

Wahrscheinlichkeitstheorie III

Wintersemester 2024/25

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

Übungsblatt 1

Abgabe: Freitag, 25.10.2024.

Aufgabe 1 (4 Punkte). Seien $Z = (Z_t)_{t=1,\dots,T}$ unabhängig standard normalverteilte Zufallsvariablen auf (Ω, \mathscr{F}, P) und sei $\mathbb{F} = (\mathscr{F}_t)_{t=0,\dots,T}$ die von Z erzeugte Filtration, wobei $\mathscr{F}_0 = \{\emptyset, \Omega\}$. Für Konstanten $X_0 > 0$, $\sigma_i > 0$, und $\mu_i \in \mathbb{R}$ definieren wir den Prozess X bestehend aus log-normalverteilten Zufallsvariablen wie folgt

$$X_t := X_0 \prod_{i=1}^t e^{\sigma_i Z_i + \mu_i} \quad t = 0, \dots, T.$$

Konstruieren Sie ein äquivalentes Maß $Q \sim P$, unter welchem die Zufallsvariablen X_t lognormalverteilt sind und der Prozess X ein Martingal bildet.

Hinweis: Finden Sie $Q \sim P$, sodass Z_1, \ldots, Z_T unabhängig sind und Z_t normalverteilt ist. Finden Sie den Erwartungswert und die Varianz, sodass X ein Martingal ist. Wenn $Z \sim \mathcal{N}(\mu, \sigma)$, so gilt $E[e^Z] = e^{\mu + \sigma^2/2}$.

Aufgabe 2 (4 Punkte). Zeigen Sie, dass jedes Supermartingal $(X_n)_{n\in\mathbb{N}_0}$ mit $E[X_n]=E[X_0]$ für alle n ist bereits ein Martingal ist.

Aufgabe 3 (8 Punkte). Wir betrachten Sie das binomial Modell in einer Periode: Veranschaulichen Sie die Implikation ii) $\Rightarrow iii$) aus Satz 21 in einer Skizze, indem Sie die Zufallsvariablen auf Ω mit \mathbb{R}^2 identifizieren. Beweisen Sie anschließend die entsprechende Aussage direkt, ohne die Anwendung von Theorem 25 oder der darauf basierenden Lemmata.