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Discrete time

Historically, financial mathematics originated in continuous time - like in the famous works
from Black & Scholes (1973) and ? and the main driving force was a Brownian motion. It seems
very plausible, that a large number of traders who act independently can be approximated by
a Gaussian distribution through the central limit theorem, such that this is a very appealing
setup.

However, this requires the full power of stochastic integration and the technical details are
quite subtle. It is remarkable, that the main concepts of financial markets, like absence of ar-
bitrage, the first and second fundamental theorem can be proven in discrete time without the
need to dive into the technicalities while providing similarly deep insights. I therefore believe,
it is a good start to spend some time on discrete time.

A discrete-time financial market

An excellent introduction to the field is Föllmer & Schied (2016). We follow this book for the
introduction and directly start in a multi-period financial market. The advantage of this ap-
proach - as we will soon see - is that a multi-period market essentially can be reduced to a
one-period market.

To this end we fix a probability space (Ω, F , P). A financial market consists of one primary
risk-free asset S0 which is assumed to be strictly positive. Furthermore, we have d risky assets
S = (S1, . . . , Sd) which are assumed to be non-negative. All assets are described as stochastic
processes on the time interval T = {0, . . . , T}.

The information flow is described by the filtration F = (Ft)t∈T. We denote by S̄ = (S0, S)
the d + 1-dimensional stochastic process including the risk-free account. We assume that S̄ is
adapted to the filtration F.

Definition 1. A trading strategy H̄ is a predictable, d + 1-dimensional stochastic process. The
trading strategy is self-financing, if

H̄t · S̄t = H̄t+1 · S̄t, t = 1, . . . , T − 1.

Intuitively, a self-financing trading strategy does not require external funds while rebalanc-
ing at time t, neither does it produce a consumable profit.

Let us denote the increments of S by

∆St = St − St−1, t = 1, . . . , T.
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It is a remarkable result, that for a self-financing trading strategy, the position at time t can
be decomposed in the initial value plus the gains from trading. The gains itself can be written
as a (discrete) stochastic integral.

Lemma 2. For a self-financing trading strategy H̄, we obtain that

H̄t · S̄t = H̄1 · S̄0 +
t

∑
k=1

H̄k · ∆S̄k, 1 ≤ t ≤ T.

Proof. This follows in two steps:

H̄t · S̄t = H̄t · S̄t + H̄t−1 · S̄t−1 − H̄t−1 · S̄t−1

= H̄t · S̄t + H̄t−1 · S̄t−1 − H̄t · S̄t−1

= H̄t · (S̄t − S̄t−1) + H̄t−1 · S̄t−1

=
t

∑
k=2

H̄k · (S̄k − S̄k−1) + H̄1 · S̄1

where we used that H̄ is self-financing. For the last time step we obtain,

H̄1 · S̄1 = H̄1S̄1 + H̄1 · S̄0 − H̄1 · S̄0

= H̄1(S̄1 − S̄0) + H̄1 · S̄0

and the claim follows.

Example 3 (Bank account). A typical example for S0 is the bank account. The bank account
starts at S0

0 = 1 and offers the interest rate rt from t − 1 to tt. Note that rt is of course already
known at t − 1 and hence predictable. Hence,

S0
t =

t

∏
s=1

(1 + rs).

We always require rt > −1. But often one additionally assumes that rt ≥ 0.

Moving to discounted quantities

An important step - economically, and mathematically - is to move to discounted quantities.
While this simplifies that setup drastically, it also has a number of subtle consequences (in
particular in continuous time).

We introduce the discounted price process

Xi
t :=

Si
t

S0
t

, t = 0, . . . , T, i = 0, . . . , d.

Note that X0 ≡ 1 and in particular ∆X0
t = 0. As previously, we use the notation H̄ = (H0, H).
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Definition 4. The discounted value process V = V H̄ of the trading strategy H̄ is given by

Vt := H̄t · X̄t, t = 1, . . . , T

with V0 := H̄1 · X̄0. The discounted gains process G = GH̄ is

Gt :=
t

∑
k=1

Hk · ∆Xk, t = 1, . . . , T

with G0 = 0.

Of course,

Gt =
t

∑
k=1

H̄k · ∆X̄k,

which explains why we can switch from H̄ to H on discounted quantities.

Proposition 5. Consider the trading strategy H̄. Then the following are equivalent:

(i) H̄ is self-financing,

(ii) H̄t · X̄t = H̄t+1 · X̄t, t = 1, . . . , T − 1,

(iii) Vt = V0 + Gt for 0  t  T.

Proof. By definition, self-financing is equivalent to

H̄t · S̄t = H̄t+1 · S̄t t = 0, . . . , T − 1,

⇔ H̄t ·
S̄t

S0
t
= H̄t+1 ·

S̄t

S0
t

, t = 0, . . . , T − 1,

since S0 > 0. This yields equivalence of (i) and (ii). For the next step we compute the incre-
ments of the value process. By (ii),

Vt − Vt−1 = H̄t+1 · X̄t+1 − H̄t · X̄t = H̄t+1 · (X̄t+1 − X̄t) = Ht+1 · (Xt+1 − Xt).

Hence,

Vt − V0 =
t

∑
s=1

Hs · (Xs − Xs−1), t = 1, . . . , T

and the conclusion follows.

Remark 6 (Trading strategies). If we start with a d-dimensional trading strategy H, we can
determine the associated self-financing strategy H̄ as follows: choose H0 according to

H0
t+1 − H0

t = −(Ht+1 − Ht) · Xt, t = 0, . . . , T − 1,

and H0
1 = V0 − H1 · X0. In the following, if we speak of a self-financing trading strategy H, we

mean equivalently this associated strategy H̄.
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Arbitrage and martingales

The central concept for our analysis of financial markets is the concepts of arbitrage.

Definition 7. An arbitrage is a self-financing trading strategy H, such that the associated
discounted value process V satisfies

(i) V0  0,

(ii) VT  0, and

(iii) P(VT > 0) > 0.

If there are no arbitrages on a financial market, we call it arbitrage-free.

If we recall our introduction, we realize that a financial market consists of the triplet (F, S, P).
It can be easily shown that the above conditions are equivalent to the same conditions for the
undiscounted value process (H̄t · S̄t).

Proposition 8. A financial market is free of arbitrage if and only if every one-period financial market
(St, St+1), t = 0, . . . , T − 1 is free of arbitrage.

Proof. The idea of the proof is to show the equivalence of the negotiations: there exists an
arbitrage if and only if for a t ∈ {1, . . . , T} there exists a Ft−1-measurable random ξ ∈ Rd, such
that ξ · ∆Xt ≥ 0 P-a.s. and P(ξ · ∆Xt > 0) > 0.

For the first part we start with an arbitrage and show that there exists a single period with
an arbitrage: let H̄ be an arbitrage with value process V. Let

t := min


s ∈ {1, . . . , T} : Vs  0 und P(Vs > 0) > 0


be a deterministic time with the convention that min∅ = ∞. Since H̄ is an arbitrage, we obtain
that t  T. There are two possibilities to be taken into account: either Vt−1 = 0, or P(Vt−1 <

0) > 0. In the first case, we are ready, since

Ht · (Xt − Xt−1) = Vt − Vt−1 = Vt,

so ξ = Ht does the job.
For the second case we choose ξ := Ht1{Vt−1<0}. Then ξ is Ft−1-measurable and

ξ · (Xt − Xt−1) = (Vt − Vt−1)1{Vt−1<0}  −Vt−11{Vt−1<0}  0.

Now observe that the r.h.s. is positive with positive probability and the first part is finished.
The other direction is straightforward: set Hs = ξ1{s=t} and construct the associated self-

financing trading strategy H̄, which is an arbitrage.

Remark 9. It is interesting to see that the property to deduce absence of arbitrage from one
time period only breaks down if one allows for two filtrations, see Kabanov & Stricker (2006).
A fundamental theorem for two markets with two filtrations is still an open research question.
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Definition 10. A probability measure Q on (Ω, FT) is called martingale measure, if X is a
Q-martingale.

We note that a martingale measure refers to the discounted price process being a martingale.
It is a bit surprising that an artificial probability measure takes up such a prominent role in
no-arbitrage theory. We will see later, why. Recall that Q is called absolutely continuous with
respect to P (Q ≪ P) if P(F) = 0 for an F ∈ FT implies that Q(F) = 0. Q is called equivalent to
P (P ∼ Q), if Q ≪ P and P ≪ Q.

Martingale measures

We denote the set of equivalent martingale measures by Me(F) = Me. If we assume that the ini-
tial filtration is trivial, the following result can already be obtained. It is remarkable that the
integrability condition of a martingale can be obtained from no-arbitrage (equivalently the exis-
tence of a martingale measure as we will see later) and a substantially weakened integrability.

Satz 11. Let F0 = {∅, Ω}. Then, the following are equivalent:

(i) Q ∈ ME(F)

(ii) For any bounded self-financing trading strategy H̄, V H̄ is a Q-martingale.

(iii) For any self-financing trading strategy H̄ such that EQ[(V H̄
T )−] < ∞ V H̄ is a Q- martingale.

(iv) For any self-financing trading strategy H̄ with VT = V H̄
T  0 it holds that

V0 = EQ[VT ].

Proof. i) ⇒ ii): we start with a bounded self-financing strategy H̄, i.e. |Hi
t|  c, for i = 0, . . . , d,

t = 0, . . . , T. Then, integrability of V = V H̄ follows from the integrability of X since

|Vt|  |V0|+
t

∑
k=1

c ·
d

∑
i=1


|Xi

k|+ |Xi
k−1|


.

Moreover, we have that

EQ[Vt|Ft−1] = EQ[Vt−1 + H̄t · (X̄t − X̄t−1)|Ft−1]

= Vt−1 + H̄t · (EQ[X̄t|Ft−1]− X̄t−1) = Vt−1.

ii) ⇒ iii): We want to show the martingale property under a minimal integrability assumption.
We start with the assumption that EQ[V−

T ] < ∞. Then EQ[VT ] and, similarly, EQ[VT |FT−1] is
well-defined (though possibly not finite).

Consider a > 0. Then,

EQ[VT |FT−1]1{|H̄T |a} = EQ[H̄T · X̄T1{|H̄T |a}|FT−1]

= EQ[H̄T(X̄T − X̄T−1)1{|H̄T |a}|FT−1] + VT−11{|H̄T |a}

= VT−11{|H̄T |a}. (12)

Now with a → ∞, {|H̄T |  a} → Ω, since H̄T is a Rd+1-value random variable. Hence,
EQ[VT |FT−1] = VT−1 Q-a.s. The next step is to show EQ[V−

T−1] < ∞ with Jensens’ inequality:
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this follows since

EQ[V−
T−1] = EQ[EQ[VT |FT−1]

−]  EQ[EQ[V−
T |FT−1]] = EQ[V−

T ] < ∞.

Proceeding iteratively we obtain EQ[V−
t ] < ∞ as well as EQ[Vt| Ft−1] = Vt−1.

Then,
V0 = EQ[Vt].

Since EQ[V−
t ], the expectation is well-defined. Moreover, V0 ∈ R, so EQ[V+

t ] < ∞, and hence
EQ[|Vt|] < ∞. We obtain integrability and hence V is a Q-martingale.

iii) ⇒ iv): clear.
iv) ⇒ i): First, we show integrability of Xi

t. This can be achieved using Xi
t = Xi

0 + ∑t
s=1 ∆Xi

s.
We choose accordingly H j

s = 1{s≤t}1{j=i}, such that GT = ∑t
s=1 ∆Xi

s and, (by Proposition (iii)),
V0 = Xi

0. Moreover, VT = Xi
t ≥ 0. Then we can apply (iv), such that

∞ > Xi
0 = V0 = EQ[VT ] = EQ[Xi

t] = EQ[|Xi
t|]. (13)

The next goal is to show
EQ[Xi

t+11F] = EQ[Xi
t1F] ∀F ∈ Ft

and for 1 ≤ t ≤ T. For this, we aim at a similar strategy, but Hs = 1{s≤t}1F − 1{s≤t−1}1F is
not possible since 1F is only Ft-measurable. Instead we search for a strategy which achieves
VT = Xi

t1F + Xi
t+11FC ≥ 0. Note that VT = Xi

t + ∆Xi
t+11FC which can be achieved by the

trading strategy
Hi

s = 1{s≤t} + 1FC 1{s=t+1},

and H j = 0 for j ∕= i together with V0 = Xi
0, as above. Again, by (iv),

Xi
0 = V0 = EQ[VT ] = EQ[1FXi

t + 1FC Xi
t+1].

Together with (13),
EQ[Xi

t+1] = Xi
0 = EQ[1FXi

t + 1FC Xi
t+1],

hence EQ[1FXi
t] = EQ[1FXi

t+1], and the claim follows.

The fundamental theorem

The following fundamental theorem relates absence of arbitrage with a very simple criterion -
the existence of a martingale measure. This measure can be used for pricing in a very simple
manner, which explains the immense success of this approach.

Theorem 14 (FTAP). A financial market is free of arbitrage, if and only if Me(F) ∕= ∅. In this case
there exists a Q ∈ Me with bounded density dQ/dP.
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This theorem is proved in several steps. The first step, which is the most important step in
applications, is surprisingly easy.

Proposition 15. If Me ∕= ∅, then there is no arbitrage.

Proof. We use proposition 11 (iii). Assume that H is an arbitrage with discounted value process
V and chose a Q ∈ Me.

Note that with V0  0 P-a.s. it holds that V0  0 Q-a.s. In the same manner, we obtain that
VT ≥ 0 Q-a.s. and hence EQ[V−

T ] = 0 < ∞.
Since H is an arbitrage, P(VT > 0) > 0, and hence Q(VT > 0) > 0. This implies EQ[VT ] > 0.

Since Proposition 11 (iii) yields that V is a Q-martingale, i.e.

V0 = EQ[VT ] > 0,

we obtain a contradiction to V0  0.

Examples

Let us visit shortly some examples which illustrate the importance to the application of Propo-
sition 15. Note that if we add a Q-martingale as additional coordinate to the price process X
the market remains arbitrage-free. It is therefore natural to use the risk-neutral pricing rule for
pricing additional contingent claims.

Consider n FT-measurable contingent claim with (discounted) payoff CT ≥ 0 and let

Xd+1
t = EQ[CT |Ft], t ∈ T.

Then, the extended market X = (X1, . . . , Xd+1) is free of arbitrage.

Example 16 (Black-Scholes Model). The famous Black-Scholes modelgives the stock price
under P as a geometric Brownian motion, precisely:

dSt = Stµdt + StσdWt

with a Brownian motion W and initial value R ∋ S0 > 0. The unique strong solution of this
SDE is given by

St = S0 exp


µ − σ2/2

t + σWt


, t ≥ 0.

A typical derivative is an European call which offers the pay-off

(ST − K)+.

If we additionally assume that the Bank account is ert, then the Girsanov theorem shows that
the measure dQ = LTdP with

dLt = −LtλdWt,

and λ = r−µ/σ is a martingale measure. Under Q, Wt = Wt + λt, t ≥ 0 is a Brownian motion
and so

dSt = Strdt + Stσd Wt,

and – of course – dXt = Stσd Wt. Let us compute shortly the price of the call option,

EQ[CT ] = S0Φ(d1)− Ke−rTΦ(d2), (17)

d1/2 =
log S0

Ke−rT ± σ2T
2

σ
√

T
(18)
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While this model is in continuous time, the discrete analogue S = (Sti )i=0,...,n with ti = δi
is of course in discrete time. It is remarkable that the continuous time model has only one
equivalent martingale measure, while the discrete time model has many.

Example 19 (The binomial model). An example in discrete time which is very illustrative, is
the Binomial model (also called the Cox-Ross-Rubinstein model). Here, we assume that

St = S0

t

∏
i=1

ξi, t = 1, . . . , T

with ξi ∈ {1 + u, 1 + d}, −1 ≤ d ≤ u. The bank account is S0
t = (1 + r)t, r > −1. This model

has no-arbitrage if and only if
d < r < u.

Indeed, for a martingale measure we need

1 = EQ[(1 + r)−1 · ξt|Ft−1] = (1 + r)−1


qt · (1 + u) + (1 − qt) · (1 + d)


which is equivalent to

qt =
r − d
u − d

.

It is remarkable to realise that under Q, (ξt) are i.i.d., while this assumption is of course not
necessary under P. We also may see that the martingale measure is actually used to charac-
terise the convex hull of (1 + d, 1 + u) and so a geometric interpretation of existence of a mar-
tingale measure is the property that the return of the bank account 1 + r lies in the interior of
the convex span of the return of the stock.

It is also interesting to see that for a contingent claim with price Ct−1 at t − 1 and values
{C+

t , C−
t } at t, the replicating strategy is determined by

Ht =
C+

t − C−
t

St−1 · (u − d)
.

Note that this strategy is unique !

Complete markets

We call a contingent claim CT replicable, if there exists a self-financing trading strategy, such
that VT = CT . We call an arbitrage-free market complete, if every contingent claim is replicable.

Proposition 20. Assume that F0 = {∅, F}. Then, an arbitrage-free market is complete, if and only
if

Me = {Q}.

Proof. Assume that the market is complete. We first note that a replicable claim has a unique
price: we first note that by Proposition 11 the value processes of replicable trading strategies
are martingales, since VT = CT ≥ 0. Hence, EQ[VT ] = V0 < ∞ for all Q ∈ Me. This implies that
the price of a replicable contingent claim CT is unique, since for any replicable trading strategy

V0 = EQ[VT ] = EQ[CT ]

and the right hand side does not depend on VT .
Now we show that for Q, Q′ ∈ Me it holds that Q = Q′. Indeed, consider CT = 1F for any

F ∈ FT . Then
Q(F) = EQ[1F] = EQ′ [1F] = Q′(F).

We postpone the second assertion - since it needs a little bit more technique.
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The second part of the proof of the FTAP

Now we return to the fundamental theorem. The main goal is to show the existence of an
equivalent martingale measure. Since this relates to linear functionals, our proof will reside on
the Hahn-Banach theorem

Since we already know that it is sufficient to consider one period only, we study the gains
which can be obtained in a self-financing manner with zero initial investment. Fix 0 < t ≤ T.
Then these gains are given by

K = {H · ∆Xt : H ∈ L0(P, Ft−1, Rd)}.

Then, absence of arbitrage (NA) is equivalent to

K ∩ L0
+(Ft, P, R) = {0}.

Since, t is fixed we shortly write L0
+(Ft, P, R) = L0

+. One central and very useful observation
in the following theorem is that the set K can be replaced by the claims which can be super-
replicated which is given by the set K − L0

+.

Satz 21. Consider the one period-market from t − 1 to t. Then, the following are equivalent:

(i) K ∩ L0
+ = {0},

(ii) (K − L0
+) ∩ L0

+ = {0},

(iii) there exists an equivalent martingale measure with bounded density,

(iv) there exists an equivalent martingale measure.

Proof. We show (iv) ⇒ (i) ⇔ (ii) and (iii) ⇒ (iv). The part (ii) ⇒ (iii) is the most difficult part
and will be treated separately.

(iv) ⇒ (i): we aim at a contradiction. Consider Q ∈ Me and assume there exists H ∈
L0(P, Ft−1, Rd) such that H · (Xt − Xt−1)  0 while P(H · (Xt − Xt−1) > 0) > 0. Note that
this implies Q(H · (Xt − Xt−1)) > 0.

This cannot hold if H is bounded. We therefore consider Hc := H1{H|c} for c > 0. Since
{H|  c} ↑ Ω for c → ∞, we can exploit σ-continuity of the probability measure Q. Hence
Q(Hc∗(Xt − Xt−1) > 0) → Q(H(Xt − Xt−1) > 0) > 0. Then there exists a c∗ such that
Q(Hc∗(Xt − Xt−1) > 0) > 0.

But,
EQ[Hc∗ · (Xt − Xt−1)|Ft−1] = Hc∗EQ[Xt − Xt−1|Ft−1] = 0,

which contradicts with Hc∗ · (Xt − Xt−1)  0 and Q(Hc∗(Xt − Xt−1) > 0) > 0.

(i) ⇒ (ii): Consider Z ∈ (K − L0
+) ∩ L0

+. With a Ft−1-measurable H and U ∈ L0
+,

Z = H · (Xt − Xt−1)− U  0.

Hence H · (Xt − Xt−1)  U  0, such that H · (Xt − Xt−1) ∈ K ∩ L0
+. By (i),t H · (Xt − Xt−1) = 0,

also U = 0 and so Z = 0.
The missing (ii) ⇒ (i) and (iii) ⇒ (iv) are immediate.
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For the remaining step (ii) ⇒ (iii) will be achieved through a number of steps:

(i) We first show that integrability can always achieved through a change of measure (Lemma
22). This allows us to consider the convex cone C as a subset of L1, see (23).

(ii) Then we apply the Hahn-Banach theorem: consider F ∈ L1
+ together with B = {F} and C.

The difficulty is to show that C is closed (which we postpone for a moment). This gives us a
strictly separating continuous functional.

(iii) Using duality we obtain a density (Lemma 28 (i)). Since C is countably convex we can even
select a positive density, hence an equivalent martingale measure (Lemma 28 (ii)).

(iv)

(v)

The following step shows that we can always achieve integrability by an equivalent measure
change with a bounded density.

Lemma 22. There exists P ∼ P such that E[|Xt|] < ∞ and E[|Xt−1|] < ∞.

Proof. Consider c > 0, let

Z :=
c

1 + |Xt|+ |Xt−1|
 c

and dP = ZdP. Obviously, E[|Xt|] < ∞ and E[|Xt−1|] < ∞.

Since (ii) only depends on the nullsets of P, it holds if and only it if holds with respect to
P when P ∼ P. The same holds for boundedness of the density and we therefore can assume
without loss of generality that E[|Xt|] < ∞ und E[|Xt−1|] < ∞.

Define the convex cone

C = (K − L0
+) ∩ L1. (23)

Example 24 (C not closed). It is remarkable that NA actually implies closedness of C: indeed,
the following example (where an arbitrage exists) shows that C is not always closed: consider
Ω = [0, 1], the Borel σ-field F1 =, trivial F0 = {∅, Ω}, and ∆X(ω) = ω (clearly, we have
arbitrages here).

Note that C is a true subset of L1, since for F  1 (for all ω ∈ Ω), F ∕∈ C. Define

Fn = (F+ ∧ n)1[1/n,1] − F− for F ∈ L1,

such that Fn
L1
→ F. Moreover, Fn ∈ C: note that

(F+ ∧ n)1[1/n,1] 





n ω ∈ [1/n, 1],

0 ω ∈ [0, 1/n).

Hence,

(F+ ∧ n)1[1/n,1]  n · n∆X = n2∆X,

such that (F+ ∧ n)1[1/n,1] = n2∆X − U ∈ C.
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The Hahn-Banach theorem

Recall that a topological vector space is a vector space with a topology, such that addition
and scalar multiplication are continuous. It is called locally convex if its topology is generated
by convex sets. Note that any Banach space is locally convex, since we can use as base the
ε balls for each element. However, the space of all random variable L0 with the topology of
convergence in probability is not convex if (Ω, F , P) has no atoms.

Theorem 25 (Hahn-Banach). Consider two non-empty sets B and C of the locally convex space E
and assume that

(i) B ∩ C = ∅,

(ii) B, C are convex,

(iii) B is compact and C is closed.

Then there exists a continuous linear functional ℓ : E → R, such that

sup
x∈C

ℓ(x) < inf
x∈B

ℓ(x).

By a duality argument the linear functional can be represented by a Z satisfying the follow-
ing property (27). We first show that this is sufficient to obtain a martingale measure.

Lemma 26. Let c  0 and Z ∈ L∞(P, Ft), such that

E[ZW]  c for all W ∈ C. (27)

’Then

(i) E[ZW]  0 for all W ∈ C,

(ii) Z  0 P-a.s.,

(iii) If P(Z > 0) > 0, then
dQ
dP

:= Z

defines a martingale measure and Q ≪ P.

Proof. (i) Since C is a cone, it follows for any W ∈ C and α > 0, that

E[ZW] = α · E[Zα−1W]  αc,

and the equation holds already for c = 0.

(ii) Choose W = −1{Z<0} ∈ C. Then,

E[Z−] = E[ZW]  0,

such that Z− = 0 and hence Z ≥ 0 P-a.s.

(iii) Choose H in L∞(P, Ft−1, Rd), α ∈ R and Y = (Xt − Xt−1). Then, Y ∈ C and, since H
and Z are bounded,

E[ZHY]  c and E[αZHY]  c.
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As above, E[ZHY]  0. Außerdem ist für alle α ∈ R

αE[ZHY]  0,

also E[ZHY] = 0 = E[H(Xt − Xt−1)]. Wir erhalten EQ[1F(Xi
t − Xi

t−1)] = 0 für alle F ∈ Ft−1,
also ist X Q-Martingal.

So, by Lemma 26, the existence of an equivalent martingale measure is equivalent to find an
element of the following set:

Z := {Z ∈ L∞, 0  Z  1, P(Z > 0) > 0, E[ZW]  0 ∀W ∈ C}.

Lemma 28. Assume that C is closed in L1 and that C ∩ L1
+ = {0}. Then,

(i) for all F ∈ L1
+\{0} there exists an Z ∈ Z , such that E[FZ] > 0, and

(ii) there exists Z∗ ∈ Z , such that Z∗ > 0.

Proof. For the first part, consider B = {F}. Then B ∩ C = ∅, C ∕= ∅; both sets are convex, B is
compact and C is closed by assumption.

Then, we can apply the theorem of Hahn-Banach which gives us a continuous linear func-
tional ℓ, such that

sup
W∈C

ℓ(W) < ℓ(F). (29)

The dual space of L1 can be identified with L∞ by the Riesz theorem, such the linear function ℓ

can be represented by a Z ∈ L∞ such that

ℓ(F′) = E[Z · F′], F′ ∈ L1.

Without loss of generality we may assume that Z∞ = 1.
By Equation (29), we obtain that ℓ(W) = E[ZW] < ℓ(F) = E[ZF] for all W ∈ C. Hence, Z

satisfies (27) and we can apply Lemma 26. This yields that Z ∈ Z . Since 0 ∈ C we obtain that
E[FZ] > 0.

For the second part, we start by showing that Z is countably convex. To this choose αk ∈
[0, 1], k ∈ N with ∑∞

k=1 αk = 1, and (Zk)k∈N ⊂ Z and consider

Z :=
∞

∑
k=1

αkZk.

For W ∈ C,
∞

∑
k=1

|αkZkW|  |W|
∞

∑
k=1

|αk| = |W| ∈ L1.

such that by dominated convergende

E[ZW] =
∞

∑
k=1

αkE[ZkW]  0

and hence Z ∈ Z .
Now set

c := sup{P(Z > 0) : Z ∈ Z}.
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and choose a sequence (Zn) ∈ Z , such that P(Zn > 0) → c. Then,

Z∗ :=
∞

∑
k=1

1
2k Zk ∈ Z .

Now we show that P(Z∗ > 0) = 1. Indeed, {Z∗ > 0} =
∞

k=1{Zk > 0}, such that

P(Z∗ > 0)  sup
k∈N

P(Zk > 0) = c.

If we would have on the contrary that P(Z∗ = 0) > 0, then F := 1{Z∗=0} ∕= 0 and F ∈ L1
+. By

Lemma 28 there exists Z′ ∈ Z , s.t.

0 < E[FZ′] = E[1{Z∗=0}Z′].

Hence P({Z′ > 0} ∩ {Z∗ = 0}) > 0. This implies that the convex combination achieves

P
1

2
(Z′ + Z∗) > 0


> P(Z∗ > 0),

a contradiction to the maximality of c and the claim follows.

The following Lemma generalizes the theorem of Bolzano-Weierstraß to infinite dimensional
spaces. Boundedness is not sufficient in infinite dimensional spaces, such that we require exis-
tence of an accumulation point instead.

Lemma 30. Consider a sequence (Hn) of d-dimensional random variables and assume that

λ := lim inf
n

 Hn < ∞.

Then there exists H ∈ L0(Rd) and a strictly increasing sequence (σm) such that

Hσm(ω)(ω) → H(ω)

for P-almost all ω ∈ Ω.

The idea is to proceed pointwise, such that we can rely on the classical Bolzano-Weierstraß.

Proof. Define σm = m on {λ = ∞}. On {λ < ∞} let σ0
1 := 1 and

σ0
m(ω) := inf


n > σ0

m−1(ω) :  Hn(ω)  −|λ(ω)|  1
m


m = 2, 3, . . .

Now we proceed inductively through the coordinates. We denote for the sequence (σi−1),
Hi := lim infm→∞ Hi

σi−1
m

and construct (σi) as follows: let σi
1 = 1 and

σi
m(ω) := inf


σi−1

n (ω) : σi−1
n (ω) > σi

m−1(ω) und |Hi
σi−1

n (ω)
(ω)− Hi(ω)|  1

n


.

Then, σm := σd
m on {λ < ∞} does the job.

We are almost ready, but two portfolios can lead to the same payoff, which creates problems.
Or, equivalently, it could happen that

H(Xt − Xt−1) = 0
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holds even if H ∕= 0. Using orthogonal projections we create a subset where this can not hap-
pen.

We consider the not locally convex space L0 with the topology of convergence in probability,
which is generated by the semi-metric E[|X − Y| ∧ 1].

Lemma 31. Define:

N = {H ∈ L0(Ω, Ft−1, P; Rd) : H(Xt − Xt−1) = 0 P − f.s.}
N⊥ = {G ∈ L0(Ω, Ft−1, P; Rd) : G · H = 0 für alle H ∈ N}

Then it holds that

(i) N, N⊥ are closed in L0. Moreover, for g ∈ L0(Ω, Ft−1, P; R) it holds that

gH ∈ N if H ∈ N and gG ∈ N⊥ if G ∈ N⊥.

(ii) N ∩ N⊥ = {0}.

(iii) Every G ∈ L0(Ω, Ft−1, P, Rd) has the following unique decomposition

G = H + G⊥, H ∈ N, G⊥ ∈ N⊥.

Proof. (i) Consider a sequence Hn
P−→ H. Then we have an a.s. converging subsequence

(Hσm). This implies

Hσm(ω) · (Xt(ω)− Xt−1)(ω) → H(ω)(Xt(ω)− Xt−1(ω)) for P-almost all ω ∈ Ω. (32)

Similarly, if we now consider a subsequence (Hn) ⊆ N with Hn → H a.s., then the left hand
side of (32) is equal to 0 for all n and so is the limit. Hence, H ∈ N.

Similarly, for (Gk) ⊆ N⊥ with Gn →a.s. G, we obtain G ∈ N⊥.

The additional property is immediate.

(ii) Since for G ∈ N ∩ N⊥, it holds by definition that

0 = G · G = |G|

which is equivalent to G = 0 a.s.

(iii) For ξ ∈ Rd we write ξ = ξ1e1 + · · ·+ ξded with respect to a basis {e1, . . . , ed}.

First, assume that ei = ni + e⊥i with ni ∈ N and e⊥i ∈ N⊥, i = 1, . . . , d. Then

ξ =
d

∑
i=1

ξni

  
∈N

+
d

∑
i=1

ξie⊥i
  
∈N⊥

.

The decomposition is unique since N ∩ N⊥ = {0}.

Now we show ei = ni + e⊥i . To this end consider the Hilbert space L2 = L2(Ω, Ft, P; Rd)

with scalar product 〈X, Y〉 = E[XY]. Both N ∩ L2 and N⊥ ∩ L2 are closed subspaces of L2,
since convergence in probability implies L2-convergence and we already showed closeness
of N and N⊥. We define the orthogonal projections

π : L2 → N ∩ L2, π⊥ : L2 → N⊥ ∩ L2
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and set ni = π(ei), e⊥i = π⊥(ei).

Now consider ξ := ei − π(ei). Since π(ei) is the orthogonal projection, it holds that

〈ξ, n〉 = 0 (33)

for all n ∈ N ∩ L2. Note that ei ∈ L2 and so is π(ei), such that ξ ∈ L2. We show that ξ ∈ N⊥:
assume, ξ ∕∈ N⊥ ∩ L2. Then there exists H ∈ N with P(ξ · H > 0) > 0. Set

H := H1{ξ·H>0 , |H|c} ∈ N ∩ L2.

If c is large enough,
0 < E[ H · ξ] = 〈 H, ξ〉,

a contradiction to (33).

The final step is done in the following lemma: it shows, that already K ∩ L0
+ = {0} implies

the required closeness.

Lemma 34. If K ∩ L0
+ = {0}, then K − L0

+ is closed in L0.

Proof. Consider a sequence (Wn) of elements of K − L0
+ converging in L0 (hence in probability)

to W. By changing to a subsequence we can assume that the convergence is even almost surely.
Then we have the representation

Wn = Hn · ∆X − Un
L.31
= Hn∆X + H⊥

n ∆X − Un = H⊥
n ∆X − Un =: Hn∆X − Un,

with Hn ∈ N⊥, since Hn∆X = 0.
First, we assume that lim inf |Hn| < ∞ P-a.s. Then, Lemma 30 implies that we find a subse-

quence for which Hσn → H P-a.s. Moreover,

0  Uσn = Hσn ∆X − Wσn → H∆X − W =: U P − f.s.

with some U  0, such that W ∈ K − L0
+ and closeness holds.

The proof is finished when we can show that lim inf|Hn| < ∞ P-a.s. To this end, consider the
trading strategy ξn = Hn

|Hn | and A = {ω ∈ Ω : lim inf|Hn| = ∞}. We apply 30 to ξn = Hn
|Hn | .

This yields a subsequence (τn), such that ξτn → ξ P-a.s. Now it holds that

0  1A
Uτn

|Hτn |
= 1A


Hτn

|Hτn |
· ∆X − Wτn

|Hτn |


→ 1Aξ∆X P − a.s.,

since Wτn
|Hτn |

→ 0. This yield that 1Aξ∆X ∈ K ∩ L0
+, such that by our assumption 1Aξ∆X = 0.

Note that for η ∈ N,

ξτn · η =
∞

∑
k=1

1{τn=k}
1

|Hk|
Hk · η = 0,

since Hk ∈ N⊥. Hence, ξτn ∈ N⊥ and so is 1Aξτn . Since N⊥ is closed, 1Aξ ∈ N⊥. But we also
showed that 1Aξ ∈ N. This is, by (ii) of Lemma 30, only possible if 1Aξ = 0. But |ξ| = 1, such
that P(A) = 0 follows.
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The 2nd fundamental theorem

In this section we study the second fundamental theorem of asset pricing. A proof for this the-
orem in discrete time under trivial initial conditions can be found in Föllmer & Schied (2016).
We follow Niemann & Schmidt (2024) and show a full proof of the conditional version using
non-linear expectations.

We start with a super short introduction to non-linear expectations.

Dynamic non-linear expectations

As before, we consider a measurable space (Ω, F ) with a filtration F = (Ft)t∈{0,...,T}. For this
section, we assume that FT = F and that F0 is trivial.

Consider a set of probability measures P on (Ω, F ). A P-null set A ⊆ Ω is a possibly not
measurable set being a subset of a measurable set A′ ∈ F with P(A′) = 0. A set A ⊆ Ω is
called a P-polar set, if A is a P-null set for every P ∈ P . We denote the collection of P-polar
sets by Pol(P). We say a property holds P-quasi surely, in short P-q.s., if it holds outside a
P-polar set. If P = {P}, we write short Pol(P) instead of Pol({P}).

For two subsets of probability measures P and Q, we call Q absolutely continuous with re-
spect to P , denoted by Q ≪ P , if Pol(P) ⊆ Pol(Q). We write Q ∼ P , if Q ≪ P and
P ≪ Q.

On L 0(Ω, F ) = {X : Ω → R : X F -measurable} we introduce the equivalence relation ∼P

by X ∼P Y if and only if X = Y P-q.s.. Then, we set

L0(Ω, F , P) := L 0(Ω, F )/P

Lp(Ω, F , P) := {X ∈ L0(Ω, F , P) : sup
P∈P

EP[|X|p] < ∞}

L∞(Ω, F , P) := {X ∈ L0(Ω, F , P) : ∃C > 0 : |X| ≤ C P-q.s.}

Then, Proposition 14 in Denis et al. (2011) shows that for each p ∈ [1, ∞], Lp(Ω, F , P) is a
Banach space. The space L0(Ω, F , P) can be equipped with the metric d given by

d(X, Y) := sup
P∈P

EP[|X − Y| ∧ 1]

inducing uniform convergence in probability.
We consider a set H ⊆ L0(Ω, F , P) containing all constants and set, for t ∈ {0, ..., T},

Ht := H ∩ L0(Ω, Ft, P).

The following definition introduces the notion of a conditional nonlinear expectation and
the associated notion of a dynamic nonlinear expectation which is a set of conditional nonlin-
ear expectations.

Definition 35. We call a mapping Et : H → Ht an Ft-conditional nonlinear expectation, if

(i) Et is monotone: for X, Y ∈ H the condition X ≤ Y implies Et(X) ≤ Et(Y),

(ii) Et preserves measurable functions: for Xt ∈ Ht we have Et(Xt) = Xt.

We call E = (Et)t∈{0,...,T} a dynamic nonlinear expectation, if for every t ∈ {0, ..., T} the mapping
Et : H → Ht is an Ft-conditional nonlinear expectation.

We introduce further properties which will be of interest in the context of dynamic nonlin-
ear expectations. First, we introduce some well-known properties regarding the set H , all in
an appropriate conditional formulation. Denote H +

t := {X ∈ Ht : X ≥ 0}.
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Definition 36. We call the set H

(i) symmetric, if −H = H .

(ii) additive, if H +H ⊆ H .

(iii) Ft-translation-invariant, if H +Ht ⊆ H .

(iv) Ft-convex, if for λt ∈ Ht with 0 ≤ λt ≤ 1 we have

λtH + (1 − λt)H ⊆ H .

(v) Ft-positively homogeneous, if H +
t ·H ⊆ H .

(vi) Ft-local, if 1AH ⊆ H for every A ∈ Ft.

We simply call H translation-invariant, if it is Ft-translation-invariant for every t ∈ {0, ..., T}
and do so in a similar fashion for all the other properties.

Next, we introduce well-known properties of nonlinear conditional expectations, all in an
appropriate conditional formulation which are frequently used for example in the context of
risk measures.

Definition 37. An Ft-conditional expectation Et is called

(i) subadditive, if H is additive

Et(X + Y) ≤ Et(X) + Et(Y), X, Y ∈ H .

(ii) Ft-translation-invariant, if H is Ft-translation-invariant and

Et(X + Xt) = Et(X) + Xt, X ∈ H , Xt ∈ Ht

(iii) Ft-convex, if H is Ft-convex and

Et (λtX + (1 − λt)Y) ≤ λtEt(X) + (1 − λt)Et(Y), 0 ≤ λt ≤ 1, λt ∈ Ht, X, Y ∈ H .

(iv) Ft-positively homogeneous, if H is Ft-positively homogeneous and

Et(XtX) = XtEt(X), X ∈ H , Xt ∈ H +
t .

(v) Ft-sublinear, if it is subadditive and Ft-positively homogeneous.

(vi) Ft-local, if H is Ft local and

Et(1AX) = 1AEt(X), X ∈ H , A ∈ Ft.

Moreover, we call a dynamic expectation E = (Et)t∈{0,...,T} translation-invariant, (subaddi-
tive, convex or positively homogeneous) if for every t ∈ {0, ..., T} the Ft-conditional expecta-
tion Et has the corresponding property.

Sensitivity and time consistency

In contrast to a classical expectation, a nonlinear expectation might contain only little informa-
tion on underlying random variables. Sensitivity is a property which allows at least to separate
zero from positive random variables. It should be noted that such sensitivity on a suitable set
of random variables is implied by no-arbitrage.

Definition 38. We call an Ft-conditional nonlinear expectation Et sensitive, if for every X ∈ H

with X ≥ 0 and Et(X) = 0 we have X = 0.
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Similarly, we call the dynamic nonlinear expectation E sensitive, if all Et, t = 0, . . . , T are
sensitive.

Time consistency is an important property in the context of dynamic risk measures, which has
been intensively studied. It transports the tower-property to the non-linear setting.

Definition 39. We call a dynamic expectation E time-consistent, if

Es = Es ◦ Et, 0 ≤ s ≤ t ≤ T.

Since F = FT , ET is the identity and hence, every expectation is time-consistent between
T − 1 and T, i.e.,

ET−1 ◦ ET = ET−1.

Remark 40 (Extension of time-consistency to stopping times). For simplicity, we restrict our
definition of time consistency to deterministic times s, t ∈ {0, . . . , T}. This can easily be gener-
alized when E is translation-invariant and local: indeed, let τ be a stopping time with values in
{0, . . . , T}. Given (Et)t, we define

Eτ(H) := ∑
s
1{τ=s}Es(H) .

If (Et)t is time-consistent, then for any two such stopping times σ, τ with σ ≤ τ, the equality

Eσ ◦ Eτ = Eσ

holds whenever E is translation-invariant and local.

The remarkable connection between sensitivity and time consistency can already be seen
from the simple observation that a time-consistent dynamic expectation is already sensitive, if
E0 is sensitive.

Remark 41. Let P and Q be two sets of probability measures on (Ω, F ), and let
Et : L∞(Ω, F , Q) → L∞(Ω, Ft, Q) be a conditional nonlinear expectation. Then, Et is well-

defined on L∞(Ω, F , P) if and only if Q ≪ P . However, for H ∈ L∞(Ω, F , P) the evaluation
Et(H) is a priori only an element of L∞(Ω, Ft, Q). For it to be well-defined in L∞(Ω, F , P)

we require Q ∼ P on Ft. Hence, if Q ≪ P and Q ∼ P on Ft, the conditional nonlinear
expectation Et induces a nonlinear expectation Ēt : L∞(Ω, F , P) → L∞(Ω, Ft, P). In case Et is
sensitive, sensitivity of Ēt is equivalent to P ∼ Q.

Lemma 42 below generalizes the well-known result that the acceptance sets of time-consistent
expectations are decreasing: if E is time-consistent, then

{Es ≤ 0} ⊇ {Et ≤ 0}

for s ≤ t.

Lemma 42. Let E be a time-consistent, local dynamic nonlinear expectation, fix t ∈ {0, . . . , T} and
consider H ∈ H . If Et(H) ≤ 0, then

Es(1A H) ≤ 0 for all A ∈ Ft and all s ≤ t.

If E0 is sensitive, then Es(1AH) ≤ 0 for all A ∈ Ft and some s ≤ t implies that Et(H) ≤ 0.

Proof. Since E is local, Et(H1A) = 1AEt(H) ≤ 0. Together with monotonicity we obtain

Es(1A H) = Es(1AEt(H)) ≤ 0.
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Now, suppose E0 is sensitive. If s = t, the result is clear with A = Ω. Let s < t and note that Es

is sensitive. To show that Et(H) ≤ 0, it thus suffices to show

Es(1AEt(H)) = 0

for A := {Et(H) ≥ 0} ∈ Ft. However, as above,

Es(1AEt(H)) = Es(1AH)

and the latter vanishes by assumption.

Let E∗
0 be a F0-conditional expectation. A dynamic extension of E∗

0 is a dynamic expectation E
such that E0 = E∗

0 .
Note that for any collection P of probability measures, the associated nonlinear expecta-

tion supP∈P EP[·] is sensitive; see Remark 41. We call P dominated if there exists a probability
measure P on (Ω, F ) with P ≪ {P}, i.e., every P-null set is P-polar. In this case, the Halmos-
Savage Lemma guarantees the existence of a countable collection {Pn : n ∈ N} ⊆ P with
{Pn : n ∈ N} ∼ P . In particular, there exists a measure P∗ (not necessarily contained in
P) such that P ∼ P∗. Consequently, for any set of random variables M ⊆ L0(Ω, F , P) =

L0(Ω, F , P∗), there exists a random variable called the P-essential infimum and denoted by
P − ess inf M such that

(i) P − ess inf M ≤ Y P-q.s. for every Y ∈ M,

(ii) P − ess inf M ≥ Z P-q.s. for every random variable Z satisfying Z ≤ Y P-q.s. for every
Y ∈ M.

If P is not dominated, the P-essential infimum might not exist, and it has in general no
countable representation. In light of the financial applications we have in mind, we will assume
in the next lemma that P is dominated.

Lemma 43. Assume that P is dominated. Then, every sensitive F0-conditional expectation E0 on a
symmetric set H has at most one translation-invariant, local, time-consistent dynamic extension E . If it
exists, it is given by

Et(H) = P − ess inf{Ht ∈ Ht : H − Ht ∈ At},

where
At := {H ∈ H : E0(1AH) ≤ 0, ∀A ∈ Ft} .

Proof. Lemma 42 characterizes for t ≥ 1 the acceptance set At := {H ∈ H : Et ≤ 0} solely in
terms of E0 and F. Indeed, it yields that

At = {H ∈ H : E0(1AH) ≤ 0 ∀A ∈ Ft} .

This allows to recover every translation-invariant nonlinear expectation on a symmetric set
from its acceptance set through the representation

Et(H) = P − ess inf{Ht ∈ Ht : Ht ≥ Et(H)}
= P − ess inf{Ht ∈ Ht : H − Ht ∈ At}.

Summarizing, we have obtained an explicit expression of the extension.

Next, we verify that translation-invariance implies locality if H ⊆ L∞(Ω, F , P). This
implies that every conditional risk measure on L∞(Ω, F , P) is local. In particular, for every
probability measure P, every dynamic risk-measure on L∞(Ω, F , P) has at most one time-
consistent extension. Moreover, one can show that not every coherent risk measure has a time-
consistent extension.
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Proposition 44. Every translation-invariant expectation on a local set H ⊆ L∞(Ω, F , P) is local.

Proof. Let Et be translation-invariant and A ∈ Ft. Further, let H ∈ H . The inequality

1A H − 1Ac H∞ ≤ H ≤ 1AH + 1Ac H∞ ,

yields
Et(H) ≥ Et(1AH − 1Ac H∞),

and additionally
Et(H) ≤ Et(1AH + 1Ac H∞).

Multiplying both inequalities with 1A gives, exploiting translation invariance,

1AEt(H) = 1AEt(1AH),

and thus

Et(1AH) = 1AEt(1A H) + 1AcEt(1AH)

= 1AEt(H) + 1A1AcEt(1AH)

= 1AEt(H).

Super- and Sub-hedging

Now we turn back to a financial market. Recall that we worked on the filtered probability
space (Ω, F , F, P) with a fixed probability measure P. Our aim is to study the upper bound of
the set of no-arbitrage prices in more detail. It is given by

Ēt(CT) := esssup{EQ[CT | Ft] : Q ∈ Me}, (45)

for H ∈ L∞(P). We are interested in its relation to the smallest super-hedging price given by

Et(CT) := ess inf{Ct ∈ L0
t : ∃ H ∈ Pred : Ct + Gt(H) ≥ CT} , (46)

where the gains process for the predictable (and hence self-financing) strategy H is given by
Gt(H) := (H · X)T − (H · X)t. We denote E(C) for the process (Et(C))t∈{0,t...,T} and use a
similar notation for the other dynamic non-linear expectations.

Lemma 47. Assume that NA holds. Then, the super-hedging price Et defined in (46) is a sensitive
and Ft-sub-linear, Ft-conditional nonlinear expectation on L∞ for all 0 ≤ t ≤ T.

Proof. First, we show that Et(CT) is bounded for CT ∈ L∞(P). The inequality Et(CT) ≤ CT
follows by definition. If Ct ∈ L0

t is a superhedging price, choose H ∈ Pred with Ct + Gt(H) ≥
CT .

Consider the set A := {Ct < −CT} ∈ Ft. Then there exists H ∈ Pred with Gt(CT) ≥
1A(CT − Ct) ≥ 0 and therefore P(A) = 0 by absence of arbitrage. We conclude that −CT ≤
Et(CT) ≤ CT.

Second, one easily checks the properties of a sublinear expectation. The sensitivity of Et

follows from the no-arbitrage assumption.

Up to now we treated only bounded random variables, which excludes for example Euro-
pean calls. Typically one would consider the space L0

+(FT), which is of course not symmetric.
The extension to L0(FT) is done by establishing continuity from below of the superheding
price. The main argument resides of course on monotone convergence.
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The superhedging duality

At time t < T, an Ft - measurable random variable πt is a superhedging price for the Euro-
pean claim CT due at time T, if there is a self-financing trading strategy which provides always
a terminal wealth greater than CT , i.e.there exists a predictable process H, such that

πt + Gt(H) ≥ CT .

Remark 48. For every CT ∈ L0(FT), and every predictable H one has the orthogonality

Et(CT + Gt(H)) = Et(CT). (49)

For the following lemma we recall that on a upwards directed set, i.e. for X, Y ∈ M there
exists Z ∈ M such that Z ≥ X ∨Y, the essential supremum can be approximated by a sequence,
see for example (Föllmer & Schied 2016, Theorem A.37). The lemma shows that the essential
infimum of all superhedging prices is itself a superhedging price.

Lemma 50. Assume that NA holds. For every CT ∈ L0(FT), Et(CT) is a superhedging price for CT .

Proof. The set M := {Ct ∈ L0
t : ∃H ∈ Pred : Ct + Gt(H) ≥ CT} of superhedging prices is

directed downwards. Hence, by (Föllmer & Schied 2016, Theorem A.37) there exists a sequence
(Cn

t )n ⊆ M with Cn
t ↓ Et(C) a.s. By construction, we may write for each n ∈ N,

CT = Cn
t + Gt(Hn)− Un

for some Hn ∈ Pred and Un ∈ L0
+(FT).

As the cone {Gt(H) − U : H ∈ Pred, U ∈ L0
+(FT)} is closed by Lemma 34, the claim

follows.

The following result shows that the superhedging prices are actually time-consistent.

Theorem 51. Assume that NA holds. Then, the dynamic non-linear expectation E is time-consistent
on L∞.

Proof. Applying Lemma 50 to the European contingent claims Et+1(CT) and CT allows to
choose strategies H, H′ ∈ Pred such that

Et(Et+1(CT)) + Gt(H) ≥ Et+1(CT)

and
Et+1(CT) + Gt+1(H′) ≥ CT .

Combining both inequalities yields

Et(Et+1(CT)) + Gt(H) + Gt+1(H′) ≥ CT .

Hence, the claim CT can be super-replicated at time t at price Et(Et+1(CT)). As Et(CT) is by
definition the smallest super-hedging price for claim CT at time t, we obtain

Et(Et+1(CT)) ≥ Et(CT).

Next, we obtain from Lemma 50 the existence of H′′ ∈ Pred, such that

Et(CT) + Gt(H′′) ≥ CT .
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Applying Et+1 to this inequality gives

Et(CT) + Et+1(Gt(H′′)) ≥ Et+1(CT).

By Equation (49),

Et+1(Gt(H′′)) = H′′
t+1∆Xt+1 + Et+1(Gt+1(H′′)) = H′′

t+1∆Xt+1

and hence
Et(CT) + H′′

t+1∆Xt+1 ≥ Et+1(CT).

Again, by Equation (49),

Et(Et+1(CT)) ≤ Et(CT)

and the result is proven.

Remark 52 (Time-consistency of Ē ). Consistency of Ē is related to the stability of Me. With a
little bit of work we obtain from (Föllmer & Schied 2016, Theorem 11.22) that the expectation Ē
is time-consistent.

The following result is the famous super-hedging duality.

Corollary 53 (Superhedging duality on L∞). Assume (NA) holds. Then, for every 0 ≤ t ≤ T and
every CT ∈ L∞(P), the superhedging-duality

Et(CT) = Ēt(CT) (54)

holds.

Proof. By Theorem 51 and Remark 52, both E and Ē are time-consistent. Moreover, they are
translation invariant and hence local by Proposition 44. We leave the claim that

E0 = Ē0

to the reader. Then, Lemma 43 implies the claim.

By some monotone convergence arguments this can be extended to the space of claims (i.e.
non-negative random variables).

Proposition 55 (Superhedging duality for claims). Assume that (NA) holds. The superhedging-
duality (54), and consistency of E extends to L0

+(FT).

For the proof we refer to Proposition 2.16 in Niemann & Schmidt (2024).
Next, we prove a version of the optional decomposition directly by relying on the superheding-

duality. For the stochastic integral until t we use the following notation

(H · X)t =
t

∑
s=1

Hs ∆Xs.
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Theorem 56 (Optional decomposition). Assume that (NA) holds and let V be a non-negative Me-
supermartingale. Then there exists an adapted increasing process C with C0 = 0, and a predictable
process H such that

Vt = V0 + (H · X)t − Ct .

Proof. By assumption,
EQ[Vt | Ft−1] ≤ Vt−1

for every 0 ≤ t ≤ T and Q ∈ Me. This is equivalent to Ēt−1(Vt) ≤ Vt−1 and hence Ēt−1(∆Vt) ≤
0. By Proposition 55,

Et−1(∆Vt) ≤ 0.

Hence, for t ∈ {1, . . . , T} there exists a strategy H = H(t) ∈ Pred such that

∆Vt ≤ Gt−1(H) =
T

∑
s=t

Hs∆Xs.

an application of Et on both sides yields, by Equation (49),

Et(∆Vt) = ∆Vt ≤ Et(Ht∆Xt + Gt(H)) = Ht∆Xt.

Summing over t ∈ {0, . . . , T}, we obtain a predictable H′ such that (H′ · X)− V is increasing.

Structure of arbitrage-free prices

The main goal in computing arbitrage-free prices relying on the fundamental theorem of as-
set pricing is to obtain a price process for a new security which can be added to the market
without violating absence of arbitrage.

In this spirit, an Ft-measurable random variable πt is called arbitrage-free price (at time t) of
a European contingent claim CT if there exists an adapted process Xd+1 such that Xd+1

t = πt,
Xd+1

T = H and the market (X, Xd+1) extended with Xd+1 is free of arbitrage. Note that every-
thing is formulated in discounted terms here. Denote by Πt(CT) the collection of arbitrage free
prices at time t.

Denote the upper and the lower bound of the no-arbitrage set at time t by

π
sup
t (CT) := esssup Πt(CT), and πinf

t (CT) := ess inf Πt(CT).

To achieve countable convexity of the set of equivalent martingale measures we exploit
nonnegativity of the price process and triviality of the initial σ-algebra F0 in the following
lemma.

Lemma 57. Me is countably convex.

Proof. Let (Qn) ⊆ Me and (λn)n ⊆ R+ with ∑n λn = 1. Set Q∗ := ∑n λnQn. Obviously,
Q∗ ∼ P. For every t ∈ {1, . . . , T} we have by monotone convergence

EQ∗ [Xt] = ∑
n

λnEQn [Xt] = ∑
n

λnX0 = X0 < ∞

and hence XT ∈ L1(Q∗). Similarly, for A ∈ Ft−1,

EQ∗ [Xt1A] = ∑
n

λnEQn [Xt1A] = ∑
n

λnEQn [Xt−11A] = EQ∗ [Xt−11A]

and therefore E∗[Xt | Ft−1] = Xt−1.
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It is important to acknowledge that, in the notation of Lemma 57, we typically do not have

EQ∗ [H | Ft] = ∑
n

λnEQn [H | Ft]

for bounded H at t > 0, while this holds, as just shown, for Xi
T , i = 1, . . . , d.

Proposition 58. For every t ∈ {0, . . . , T}, and for every CT ∈ L0
+(FT) the set


EQ[CT | Ft] : Q ∈ Me


(59)

is Ft-countably convex.

Proof. Let (Qn) ⊆ Me. By pasting we may assume that all Qn agree on Ft.
Set Q∗ := ∑n 2−nQn. By Lemma 57, Q∗ ∈ Me. Denote by Zn := dQn/dQ∗ the associated

densities. As Q∗ = Qn on Ft for each n ∈ N, we have

Zn
t = EQ∗ [Zn | Ft] = 1.

Since CT ≥ 0, monotone convergence implies for a sequence (λn
t ) ∈ L0

+(Ft) with ∑n λt = 1,
that

∑
n

λn
t EQn [CT | Ft] = EQ∗


CT ∑

n
λn

t Zn | Ft


.

Set Z := ∑n λn
t Zn > 0. Note that

EQ∗

∑
n

λn
t Zn | Ft


= ∑

n
λn

t = 1

and we may therefore define the measure Q by

dQ/dQ∗ := Z.

Then,

EQ∗

CT ∑

n
λn

t Zn | Ft


= EQ[CT | Ft].

It remains to verify that Q is indeed a martingale measure (after t). As the price process is
nonnegative, its conditional expectation is well-defined, and we obtain by monotone conver-
gence for s ≥ t

EQ[Xs+1 | Fs] = EQ∗
 Z

Zs
Xs+1 | Fs



=
1
Zs

∑
n

λn
t EQ∗ [ZnXs+1 | Fs]

=
1
Zs

∑
n

λn
t Zn

s EQn [Xs+1 | Fs] = Xs

such that Q ∈ Me.

Note that, due to the integrability conditions, Πt(CT) is not necessarily Ft-countably con-
vex. Even in the unconditional case this fails. It is an easy consequence that integrability is the
only difference between the set of risk-neutral expectations in (59) and Πt(CT).

Lemma 60. Consider Q ∈ Me. If EQ[CT | Ft] is finite-valued, then it is an arbitrage-free price.
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Proof. If ξ := EQ[CT | Ft] is finite, it is an element of L0
+(FT). We recall that we always may

achieve integrability for ξ under an equivalent martingale measure: indeed, we can always find
a P′ such that ξ ∈ L1(P). Then we can choose a martingale measure with a bounded density.

Hence, there exists Q ∈ Me such that EQ[CT | Ft] is integrable with respect to Q. We now
paste Q and Q, which is again a martingale measure. By construction, we even have Q ⊙t Q ∈
M CT

e . Moreover, it follows that

E Q⊙tQ
[CT | Ft] = EQ[CT | Ft].

Since the associated price process is a martingale, this an arbitrage-free price by the fundamen-
tal theorem 15.

Corollary 61. Consider a claim CT ∈ L0
+(FT), let (Qn) ⊆ M H

e and (λn
t ) ⊆ L0

+(Ft) with ∑n λn
t =

1. If ∑n λn
t EQn [CT | Ft] is finite-valued, it is contained in Πt(CT).

Proof. Due to Proposition 58, there exists Q ∈ Me with

∑
n

λn
t EQn [CT | Ft] = EQ[CT | Ft] .

Now the claim follows by Lemma 60.

Now we collect some properties of the non-linear expectation Πt.

Corollary 62. Consider t ∈ {0, . . . , T}. Then

(i) Πt(H) is Ft-convex for every claim H ∈ L0
+(FT),

(ii) Πt(H) is directed upwards for every claim H ∈ L0
+(FT),

(iii) Πt(H) is Ft-countably convex for every bounded claim H ∈ L∞(P), and,

(iv) for H ∈ L0
+(FT), any partition (An) ⊆ Ft, and any sequence (Qn) ⊆ M H

e (P),

∑
n
1An EQn [H | Ft] ∈ Πt(H) .

The next step is to show that Πt is also local.

Lemma 63. For t ∈ {0, . . . , T}, A ∈ Ft and H ∈ L0
+(FT), it holds that

Πt(1AH) = 1AΠt(H).

Proof. Let Q ∈ Me such that H1A is integrable with respect to Q. By construction EQ[H |
Ft]1A + E Q[H | Ft]1Ac is finite, and by Corollary 62 and Lemma 60 there exists Q∗ ∈ M H

e
with

EQ∗ [H | Ft] = EQ[H | Ft]1A + E Q[H | Ft]1Ac

and therefore

EQ∗ [H | Ft]1A = EQ[H1A | Ft]

which finishes the proof.

The next Proposition shows that, for every claim H, the non-linear expectation

Ē(H) = esssup{EQ[H | Ft] : Q ∈ Me}

can be computed by considering a subset of Me only: one can restrict to the set of martingale
measure M H

e (P) under which H is integrable. In particular, for every claim H, the non-linear
expectation Ē(H) agrees with the upper bound of the no-arbitrage interval π

sup
t (H). This links

the superhedging-duality Proposition 55 with the pricing in financial markets.
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Proposition 64. For every H ∈ L0
+(FT) we have the equalities

esssup{EQ[H | Ft] : Q ∈ Me} = esssup{EQ[H | Ft] : Q ∈ M H
e }

and

ess inf{EQ[H | Ft] : Q ∈ Me} = ess inf{EQ[H | Ft] : Q ∈ M H
e }

Proof. We only show the first equality, the other one is left as exercise. Using Lemma 63 and
Lemma 60, it suffices to show the following: if there exits Q ∈ Me with EQ[H | Ft] = +∞, then
π

sup
t (H) = +∞.
In this regard, consider Q ∈ Me with EQ[H | Ft] = +∞ and some Yt ∈ L0

t . Then, there exists
n ∈ N such that {Yt ≤ EQ[H ∧ n | Ft]} has positive probability. By the fundamental theorem of
asset pricing we find πt ∈ Πt(H) such that {Yt ≤ πt} has positive probability.

Since Yt was arbitrary, it follows that π
sup
t = +∞ with positive probability. Now set A :=

{π
sup
t < +∞}. Using Lemma 63, and arguing as above for the claim H1A, we deduce that

P(A) = 0.

For the next lemma, recall that the smallest superhedging price Et was defined in (46).

Lemma 65. Consider the claim CT ∈ L0
+(FT). Then, CT is symmetric w.r.t. Et if and only if CT is

attainable at time t.

Proof. We start with some observations. Symmetry requires to consider E∗
t (·) = −Et(−·). This

is the smallest subhedging price, and as a consequence of the superhedging-duality, Corollary
53,

E∗
t (H) = esssup{Ct ∈ L0

t : ∃ H ∈ Pred : Ht + Gt(H) ≤ CT}
is the largest sub-hedging price. Due to Lemma 50, E∗

t (H) is itself a sub-hedging price.
Now, suppose that CT is attainable, i.e. CT = Ct + Gt(H) for some predictable process

H ∈ Pred. Then,

E∗
t (CT) = −Et(−CT) = −Et(−Ct − Gt(H))

= E∗
t (Ct) = Ct = Et(Ct + Gt(H)) = Et(CT).

On the contrary, if CT is symmetric, Et(CT) = E∗
t (CT) is by definition finite. Hence there is a

super- and a subhedging strategy such that

E∗
t (CT) + Gt(H) ≤ CT ≤ Et(CT) + Gt(H) . (66)

This implies
0 ≤ H − Et(CT)− Gt(H) ≤ Gt(H − H) .

By no-arbitrage, Gt(H) = Gt(H) and so CT = Et(H) + Gt(H).

Theorem 67 (2nd fundamental theorem). The market is complete at time t if and only if every
European contingent claim CT ∈ L0

+(FT) has a unique price at time t.

Proof. Assume that the market is complete. Then, by Lemma 65 and the superhedging duality,
Proposition 55, every contingent claim has a unique arbitrage-free price.

On the contrary, if a contingent claim has a unique arbitrage-free price, the superhedging
duality implies that CT is symmetric and hence the claim is attainable.

One can additionally show a number of things: for example completeness is equivalent to
the pasting property Me ⊂ Me ⊙t Q with some Q ∈ Me. Moreover, if the market

For details, we again refer to Niemann & Schmidt (2024).



Continuous-time Finance

We start with a gentle introduction to semimartingale theory, relying on the scriptum on
stochastic processes from last semester.

Semimartingale theory

Let us first visit some important examples for semimartingales. We recall that a process is
called càdlàg, if it is a process which has almost surely left limits and is almost surely continu-
ous from the right (RCLL - right continuous with left limits).

We will consider a filtered probability space (Ω, F , F, P) satisfying the usual conditions, i.e.
the filtration is right-continuous and F is complete (subsets of null-sets are F0-measurable).

The Poisson process

Figure 1: Path of a Poisson process.

Definition 68 (Poissonprocess). An adapted, càdlàg process X taking values in N is called
extended Poisson process, if

(i) X0 = 0,

(ii) ∆Xt ∈ {0, 1},

(iii) E[Xt] < ∞ for all t ≥ 0,

(iv) Xt − Xs is independent of Fs, for 0 ≤ s ≤ t.

We define the cumulated intensity Λ of X by

Λ (t) = E[Xt], t ≥ 0.

Note that this is again an increasing, right-continuous process. X is called Poisson-Prozess with
intensity λ > 0, if Λ(t) = λt, t ≥ 0.

If the cumulated intensity is absolutely continuous, i.e.

Λ (t) =
 t

0
λ (s) ds, t ≥ 0

then the function λ is called the intensity of X. X is called standard Poissonprocess if λ = 1.
We note that we also may look at the time-transformed Poisson-process

XTt , t ≥ 0,

Whenever T is increasing. If T is continuous and independent of X, we obtain that X is a Pois-
son process conditional on the filtration generated by the time-transformation T. If T has jumps
we can no longer guarantee ∆Xt ∈ {0, 1}.
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The Poisson process corresponds one-to-one to a point process. Indeed if Tn = inf{t ≥
t : Nt ≥ n} denotes the n-th jumping time of N, then (Tn)n≥1 are an increasing sequence of
stopping time, so a point process.

If we additionally have a sequence (Zn)n≥1 of random variable on a Polish space E, then the
double sequence (Tn, Zn)n≥1 constitutes a marked point process.

If we want to construct integrals over the marked point process we would be interested in
expressions like

∑
n≥1

H(Tn, Zn) =


H(s, x)µ(ds, dx)

where we can introduce the associated random measure

µ(ω; ds, dx) = ∑
n≥1

δ(Tn ,Zn)(ds, dx),

where δa is the Dirac measure in point a.

Survival processes

In many applications, the first jump of the Poisson process is the most important one: mortal-
ity, default, insurance, etc. and it is therefore interesting to study this process in more general-
ity.

Hence, consider a càdlàg process H with H0 = 0 and a single jump of size 1. Then, this
process is increasing, and hence by the Doob-Meyer decomposition there exists a unique com-
pensator Hp which is a predictable process such that

H − Hp

is a local martingale. Hp takes over the role of a generalised intensity: indeed, in the Poisson
example above, Hp = Λ. For a deeper study and applications to credit risk we refer to Gehm-
lich & Schmidt (2018).

Brownian motion

Definition 69. A continuous, adapted process W is called Brownian motion if

(i) W0 = 0,

(ii) E [Wt] = 0 and Var (Wt) < ∞, for all t ≥ 0,

(iii) Wt − Ws is independent of Fs.

One can show that
Wt − Ws ∼ N (0, t − s),

i.e. the increments are even normally distributed. If we choose a time-change T appropriately,
we can even construct a Poisson process as time-changed Brownian motion.

Classes of stochastic processes

To a stochastic process X we associate the mappgin

X : Ω × R≥0 → Rd.
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This allows us to consider the stochastic process as a simple random variable on the product
space Ω × R≥0. In particular, measurability can be considered with respect to F ⊗ B(R≥0),
which however lacks the link to the filtration.

Definition 70. (i) X is called progressivly measurable, if for all t ≥ 0 the mapping

Ω × [0, t] → Rd

(ω, s) → Xs(ω)

is Ft ⊗B

[0, t]


-B(Rd)-measurable.

(ii) The optional σ-algebra O is the σ-algebra on Ω × R≥0, generated by adapted, càdlàg-
processes. X is called optional, if X is O-measurable.

(iii) The predictable σ-algebra P is the σ-algebra on Ω × R≥0, generated by adapted, càg-
processes. X is called predictable, if X is P-measurable.

In particular we obtain the following inclusions: predictable ⇒ optional ⇒ progressive ⇒
adapted. A classical example is that for a progressive process X, X∗ = sups≤· Xs is optional.
Moreover, if we denote by XT the process stopped at the stopping time T, then the following
properties are kept while stopping: adapted, predictable, optional, progressive.

For the reverse consider an adapted process X. If X is càd, then X is progressive. If it is
càg, then it is optional. If it is càdlàg, then X− and ∆X = X − X− are optional. For the
following result, see the almost sure blog (see https://almostsuremath.com/2016/11/15/

optional-processes/.)

Lemma 71. Consider an adapted process X which is làd. Assume that X is càd everywhere except of a
countable set S ⊂ R≥0. Then X is optional.

We will often study random intervals, defined for two random times S and T by

S, T := {(ω, t) ∈ Ω × R≥0 : S(ω) ≤ t ≤ T(ω)}.

As above we can call the interval optional or predictable if it is O resp. P-measurable.

Localization

If we have a property C of a class of properties, then we introduce the localised class Cloc by
all those processes X for which it holds there exists a sequence of stopping times Tn → ∞ such
that XTn ∈ C for all n. The sequence (Tn) is called localising sequence.

Definition 72. (i) A martingale X is uniformly integrable, if the family (Xt)t≥0 is uniformly
integrable. We denote by M the class of all uniformly integrable martingales.

(ii) A martingale X is called square integrable, if supt≥0 E[X2
t ] < ∞. This class is denoted by

H 2.

(iii) A process in Mloc is called local martingale and a process in H 2
loc locally square integrable.

https://almostsuremath.com/2016/11/15/optional-processes/
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Definition 73. A function f : R≥0 → R has locally finite variation, if

Var( f )t := sup
0≤t0 ...tn≤t

n

∑
i=1

| f (ti)− f (ti−1)| < ∞

for all t ≥ 0. A process is called of locally finite variation, if it has paths of locally finite
variation.

Let V + := denotes the increasing càdlàg process A, with A0 = 0,

V := V + − V +,

A + :=


A ∈ V + : E[A∞] < ∞


,

A := A + −A + =


A ∈ V : E[Var(A)∞] < ∞


.

Then V is the set of all adapted processes of locally finite variation. For each A ∈ V we can as-
sociate t → At(ω) with a signed measure, denoted by dAt(ω). Then we can define (pathwise)
for optional processes H,


H · A


t(ω) =






 t
0 HsdAs falls

 t
0 |Hs|d Var(A)s < ∞

∞ sonst.

We obtained the following theorem.

Theorem 74 (Integral of finite variation processes). Let A ∈ V (V +) and H ≥ 0 be optional,
such that B = H · A < ∞. Then B ∈ V (V +). If H and A are predictable, so is B.

We also obtained the important result that the only predictable local martingale with finite
variation is M = 0 (Recall that the Brownian motion is of course predictable).

Theorem 75 (Dual predictable projection). Consider A ∈ A +
loc. Then there is a unique predictable

process Ap ∈ A +
loc, satisfying one of the following, equivalent properties

(i) A − Ap ∈ Mloc,

(ii) E[Ap
T ] = E[AT ] for all stopping times T,

(iii) E

(H · A)∞)


= E


(H · Ap)∞)


for all predictable H ≥ 0.

One can also directly project on the predictable σ-algebra, but here we have a more versa-
tile tool, the dual predictable projection. It helps us to generate local martingales, which is of
course very importance to classify absence of arbitrage.

As an example, you might want to check for an extended Poisson process X, Xp = Λ.

Semimartingales

We can now define the set of all square integrable martingales by

H 2 = {M ∈ M : sup
t≥0

E[X2
t ] < ∞}

.
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Proposition 76 (Predictable covariation). Let M, N ∈ H 2
loc. Then there exists a unique predictable

process 〈M, N〉 ∈ V , s.t.

MN − 〈M, N〉 ∈ Mloc .

If M, N ∈ H 2, then 〈M, N〉 ∈ A and MN − 〈M, N〉 ∈ M .

The process 〈M, N〉 is called predictable covariation and 〈M〉 = 〈M, M〉 (predictable)
quadratic variation.

Now you could show that a Wiener process with σ2(t) = Var(Wt) is a continuous, square-
integrable martingale with 〈W〉 = σ2(t).

Mit L bezeichnen wir die Teilmenge von Mloc für die M0 = 0 gilt

Definition 77. (i) If the process X can be decomposed as

X = X0 + M + A (78)

with M ∈ L and A ∈ V , then X is called a semimartingale. By S we denote the space of
semimartingales.

(ii) If A is predictable, the decomposition in (78) is unique and we call X special. The space
of special semimartingales is denoted by Sp.

If a semimartingale is continuous, it is special and M and A in its decomposition are con-
tinuous. If a semimartingale has bounded jumps, it is also special. So the issue of not being a
special semimartingale arises from the large jumps.

We even can show a little bit more: for every semimartingale, there exists the decomposition

X = X0 + Xc + M + A

with a continuous local martingale Xc and a purely discontinuous local martingale M ∈ H 2
loc

and A ∈ V .

The stochastic integral

We call H simple, if

H = Y10 oder H = Y1S,T

with stopping times S und T and bounded, FS-measurable Y. These are the prototypes of
simple processes, where it is clear how to integrate them. Indeed, let us define for simple H its
stochastic integral H · X with respect to a stochastic process X by

(H · X)t :=





0 if H = Y10
Y · (XT∧t − XS∧t) otherwise.

(79)

By E we denote the space of simple (elementary) processes.



36 thorsten schmidt

Theorem 80 (The stochastic integral). Let X be a semimartingale. The mapping H → H · X has
an extension from E to the space of locally bounded, predictable processes, such that

(i) H · X is adapted and càdlàg,

(ii) H → H · X is linear,

(iii) if predictable (Hn) converge pointwise to H, and is |Hn| ≤ K for a locally bounded, predictable
process K, then

(Hn · X)t
P−−→ (H · X)t ∀ t > 0.

We obtained the following properties:

(i) H · X is again a semimartingale.

(ii) If X is a local martingale, so is H · X.

(iii) If X ∈ V , then H · X is the Lebesgue-Stieltjes integral.

(iv) (H · X)0 = 0 and H · (X − X0) = H · X.

(v) K · (H · X) = (KH) · X.

(vi) ∆(H · X) = H · ∆X.

(vii) Is T predictable and Y FT-messbar, then

(Y1T) · X = Y · ∆XT1T,∞

If X is even locally square integrable we can allow a larger class of integrands.

Theorem 81. Let X ∈ H 2
loc. Then, H → H · X has an extension from E to L2

loc such that

(i) H · X ∈ H 2
loc

(ii) H ∈ L2(X) ⇐⇒ H · X ∈ H 2

(iii) For X, Y ∈ H 2
loc and predictable K, M ∈ L2

loc(X),

〈H · X, K · Y〉 = HK · 〈X, Y〉 .

For two semimartingales X, Y ∈ S we can define the quadratic covariation of X and Y by

[X, Y] = XY − X0Y0 − X− · Y − Y− · X . (82)

And we showed a number of properties: Consider X, X′ ∈ S and Y ∈ V . Then

(i) [X, X′] ∈ V and [X] ∈ V +,

(ii) [X, Y] = ∆X · Y,

(iii) if Y is predictable, then [X, Y] = ∆Y · X,

(iv) if either X or Y is continuous, then [X, Y] = 0.

(v) [X, X′]t = 〈X, X′〉t + ∑
s≤t

∆Xs∆X′
s.
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The Itô-formula

One major result was the following result on the semimartingale property of twice differen-
tiable functions of semimartingales.

Theorem 83 (Itô-Formula). Consider a d-dimensional semimartingale X = (X1, . . . , Xd) and
f ∈ C 2(Rd, R). Then, f (X) ∈ S and

f (X) = f (X0) + ∑
i≤d

Di f (X−) · Xi

+
1
2 ∑

i,j≤d
Dij f (X−) · 〈Xi,c, X j,c〉 (84)

+ ∑
0≤s≤·


f (Xs)− f (Xs−)− ∑

i≤d
Di f (Xs−)∆Xi

s


.

As a first application we considered stochastic exponentials. Here Y was called a sotchastic
exponential, if X ∈ S and

Y = 1 + Y− · X. (85)

We denote the solution of (85) by Y = E (X).
As an important example we have met the geometric Brownian motion, E (W). If W is a

standard Brownian motion, then

E (W)t = exp


Wt −
1
2

t


, t ≥ 0.

Theorem 86. Consier X ∈ S . Then there exists a unique solution of (85) given by

E (X)t := Yt = ∏
0<s≤t

(1 + ∆Xs)e−∆Xs · exp


Xt − X0 −
1
2
〈Xc〉t


, t ≥ 0.

Girsanovs theorem

We have already seen that measure changes are of prime importance in financial mathematics.
The key tool here is Girsanovs theorem. Define for a stopping time T

PT := P|FT .

P′ is called locally absolutely continuous w.r.t. P, if

P′
t ≪ Pt , ∀t ≥ 0;

which we denote by P′ loc
≪ P. This is even equivalent to our localisation procedure (there exist

stopping times Tn → ∞ for which P′
Tn

≪ PTn , ∀n .

Theorem 87. Let P′ loc
≪ P. Then there exists a unique P-martingale Z ≥ 0, such that

Zt =
dP′

t
dPt

, t ≥ 0 . (88)
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Z is called density of P′ w.r.t. P and E[Zt] = 1 for all t ≥ 0. If P′ ≪ P, then Z is uniformly
integrable and

Z∞ =
dP′

dP
.

A typical example is a geometric Brownian motion

Zt = eaWt− a2t
2 , t ≥ 0,

which however is not uniformly integrable!

Theorem 89 (Girsanov). Let P′ loc
≪ P with density Z. Consider M ∈ Mloc(P) with M0 = 0. Then

M′ = M − 1
Z
· [M, Z]

is P′-almost surely well-defined and a P′-local martingale. If [M, Z] ∈ Aloc, then

M′′ = M − 1
Z−

〈M, Z〉

is a P′-local martingale.

As a typical application we consider

Zt = exp


θWt −
θ2t
2


, 0 ≤ t ≤ T,

hence Zt = Z0 + Z− · θWt. Then

M′
t = Wt −

1
Z
· [W, Z]t

= Wt −
1
Z
· θZd〈W〉t = Wt − θt

is a local martingale. Since quadratic variation is not changed by the measure change, (Wt −
θt)0≤t≤T is a Brownian motion under P′.
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