

Wahrscheinlichkeitstheorie III

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

Übungsblatt 3

Abgabe: Freitag, 08.11.2024.

Aufgabe 1 (3 Punkte). Sei $H \ge 0$ ein Claim, sodass

$$E_Q[H] < \infty \quad \forall \ Q \in \mathcal{M}_e.$$

Zeigen Sie, dass V^{\uparrow} mit $V_t^{\uparrow} = esssup_{Q \in \mathcal{M}_e} E_Q[H|\mathscr{F}_t]$ das kleinste \mathcal{M}_e -supermartingal ist, dessen Endwert H dominiert.

Aufgabe 2 (3 Punkte). Sei $H \ge 0$ ein Claim, sodass

$$E_Q[H] < \infty \quad \forall \ Q \in \mathcal{M}_e.$$

Zeigen Sie, dass eine Superhedgingstrategie ξ mit Startkapital $\pi_{sup}(H)$ für H existiert. Zeigen Sie weiter, dass $\pi_{sup}(H)$ das minimale Startkapital für ein derartigen Superhedge ist, d.h.

$$\pi_{sup}(H) = \inf\{\pi \in \mathbb{R} | \exists \xi, \text{ sodass } \pi + G_T^{\xi}(H) \ge H\}$$

Aufgabe 3 (4 Punkte). Der risikolose Bond sei definiert als

$$S_t^0 := (1+r)^t, \quad t = 0, \dots, T,$$

mit r > -1, und einem Asset $S_1 = S$, dessen Rendite

$$R_t := \frac{S_t - S_{t-1}}{S_{t-1}}$$

im t-ten Handelszeitraum nur zwei mögliche Werte $a, b \in \mathbb{R}$ annehmen kann, so dass -1 < a < b. Somit springt der Aktienkurs von S_{t-1} entweder auf den höheren Wert $S_t = S_{t-1}(1+b)$ oder auf den niedrigeren Wert $S_t = S_{t-1}(1+a)$. Wir konstruieren das Modell auf Ω mit

$$\Omega := \{-1, +1\}^T = \{\omega = (y_1, \dots, y_T) \mid y_i \in \{-1, +1\}\}.$$

Bezeichne mit

$$Y_t(\omega) := y_t \quad \text{für } \omega = (y_1, \dots, y_T)$$

die Projektion auf die t-te Koordinate, und definiere

$$R_t(\omega) := a \frac{1 - Y_t(\omega)}{2} + b \frac{1 + Y_t(\omega)}{2} = \begin{cases} a, & \text{wenn } Y_t(\omega) = -1, \\ b, & \text{wenn } Y_t(\omega) = +1. \end{cases}$$

Der Preisprozess wird modelliert als

$$S_t := S_0 \prod_{k=1}^t (1 + R_k),$$

wobei der Anfangswert $S_0 > 0$ eine gegebene Konstante ist. Der diskontierte Preisprozess hat die Form

$$X_t = \frac{S_t}{S_t^0} = S_0 \prod_{k=1}^t \frac{1 + R_k}{1 + r}.$$

Als Filtration nehmen wir

$$\mathcal{F}_t := \sigma(S_0, \dots, S_t) = \sigma(X_0, \dots, X_t), \quad t = 0, \dots, T.$$

Beachte, dass $\mathcal{F}_0 = \{\emptyset, \Omega\}$, und

$$\mathcal{F}_t = \sigma(Y_1, \dots, Y_t) = \sigma(R_1, \dots, R_t)$$
 für $t = 1, \dots, T$;

 $\mathcal{F} := \mathcal{F}_T$ stimmt mit der Potenzmenge von Ω überein. Wähle eine beliebige Wahrscheinlichkeitsmaß P auf (Ω, \mathcal{F}) , sodass

$$P[\{\omega\}] > 0$$
 für alle $\omega \in \Omega$.

Ein solches Modell wird als binomiales Modell oder CRR-Modell bezeichnet. Charakterisieren Sie jene Parameterwerte a, b, r, für die das Modell arbitragefrei ist: Das CRR-Modell ist genau dann arbitragefrei, wenn a < r < b. In diesem Fall ist das CRR-Modell vollständig, und es gibt ein eindeutig bestimmtes Martingalmaß Q.

Das Martingalmaß wird durch die Eigenschaft charakterisiert, dass die Zufallsvariablen R_1, \ldots, R_T unter Q unabhängig sind und folgende gemeinsame Verteilung besitzen

$$Q[R_t = b] = q := \frac{r - a}{b - a}, \quad t = 1, \dots, T.$$

Aufgabe 4 (2 Punkte). Wir betrachten das Modell aus Aufgabe 3. Zeigen Sie: Der Werteprozess

$$V_t = \mathbb{E}_Q [H \mid \mathcal{F}_t], \quad t = 0, \dots, T,$$

einer replizierenden Strategie für H hat die Form

$$V_t(\omega) = v_t(S_0, S_1(\omega), \dots, S_t(\omega)),$$

wobei die Funktion v_t gegeben ist durch

$$v_t(x_0, \dots, x_t) = \mathbb{E}^* \left[h\left(x_0, \dots, x_t, \frac{x_t S_1}{S_0}, \dots, \frac{x_t S_{T-t}}{S_0}\right) \right].$$

Leiten Sie eine rekursive Darstellung für v_t her.

Aufgabe 5 (2 Punkte). Betrachten Sie das Modell aus Aufgabe 3 und die Funktion v_t aus Aufgabe 4. Geben Sie eine explizite Darstellung für v_t an, falls $H = h(S_T)$.

Aufgabe 6 (2 Punkte). Betrachten Sie das Modell aus Aufgabe 3. Geben Sie die zu Aufgabe 4 korrespondiere replizierende Strategie explizit an.