

## Wahrscheinlichkeitstheorie III

Wintersemester 2024/25

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

## Übungsblatt 7

Abgabe: Freitag, 06.12.2024.

Aufgabe 1 (6 Punkte). Betrachten Sie ein d-dimensionales Black-Scholes-Modell

$$dS_t = S_t \sigma dW_t,$$

wobei  $\sigma \in \mathbb{R}^{d \times d}$  invertierbar ist und W eine d-dimensionale Brownsche Bewegung unter Q darstellt. Auf der rechten Seite wird  $S_t$  als Diagonalmatrix mit den Einträgen  $S_t^i$  betrachtet.

Zeigen Sie, dass S ein polynomieller Prozess ist, d.h. für alle  $s \leq t$  und jedes Polynom p vom Grad n gilt:

$$E[p(S_t)|\mathscr{F}_s] = q(S_s),$$

wobei q ein Polynom vom Grad  $\leq n$  ist, dessen Koeffizienten Funktionen von t-s sind.

**Aufgabe 2** (6 Punkte). Finden Sie zum Setting aus Aufgabe 1 den Hedge für eine Auszahlung der Form  $p(S_T)$ , wobei p ein Polynom ist, d.h. die Handelsstrategie  $H = (H^1, \ldots, H^d)$ , sodass  $p(S_T) = \pi_0 + (H \cdot S)_T$ , wobei  $\pi_0$  den Preis von  $p(S_T)$  zum Zeitpunkt Null darstellt.

**Aufgabe 3** (4 Punkte). Zeige, dass der Prozess  $\rho$ , gegeben durch

$$\rho_t = e^{(t-t_0)\beta} x + \int_{t_0}^t e^{(t-s)\beta} \alpha(s) \, ds + \int_{t_0}^t e^{(t-s)\beta} \sigma \, dW_s,$$

für  $\rho_{t_0}=x$ , eine Lösung des Hull-White-extended Vasicek-Modells ist, das durch die SDE

$$d\rho_t = (\alpha(t) + \beta \rho_t) dt + \sigma dW_t$$

gegeben ist, wobei W eine Brownsche Bewegung,  $\beta \in \mathbb{R}$  der Drift,  $\sigma \in \mathbb{R}_+$  die Volatilität und  $\alpha \in \mathcal{C}(\mathbb{R}_+)$  die Hull-White-Erweiterung ist.