assumption that 0 /∈ ri ΓI then implies that
0 /∈ ri ΓI′ , where I ′ ∈ Ik−1 is the vector obtained from I by deleting the lth entry. This
contradicts our induction hypothesis.

3.2.2 Superhedging theorem

We can now establish the Superhedging Theorem in the one-period case.

Theorem 3.6. Let NA(P) hold, and let f be a random variable. Then

sup
Q∈Q

EQ[f ] = π(f) := inf
{
x ∈ R | ∃H ∈ Rd such that x+H∆S ≥ f P-q.s.

}
.

(3)

Moreover, π(f) > −∞, and there exists H ∈ Rd such that π(f) +H∆S ≥ f P-q.s.

The last statement is a consequence of Theorem 3.2. For the proof of (3), the inequality
“≤” is left as an exercise (Exercise 10.4); For the inequality “≥” we need to find Qn ∈ Q such
that EQn

[f ] → π(f). Our construction proceeds in two steps. In the subsequent lemma,
we find “approximate” martingale measures Rn such that ERn

[f ] → π(f); in its proof, it
is important to relax the martingale property as this allows us to use arbitrary measure
changes. In the second step, we replace Rn by true martingale measures, on the strength of
the Fundamental Lemma: it implies that if R is any probability with ER[∆S] close to the
origin, then there exists a perturbation of R which is a martingale measure.

Lemma 3.7. Let NA(P) hold, and let f be a random variable with π(f) = 0. There exist
probabilities Rn ≪ P, n ≥ 1 such that

ERn [∆S] → 0 and ERn [f ] → 0.
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Proof. The set
Θ :=

{
R ∈ P(Ω) | R ≪ P, ER

[
|∆S|+ |f |

]
< ∞

}
is nonempty. Introduce the set

Γ :=
{
ER

[
(∆S, f)

]
| P ∈ Θ

}
⊆ Rd+1;

then our claim is equivalent to 0 ∈ Γ, where Γ denotes the closure of Γ in Rd+1. Suppose
for contradiction that 0 /∈ Γ, and note that Γ is convex because P is convex. Thus, Γ can
be separated strictly from the origin; that is, there exist (y, z) ∈ Rd × R with |(y, z)| = 1
and α > 0 such that

0 < α = inf
R∈Θ

ER[y∆S + zf ].

Using again a similar argument as before (2), this implies that

0 < α ≤ y∆S + zf P-q.s. (4)

Suppose that z < 0; then this yields that

f ≤
∣∣z−1

∣∣y∆S −
∣∣z−1

∣∣α P-q.s.,

which implies that π(f) ≤ −|z−1|α < 0 and thus contradicts the assumption that π(f) = 0.
Hence, we must have 0 ≤ z ≤ 1. But as π(zf) = zπ(f) = 0 < α/2, there exists H ∈ Rd

such that α/2 +H∆S ≥ zf P-q.s., and then (4) yields

0 < α/2 ≤ (y +H)∆S P-q.s.,

which contradicts NA(P). This completes the proof.

Lemma 3.8. Let NA(P) hold, let f be a random variable and let R ∈ P(Ω) be such that
R ≪ P and ER[|∆S|+ |f |] < ∞. Then there exists Q ∈ Q such that EQ[|f |] < ∞ and∣∣EQ[f ]− ER[f ]

∣∣ ≤ c
(
1 +

∣∣ER[f ]
∣∣)∣∣ER[∆S]

∣∣,
where c > 0 is a constant independent of R and Q.

Proof. Let Θ = {R′ ∈ P(Ω) | R′ ≪ P, ER′ [|∆S|+ |f |] < ∞} and

Γ =
{
ER′ [∆S] | R′ ∈ Θ

}
.

If Γ = {0}, then R ∈ Θ is itself a martingale measure, and we are done. So let us assume
that the vector space spanΓ ⊆ Rd has dimension k > 0, and let e1, . . . , ek be an orthonormal
basis. Lemma 3.5 shows that 0 ∈ ri Γ; hence, we can find P±

i ∈ Θ and α±
i > 0 such that

α±
i EP±

i
[∆S] = ±ei, 1 ≤ i ≤ k.

Note also that P±
i , α±

i do not depend on R.

Let λ = (λ1, . . . , λk) ∈ Rk be such that −ER[∆S] =
∑k

i=1 λiei. Then we have |λ| =
|ER[∆S]| and

−ER[∆S] =

∫
∆S dµ for µ :=

k∑
i=1

λ+
i α

+
i P

+
i + λ−

i α
−
i P

−
i ,

9



where λ+
i and λ−

i denote the positive and the negative part of λi. Define the probability Q
by

Q =
R+ µ

1 + µ(Ω)
;

then R ≪ Q ≪ P and EQ[∆S] = 0 by construction. Moreover,

∣∣EQ[f ]− ER[f ]
∣∣ =

1

1 + µ(Ω)

∫
f dµ− µ(Ω)

1 + µ(Ω)
ER[f ]

≤
∫

f dµ+ µ(Ω)ER[f ]

≤ c|λ|
(
1 +

∣∣ER[f ]
∣∣),

where c is a constant depending only on α±
i and EP±

i
[f ]. It remains to recall that |λ| =

|ER[∆S]|.

Proof of Theorem 3.6. The last claim holds by Theorem 3.2, so π(f) > −∞. Let us first
assume that f is bounded from above; then π(f) < ∞, and by a translation we may even
suppose that π(f) = 0. By Theorem 3.3, the set Q of martingale measures is nonempty;
moreover, EQ[f ] ≤ π(f) = 0 for all Q ∈ Q by Exercise 10.4. Thus, we only need to find a
sequence Qn ∈ Q such that EQn

[f ] → 0. Indeed, Lemma 3.7 yields a sequence Rn ≪ P
such that ERn [∆S] → 0 and ERn [f ] → 0. Applying Lemma 3.8 to each Rn, we obtain a
sequence Qn ∈ Q such that EQn [|f |] < ∞ and∣∣EQn [f ]− ERn [f ]

∣∣ ≤ c
(
1 +

∣∣ERn [f ]
∣∣)∣∣ERn [∆S]

∣∣ → 0;

as a result, we have EQn
[f ] → 0 as desired.

It remains to discuss the case where f is not bounded from above. By the previous
argument, we have

sup
Q∈Q

EQ[f ∧ n] = π(f ∧ n), n ∈ N; (5)

we pass to the limit on both sides. Indeed, on the one hand, we have

sup
Q∈Q

EQ[f ∧ n] ↗ sup
Q∈Q

EQ[f ]

by the monotone convergence theorem (applied to all Q such that EQ[f
−] < ∞). On the

other hand, it also holds that
π(f ∧ n) ↗ π(f),

because if α := supn π(f ∧ n), then (f ∧ n) − α ∈ C for all n and thus f − α ∈ C by
Theorem 3.1, and in particular π(f) ≤ α.
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