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1 Probability

Motivation 1.1. (i) How large is the probability to throw (with one single throw) a

“ 6” with a dice? Result:

1

6
=

1

Number of possible outcomes
.

(ii) Probability to get “ 10” as the sum of two dice rolls?

– Favorable outcomes: (6, 4), (5, 5), (4, 6)

– Possible outcomes: 62 = 36

P(Sum = 10) =
Number of favorable outcomes

Number of possible outcomes
=

1

12
.

The set Ω = {(1, 1), (1, 2), . . . , (6, 6)} is called sample space. The event of getting

10 as the sum can be considered as subset of Ω, namely as A = {(4, 6), (5, 5), (6, 4)}.
Other events:

– Sum uneven B = {(1, 2), (1, 4), . . . , (5, 6)}

– In the first (out of two) throws a “ 6”: C = {(6, 1), (6, 2), . . . , (6, 6)}

– Doubles D = {(1, 1), . . . , (6, 6)}

For all events, we can formally specify the probability as

Number of favorable outcomes

Number of possible outcomes
,

for instance

P(D) =
|D|
|Ω|

=
6

36
=

1

6
.

That is, P assigns a probability to every subset of Ω. One can “calculate” with these

probabilities:

• B ∩ C = Sum uneven and first throw a ” 6” or

• C ∪D = first throw a ” 6” or doubles

P(C ∪D) =
|C ∪D|

|Ω|
=

11

36
= P(C) + P(D)− P(C ∩D).

If two sets E and F are disjoint, i.e. E ∩ F = ∅, then

P(E ∪ F ) = P(E) + P(F ).

This property is the additivity of P.
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Definition 1.2 (Axioms of Kolmogorov). Let Ω be a non-empty countable set with power

set P(Ω). A map P : P(Ω) → [0, 1] is called (discrete) probability distribution on P(Ω),

if

(i) P(Ω) = 1,

(ii) P(A) ≥ 0 for all A ∈ P(Ω),

(iii) P
(
∪∞
i=1 Ai

)
=
∑∞

i=1 P(Ai) for all pairwise disjoint sets Ai ∈ P(Ω) (σ-additivity).

The triple (Ω,P(Ω),P) is called discrete probability space.

[One also writes
∑∞

i=1Ai for ∪∞
i=1Ai if the sets Ai are pairwise disjoint.]

Example 1.3 (Laplace distribution). Ω finite, P(A) = |A|
|Ω| .

Example 1.4 (Coin flip). Throw a coin to the ground. Let H be the event that the

head is on top, T the event trails, i.e. that the number is on top. Then Ω = {H,T}. If

p = P(H), then P(T ) = 1 − p. We have p = 1/2 for a fair coin. If p ̸= 1/2, then P is

not a Laplace distribution.

Proposition 1.5 (Properties of a probability distribution). Let (Ω,P(Ω),P) be a dis-

crete probability space, A,Ai ∈ P(Ω) for i ∈ N. Then

(i) P(Ac) = 1− P(A)

(ii) A ⊂ B ⇒ P(A) ≤ P(B)

(iii) P
(
∪∞
i=1 Ai

)
≤
∑∞

i=1 P(Ai)

(iv) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Proof. (i)–(iii): Homework. (iv): A ∪B = (A \B) + (B \A) +A ∩B.

Kolm.(iii)
=⇒ P(A ∪B) = P(A \B) + P(B \A) + P(A ∩B)

=
(
P(A \B) + P(A ∩B)

)
+
(
P(B \A) + P(A ∩B)

)
− P(A ∩B)

= P(A) + P(B)− P(A ∩B).

Remark 1.6. We had required that Ω is countable in Definition 1.2. Slightly more

general, one can request the discretization of a probability measure in the following sense:

There exists a countable set Ω0 ⊂ Ω such that P(Ωc
0) = 0. If such Ω0 does not exist either,

we leave the special case of discrete probability spaces. Then one restricts attention to

specific σ-algebras A instead of P(Ω) → measure theory.
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Example 1.7. Bet: In the audience are at least two students which have the same

birthday. Idea: The bet is profitable if

P(A) > P(Ac)
Prop.1.5(i)⇐⇒ P(A) > 1/2.

Model: Everyone has chosen its birthday at random out of the 365 days in the year.

Assumption: No leap-year, all birthdays are equally probable.

r = Number of students

A = {(ω1, . . . , ωr)| ∃ i ̸= j with ωi = ωj}

Ac = {(ω1, . . . , ωr)|ωi ̸= ωj ∀ i ̸= j}

P(A) = 1− P(Ac)

= 1− |Ac|
|Ω|

= 1− 365 · 364 · · · · · (365− r + 1)

365r

= 1−
[
1
(
1− 1

365

)(
1− 2

365

)
· · · · ·

(
1− r − 1

365

)]
≈ 1−

[
exp(0) exp

(
− 1

356

)
. . . exp

(
− r − 1

365

)]
= 1− exp

(
−

r−1∑
k=1

k

365︸ ︷︷ ︸
=

r(r−1)
730

)
,

where ex = 1 + x+O(x2) ≈ 1 + x for small x has been used.

Discrete measures can be easily constructed from their probability mass function.

Definition 1.8 (Probability mass function). Let (Ω,P(Ω),P) be a discrete probability

space. The map f : Ω → [0, 1], ω 7→ P({ω}) is called probability mass function of P.

Vice versa, for a map π : Ω → [0, 1] with
∑

ω∈Ω π(ω) = 1,

ν(A) :=
∑

ω∈Ω∩A
π(ω) for all A ∈ P(Ω) (where the empty sum is set to zero),

defines obviously a discrete probability measure on (Ω,P(Ω)). That is, for any count-

able state space Ω, there is a bijection between probability measures on (Ω,P(Ω)) and

probability mass functions on Ω.

Example 1.9 (Once again the Laplace distribution). Ω ̸= ∅ finite, P(A) = |A|
|Ω| for any

A ∈ P(Ω). Then the probability mass function is given by

f(ω) = P({ω}) = 1

|Ω|
.
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Definition 1.10. For any 0 ≤ k ≤ n and n ∈ N, the binomial coefficient is defined as(
n

k

)
:=

n!

k!(n− k)!
.

Example 1.11 (Drawing without order and without putting back). How many possi-

bilities are there to choose 6 numbers out of 49?

49 · 48 · · · · · 44
6 · 5 · · · · · 1

=

(
49

6

)
= 13983816.

Example 1.12 (Binomial distribution). Suppose there is an urn containing N balls, R

of them are red and N−R are white. Consecutively, we take n balls out of the urn, where

the respective ball is put back after every draw. The balls are assumed to be enumerated.

Without loss of generality (W.l.o.g. for short), the first R balls are the red ones.

• Sample space: Ω =
{
(ω1, . . . , ωn) : 1 ≤ ωi ≤ N for i = 1, . . . , n

}
• Probability distribution on (Ω,P(Ω)): Laplace distribution

(everey n-tuple is equally probable)

Question: How large is the probability that there are r red balls in the sample?

• Event Er =
{
(ω1, . . . , ωn) : |{i : 1 ≤ ωi ≤ R}| = r

}
In order to determine the cardinality of Er, we rewrite it as union of disjoint sets EI ,

where I ⊂ {1, . . . , n} contains the number of those draws where the taken ball happened

to be a red one:

EI =
{
(ω1, . . . , ωn) : ωi ∈ {1, . . . , R} for i ∈ I and ωi ∈ {R+ 1, . . . , N} for i ∈ Ic

}
and

Er =
⋃

I⊂{1,...,n}:
|I|=r

EI .

As there are
(
n
r

)
of such subsets and all of them having cardinality Rr(N −R)n−r,

|Er| =
(
n

r

)
Rr(N −R)n−r.

Using that P is the Laplace distribution and |Ω| = Nn, we find

P(Er) =
|Er|
|Ω|

=

(
n

r

)(R
N

)r(
1− R

N

)n−r
.
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Since the sample space is a disjoint union of E0, . . . , En,

p(r) := P(Er), r ∈ {0, . . . , n},

defines a probability mass function on {0, . . . , n}. The corresponding distribution on

({0, . . . , n},P({0, . . . , n})) is called binomial distribution.

2 Independence, product spaces and conditional probability

2.1 Stochastic independence

Definition 2.1 (Stochastic independence). Let (Ω,P(Ω),P) be a discrete probability

space. Two events A,B ∈ P(Ω) are called stochastically independent if

P(A ∩B) = P(A) · P(B).

Example 2.2. (i) We roll a (fair) dice and define the events

– A = “Outcome is even”

– B = “Outcome can be divided by 3”.

These events are independent by the above definition, because

P(A) =
1

2
, P(B) =

1

3
and P(A ∩B︸ ︷︷ ︸

{6}

) =
1

6
.

(ii) We draw twice with putting back out of an urn which contains 3 red and 5 white

balls and study the events

– A = “First ball is red”

– B = “Second ball is white”.

Then

P(A) =
3

8
· 8
8
=

3

8
, P(B) =

8

8
· 5
8
=

5

8
and P(A ∩B) =

3

8
· 5
8
.

Thus, the two events A and B are independent.

We now extend the notion of independence to more than two events.

Definition 2.3. Let (Ω,P(Ω),P) be a discrete probability space. The events A1, . . . , An

are called stochastically independent if

P
(
Ai1 ∩ · · · ∩Aik

)
= P(Ai1) · . . . · P(Aik)

for every k ∈ {1, . . . , n} and each collection of indices 1 ≤ i1 < · · · < ik ≤ n.
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With this definition, we ensure the desirable property that a subfamily of a family of

independent events is itself independent.

Example 2.4 (Twice flipping a coin). Sample space Ω = {(H,H), (H,T ), (T,H), (T, T )},
Laplace experiment. We study the three events

• A = {(H,H), (H,T )} “first throw head”: P(A) = 2
4 = 1

2 ,

• B = {(T, T ), (H,T )} “second throw number”: P(B) = 1
2 ,

• C = {(H,T ), (T,H)} “head exactly once”: P(C) = 1
2 .

Are these events jointly independent?

P(A ∩B) =
1

4
= P(A) · P(B) ⇔ A,B independent

P(A ∩ C) =
1

4
= P(A) · P(C) ⇔ A,C independent

P(B ∩ C) =
1

4
= P(B) · P(C) ⇔ B,C independent

but

P(A ∩B ∩ C) = P({(H,T )})︸ ︷︷ ︸
= 1

4

̸= P(A) · P(B) · P(C).

=⇒ The sets are pairwise stochastically independent, but A,B,C are not jointly stochas-

tically independent.

Theorem 2.5. Assume that A1, . . . , An are stochastically independent. Then B1, . . . , Bn

with Bi ∈ {Ai, A
c
i} are also stochastically independent.

Proof. Induction on n.

n = 2 (Initial case):

(A1 ∩A2) + (A1 ∩Ac
2) = A1

⇒ P(A1 ∩A2)︸ ︷︷ ︸
=P(A1)·P(A2)

+P(A1 ∩Ac
2) = P(A1)

⇒ P(A1 ∩Ac
2) = P(A1) ·

(
1− P(A2)

)
= P(A1) · P(A2).

⇒ A1, A
c
2 are stochastically independent.

The proof for the independence of Ac
1, A2 is carried out analogously.

Induction step n− 1 → n: Grant the claim for n−1 and let A1, . . . , An be stochastically

independent. Let 1 ≤ i1 < i2 < · · · < im ≤ n for m = n − 1. Then by definition,
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Ai1 , . . . , Aim are stochastically independent. By the induction hyposthesis, Bi1 , . . . , Bim

are stochastically independent. Hence, it remains to show:

P
(
B1 ∩ . . . Bn

)
= P(B1) · . . . · P(Bn). (2.1)

W.l.o.g., let B1 = Ac
1, . . . , Bk = Ac

k, Bk+1 = Ak+1, . . . , Bn = An. We prove (2.1) itself

by induction on k:

k = 1 (Initial case):

P(Ac
1 ∩A2 ∩ · · · ∩An) + P(A1 ∩ · · · ∩An) = P(A2 ∩ · · · ∩An)

⇒ P(Ac
1 ∩A2 ∩ · · · ∩An) =

(
1− P(A1)

)
· P(A2) · . . . · P(An)

= P(Ac
1) · P(A2) · . . . · P(An).

Induction step k − 1 → k:

P(Ac
1 ∩ · · · ∩Ac

k ∩Ak+1 ∩ · · · ∩An) + P(Ac
1 ∩ · · · ∩Ac

k−1 ∩Ak ∩ · · · ∩An)

= P(Ac
1 ∩ · · · ∩Ac

k−1 ∩Ak+1 ∩ · · · ∩An)

Ind. hyp.
= P(Ac

1) · . . . · P(Ac
k−1) · P(Ak+1) · . . . · P(An).

⇒ P(Ac
1 ∩ · · · ∩Ac

k ∩Ak+1 ∩ · · · ∩An)

= P(Ac
1) · . . . · P(Ac

k−1) ·
(
1− P(Ak)

)
· P(Ak+1) · . . . · P(An)

= P(Ac
1) · . . . · P(Ac

k) · P(Ak+1) · . . . · P(An).

2.2 Product spaces and product experiments

Motivation 2.6. Two students – Student 1 from Freiburg, Student 2 from Konstanz –

are doing an experiment at the same time: Student 1 is flipping a (fair) coin, Student 2

is rolling a (fair) dice. Both have their own probability spaces, Ω1 = {H,T} with Laplace

distribution P1 on P(Ω1) and Ω2 = {1, . . . , 6} with Laplace distribution P2 on P(Ω2). As

concerns the probability of the event “Student 1 throws a head, Student 2 gets a “ 6””,

we are facing the problem that the event neither belongs to P(Ω1) nor P(Ω2).

Definition 2.7 (Product space). Let (Ω1,P(Ω1),P1), . . . , (Ωn,P(Ωn),Pn) be discrete

probability spaces. The product space (Ω,P(Ω),P) is the discrete probability space with

Ω = Ω1 × · · · × Ωn =
{
(ω1, . . . , ωn) : ωi ∈ Ωi for all i = 1, . . . , n

}
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and probability mass function p(ω1, . . . , ωn) = p1(ω1) · . . . · pn(ωn). The probability mea-

sure with p as probability mass function is called product probability measure and often

denoted as P = P1 ⊗ · · · ⊗ Pn.

For product spaces, we have the following result.

Theorem 2.8. Let (Ω1,P(Ω1),P1), . . . , (Ωn,P(Ωn),Pn) be discrete probability spaces

with product space (Ω,P(Ω),P). Let Ai ⊂ Ωi and A′
i := {ω ∈ Ω : ωi ∈ Ai}, i = 1, . . . , n.

Then

P(A′
i) = Pi(Ai)

for i = 1, . . . , n and the events A′
1, . . . , A

′
n are stochastically independent.

Proof. Note that subsequently, rearrangement of the potentially infinite summations is

admissible because all summands are non-negative.

P(A′
i) =

∑
ω∈A′

i

p(ω)

=
∑

(ω1,...,ωn):ωi∈Ai

p1(ω1) · . . . · pn(ωn)

=

 ∑
ω1∈Ω1

p1(ω1)


︸ ︷︷ ︸

=1

· . . . ·

 ∑
ωi∈Ai

pi(ωi)

 · . . . ·

( ∑
ωn∈Ωn

pn(ωn)

)
︸ ︷︷ ︸

=1

=
∑
ωi∈Ai

pi(ωi)

= Pi(Ai).

For indices 1 ≤ i1 < · · · < ik ≤ n, we obtain

P(A′
i1 ∩ · · · ∩A′

ik
) =

∑
ω∈Ω:

ω1∈Ai1
,...,ωik

∈Aik

pi1(ωi1) · . . . · pik(ωik)
∏

j ̸∈{i1,...,ik}

pj(ωj)

=

 ∑
ωi1

∈Ai1

pi1(ωi1)

 · . . . ·

 ∑
ωik

∈Aik

pik


= Pi1(Ai1) · . . . · Pik(Aik)

= P(A′
i1) · . . . · P(A

′
ik
).

Hence, the events A′
i1
, . . . , A′

ik
are independent.

With the identity A′
1 ∩ · · · ∩A′

n = A1 × · · · ×An is the meaning of Theorem 2.8, that

P(A1 × · · · ×An) = P1(A1) · . . . · Pn(An)
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on the product space (Ω,P(Ω),P). More general, this formula can be taken as starting

point for the definition of the product probability measure on not necessarily discrete

spaces. Then, it has to be shown that P is uniquely determined via the probability of

such Cartesian products. → Measure theory

Example 2.9 (Again the two students from Freiburg and Konstanz). With the notation

of Motivation 2.6, define Ω := Ω1 × Ω2 and let P be the product measure on P(Ω) with

components P1 and P2. Then the event {(H, 6)} =‘Student 1 throws a head, Student 2

gets a “ 6”” is a one-element subset of Ω and

P({H, 6)}) = P
((

{H} × Ω2

)
∩
(
Ω1 × {6}

))
= P({H} × Ω2) · P(Ω1 × {6})

= P1({H}) · P2({6}) =
1

2
· 1
6
.

That is, under the product measure, the events in Experiment 1 are independent of the

events in Experiment 2.

2.3 Conditional probabilities

Our next goal is to develop a concept to describe dependencies of events. What is the

probability for an event A if we now that another event B has occurred?

Definition 2.10. Let (Ω,P(Ω),P) be a discrete probability space, A,B ∈ P(Ω) with

P(A) > 0. Then the conditional probability of B given A is defined as

P(B|A) := P(A ∩B)

P(A)
.

Example 2.11 (Twice tossing a dice). Consider the events

A =
{
(ω1, ω2) ∈ {1, . . . , 6} × {1, . . . , 6} : ω1 + ω2 = 12

}
and

B =
{
(ω1, ω2) ∈ {1, . . . , 6} × {1, . . . , 6} : ω1 = 5

}
.

Then P(A) = 1
36 , P(B) = 1

6 · 6
6 = 1

6 and

P(A|B) =
P(

=∅︷ ︸︸ ︷
A ∩B)

P(B)
= 0.

Remark 2.12. For independent events A and B with P(A) > 0, we find

P(B|A) =
P(A ∩B)

P(A)
=

P(A) · P(B)

P(A)
= P(B),
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that is, the probability of B given A is equal to the probability of B. Vice versa, P(B|A) =

P(B) implies

P(A ∩B) = P(A) · P(B|A) = P(A) · P(B),

i.e. the two events are independent.

Theorem 2.13 (Law of the total probability). Let (Ω,P(Ω),P) be a discrete probability

space, B1, . . . , Bn ∈ P(Ω) with ∪n
i=1Bi = Ω and Bi ∩ Bj = ∅ whenever i ̸= j; finally

P(Bj) > 0 for j = 1, . . . , n. Then

P(A) =

n∑
i=1

P(A|Bi) · P(Bi)

for all A ∈ P(Ω).

Proof.

P(A) = P(A ∩ Ω) = P
( n∑

i=1

(A ∩Bi)

)
=

n∑
i=1

P(A ∩Bi) =

n∑
i=1

P(A|Bi) · P(Bi).

Theorem 2.14 (Bayes formula). Let (Ω,P(Ω),P) be as above, A,B1, . . . , Bn ∈ P(Ω)

with ∪n
i=1Bi = Ω and Bi ∩ Bj = ∅ whenever i ̸= j; finally P(A) > 0 and P(Bj) > 0 for

j = 1, . . . , n. Then

P(Bj |A) =
P(A|Bj) · P(Bj)∑n
i=1 P(A|Bi) · P(Bi)

.

Proof.

P(Bj |A) =
P(Bj ∩A)

P(A)

Thm 2.13
=

P(A|Bj) · P(Bj)∑n
i=1 P(A|Bi) · P(Bi)

.

Example 2.15. Suppose there are 6 urns, each of them containing five balls. There are

5 white balls in the first urn, 4 white balls and one black ball in the second one, and so

on.

◦ ◦ ◦ ◦ ◦ Urn 1

◦ ◦ ◦ ◦ • Urn 2

◦ ◦ ◦ • • Urn 3

◦ ◦ • • • Urn 4

◦ • • • • Urn 5

• • • • • Urn 6
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The experiment is as follows: We roll a dice and choose the urn corresponding to the

dots obtained. Then we draw consecutively a ball out of this chosen urn with putting it

back after each draw.

(i) Consider the events

– Bi = “We draw out of the i’th urn”

– A1 = “The first ball taken out is black”

– A2 = “The second ball taken out is black”.

P(A1)?, P(A2|A1)?

B1, . . . , B6 form a disjoint decomposition of the sample space, P(Bi) =
1
6 . More-

over, P(A1|Bi) =
i−1
5 . Hence, by the law of the total probability,

P(A1) =
6∑

i=1

P(A1|Bi) · P(Bi) =
n∑

i=1

i− 1

5
· 1
6
=

1

30

6∑
i=0

=
1

2
.

[Heuristically, this was clear for reasons of symmetry!]

Next, P(A2|A1) = P(A1∩A2)
P(A1)

= 2P(A1 ∩ A2). As we draw (independently) with

replacement,

P(A1 ∩A2)|Bi) =
( i− 1

5

)2
,

whence P(A1 ∩A2) =
1
6

∑6
i=1

(
i−1
5

)2
= 1

150

∑5
i=0 i

2 = 11
30 and

P(A2|A1) =
11

15
(much(!) larger than 1/2).

(ii) How large is the conditional probability, that we draw out of the i’th urn given the

first ball taken out is black?

P(Bi|A1) =
P(A1|Bi) · P(Bi)∑6

k=1 P(A1|Bk) · P(Bk)
=

i−1
5 · 1

6∑6
k=1

k−1
5 · 1

6

=
i− 1

15
̸= 1

6
.

3 Discrete random variables

Example 3.1 (Thrice flipping a coin). Ω =
{
(ω1, ω2, ω3) : ωi ∈ {0, 1}, i = 1, 2, 3

}
, P =

Laplace distribution on (Ω,P(Ω)), i.e.

P(A) =
|A|
|ω|

=
|A|
8

.

Question: How large is the probability to obtain exactly k times Head?
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Two possibilities:

(i) Ak =
{
(ω1, ω2, ω3) ∈ Ω :

∑3
i=1 ωi = k

}
and P(Ak) =

|Ak|
8 .

(ii) As derived in Example 1.11, the count of Heads is distributed according to Bin(3, 12)

(binomial distribution). Hereby, we use another sample space and another proba-

bility measure, namely

ΩX = {0, 1, 2, 3} and PX({k}) =
(
3

k

)(1
2

)k(1
2

)3−k
=

(
3

k

)(1
2

)3
.

The probability space (ΩX ,P(ΩX),PX) can be obtained from (Ω,P(Ω),P) via the follow-

ing map:

X : Ω → R

ω 7→
3∑

i=1

ωi .

ΩX is ImageX =
{
x ∈ R : ∃ω ∈ Ω with x = X(ω)

}
. PX is the probability measure on

(ΩX ,P(ΩX)) with

PX(B) := P
(
X−1(B)︸ ︷︷ ︸
Preimage

of B
under X

)
∀B ∈ P(ΩX).

Recall the definition of the preimage: X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ⊂ Ω.

For instance:

PX({1}) = P
(
X−1({1})

)
= P

(
{ω ∈ Ω : X(ω = 1)}

)
= P

(
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

)
=

3

8
.

Here, PX = Bin(3, 12). X is called random variable, PX the distribution on (ΩX ,P(ΩX))

induced by X (or just the distribution of X).

Lemma and Definition 3.2. Let (Ω,P(Ω),P) be a discrete probability space. A map

X : Ω → R is called discrete random variable. The distribution PX induced by X, given

by PX(A) := P
(
X−1(A)

)
for A ∈ P(ΩX), is a probability on (ΩX ,P(ΩX)). The function

FX : R → [0, 1]

x 7→ PX
(
(−∞, x] ∩ ΩX

)
= P(X ≤ x) = P

(
{ω ∈ Ω : X(ω) ≤ x}

)
is called distribution function of X.

12



Proof. Homework: Prove that PX is discrete a probability measure on (ΩX ,P(ΩX))

(axioms of Kolmogorov).

Notation: If a random variable X on a probability space is distributed according to

some probability measure µ, i.e. PX = µ, one also writes X ∼ µ.

Remark 3.3. One easily shows that F is monotonically increasing and right-continuous

with lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1. (Homework!)

Poisson distribution and Poisson limit theorem. In “real world” applications, there

may arise the problem to determine numerical values of the distribution function. For

the binomial distribution Bin(n, p) with large parameter n, for instance, this evaluation

for can be very costly, because (most of) the binomial coefficients become rather huge

(Example 1.12).

Theorem 3.4 (Poisson limit theorem). Let Xn ∼ Bin(n, pn), n ∈ N. If there exists

λ ∈ (0,∞) with npn → λ as n → ∞, then

lim
n→∞

P(Xn = k) = e−λλ
k

k!
∀ k ∈ N0.

pλ, given by pλ(k) = e−λ λk

k! for k ∈ N0, defines a probability mass function on N0.

Proof. For any fixed k ∈ N0, the following identity holds true.

P(Xn = k) =

(
n

k

)
pkn(1− pn)

n−k

=
n · (n− 1) · . . . · (n− k + 1)

k!

1

nk
(npn)

k
(
1− npn

n

)n
(1− pn)

k

=
(n
n

)
·
(n− 1

n

)
· . . . ·

(n− k + 1

n

)
︸ ︷︷ ︸

→1

(1− pn)
−k︸ ︷︷ ︸

→1

(npn)
k

k!︸ ︷︷ ︸
→λk

k!

(
1− npn

n

)n
︸ ︷︷ ︸

→e−λ

Since npn → λ by assumption and hence pn → 0,

P(Xn = k) −→ e−λλ
k

k!
,

where we have used that limn→∞
(
1− xn

n

)n
= ex for xn → x. With the series expansion

of the exp-function
∞∑
k=0

λk

k!
= eλ,

we obtain
∑∞

k=0 pλ(k) = 1, i.e. pλ is a probability mass function on N0.

13



Remark 3.5. The probability measure on (N0,P(N0)) with probability mass function pλ

is called Poisson distribution with parameter λ.

Examples 3.6 (Some discrete distributions).

(i) Bernoulli-distribution B(p) with parameter p ∈ [0, 1]:

This is a probability distribution on ({0, 1},P({0, 1}) with probability mass function

f(1) = p, f(0) = 1− p.

(ii) Binomial distribution Bin(n, p) with parameters n ∈ N and p ∈ [0, 1]:

This is a probability distribution on
(
{0, 1, . . . , n},P({0, 1, . . . , n})

)
with probability

mass function

f(k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . , n.

(iii) Geometric distribution G(p) with parameter p ∈ [0, 1]:

This is a probability distribution on (N,P(N)) with probability mass function

f(k) = (1− p)k−1p for k ∈ N.

[Distribution for the number of attempts until the first success]

3.1 Expectation and variance

The profit in gambling is random – what is the “expected” profit?

Definition 3.7. Let X be a discrete random variable with probability mass function pX ,

i.e. PX({x}) = P(X−1({x})) = pX(x). We say that the expectation of X exists if∑
x∈ΩX

|x| · pX(x) < ∞. (3.1)

In this case, the expectation of X is defined as

EX :=
∑
x∈ΩX

x · pX(x). (3.2)

Remark. The absolute summability requirement (3.1) ensures that the expression in

(3.2) is well-defined, i.e. for any arrangement of the summands into a sequence, the

series is finitely summable and its value is invariant under rearrangement of the sum-

mation order. Condition (3.1) is typically abbreviated as E|X| < ∞.

Examples 3.8. (i) Let X ∼ B(p). Then EX = 0 · (1− p) + 1 · p = p.

14



(ii) Let X be Laplace distributed on {1, 2, . . . , N}, i.e. P(X = k) = 1
N for k = 1, . . . , N .

Then

EX =
N∑
j=1

j · 1

N
=

1

N

N(N + 1)

2
=

N + 1

N
.

(iii) Let X ∼ Bin(n, p), i.e. P(X = k) =
(
n
k

)
pk(1− p)n−k for k = 0, 1, . . . , n. Then

EX =
n∑

k=0

k

(
n

k

)
pk(1− p)n−k

=
n∑

k=1

n

(
n− 1

k − 1

)
pk(1− p)n−k

= np
n∑

k=1

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

= np

n−1∑
l=0

(
n− 1

l

)
pl(1− p)(n−1)−l

︸ ︷︷ ︸
Sum over probability mass function

of the Bin(n− 1, p)-distribution

= np.

Theorem 3.9 (Transformation formula for the expectation). Let X be a discrete random

variable with probability mass function pX and let u : ΩX → R be a map with∑
x∈ΩX

|u(x)|pX(x) < ∞.

Then the expectation E
(
u(X)

)
exists and is equal to

E
(
u(X)

)
=
∑
x∈ΩX

u(x)pX(x).

Proof. The probability mass function of the random variable Y = u ◦X is

pY (y) = P(u ◦X = y) =
∑

x∈ΩX :
u(x)=y

pX(x).

Plugging this expression into the definition of EY , we get

EY =
∑
y

ypY (y) =
∑
y

y
∑

x∈ΩX :
u(x)=y

pX(x) =
∑
y

∑
x∈ΩX :
u(x)=y

u(x)pX(x) =
∑
x∈Ωx

u(x)pX(x).
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Theorem 3.10 (Properties of the expectation). Let X and Y be random variables on

a joint probability space for which the expectations exist. Then, for all a, b ∈ R, the

following identities are satisfied:

(i) E(aX) = aEX

(ii) E(X + Y ) = EX + EY

(iii) Eb = b

(iv) |EX| ≤ E|X|.

Proof. (i) With u(x) = a · x, the transformation formula (Theorem 3.9) reveals

E(aX) =
∑
x

(ax)pX(x) = a
∑
x

xpX(x) = aEX.

(ii) With {x1.x2, . . . } = ΩX , {y1, y2, . . . } = ΩY , Ai := X−1({xi}), Bi := Y −1({yi}), we
obtain

EX + EY =
∑
i

xiP(Ai) +
∑
j

yjP(Bj)

=
∑
i

xiP
(
Ai ∩

∑
j

Bj

)
+
∑
j

yjP
((∑

i

Ai

)
∩Bj

)
=
∑
i,j

xiP(Ai ∩Bj) +
∑
i,j

yjP(Ai ∩Bj)

=
∑
i,j

(xi + yj)P(Ai ∩Bj)

=
∑
u

∑
i,j∈N:

xi+yj=u

(xi + yj)P(Ai ∩Bj)

=
∑
u

u ·
∑
i,j∈N:

xi+yj=u

P(Ai ∩Bj)

︸ ︷︷ ︸
P(X+Y=u)

= E(X + Y ).

(iii) Clear.

(iv) E|X| =
∑

x∈ΩX |x|pX(x) =
∑

x∈ΩX

xpX(x)
 ≥

∑x∈ΩX xpX(x)

 = |EX|.

Remark. (i) In general, Eg(X) = g(EX) is NOT true!

(ii) Prove by induction that E
(∑n

i=1Xi

)
=
∑n

i=1 EXi for discrete random variables

X1, . . . , Xn with existing expectations.
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Example 3.11. (i) Binomial distribution: X ∼ Bin(n, p)

X is the number of successes in n independent Bernoulli experiments – for instance,

X counts how often 6 appears when n times rolling a dice (in this case, p = 1/6).

A′
i :=“The outcome in the i’th experiment is success′′

=
{
ω ∈ Ω1 × · · · × Ωn : ωi = 1

}
,

Ωj = {0, 1} ∀ i = 1, . . . , n and 1A′
i
(ω) :=

1 if ω ∈ A′
i

0 otherwise.

Then X =
∑n

i=1 1A′
i
and therefore, EX =

∑n
i=1 E1A′

i
= np.

(ii) Hypergeometric distribution: Y ∼ H(N,R, n)

Y is the number of collected red balls when drawing n times without replacement

from an urn which contains R red and N −R white balls

P(Y = r) =

(
R
r

)(
N−R
n−r

)(
N
n

) , where

(
n

k

)
:= 0 for k < 0 and k > n.

Two possibilities for evaluating the expectation:

(a)

EY =

(
N

n

)−1 n∑
r=1

r

(
R

r

)(
N −R

n− r

)

=

(
N

n

)−1 n∑
r=1

R

(
R− 1

r − 1

)(
N −R

n− r

)

= R

(
N

n

)−1 n∑
r=1

(
R− 1

r − 1

)(
N −R

n− r

)

= R

(
N

n

)−1 n−1∑
r=0

(
R− 1

r − 1

)(
N − 1− (R− 1)

(n− 1)− r

)

= R

(
N

n

)−1(N − 1

n− 1

)
= n

R

N
,

(b) We define the event Bi :=“The i’th drawn ball is red”. Then Y = 1B1+· · ·+1Bn

and

EX =
n∑

i=1

E1Bi =

n∑
i=1

P(Bi)
Symmetry

= n
R

N
.

Definition 3.12. Let X be some discrete random variable with E(X2) < ∞. Then its

variance is defined as

Var(X) := E
(
(X − EX)2

)
.
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Theorem 3.13 (Properties of the variance). Let X be a discrete random variable with

E(X2) < ∞ and let a, b ∈ R. Then

(i) Var(aX + b) = a2Var(X)

(ii) Var(X) = E(X2)− (EX)2

(iii) E
(
(X − a)2

)
= Var(X) +

(
EX − a

)2 ≥ Var(X).

Proof. (i)

Var(aX + b) = E
((

aX + b− E(aX + b)
)2)

= E
((

ax+ b− aEX − b
)2)

= E
((

a(X − EX)
)2)

= a2Var(X).

(ii)

Var(X) = E
((

X − EX
)2)

= E
(
X2 − 2XEX + (EX)2

)
= E(X2)− 2E

(
XEX

)
+ E

(
EX)2

)
Thm 3.10

= E(X2)− 2(EX)(EX) + (EX)2 = E(X2)− (EX)2.

(iii) Because of E
(
X − EX

)
= EX − EX = 0, we have

E
(
(X − a)2

)
= E

((
X − EX + EX − a

)2)
= E

(
(X − EX)2

)
+ 2E

(
(X − EX)(EX − a)

)
+ E

(
(EX − a)2

)
= Var(X) + 2E(X − EX)︸ ︷︷ ︸

=0

(EX − a) + (EX − a)2

= Var(X) + (EX − a)2︸ ︷︷ ︸
≥0

.

Example 3.14 (Variance of the binomial distribution). Let X ∼ Bin(n, p). Then

E
(
X(X − 1)

)
=

n∑
k=0

k(k − 1)

(
n

k

)
pk(1− p)n−k

= n(n− 1)p2
n∑

k=2

(
n− 2

k − 2

)
pk−2(1− p)(n−2)−(k−2)

= n(n− 1)p2.
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With E(X2) = E
(
X(X − 1)

)
+ EX = n(n− 1)p2 + np, we deduce

Var(X) = E(X2)− (EX)2 = n(n− 1)p2 + np− (np)2 = np(1− p).

Theorem 3.15 (Markov and Chebyshev inequalities). Let X be some discrete random

variable.

(i) Markov inequality: If E|X| < ∞, then

P
(
|X| ≥ η

)
≤ E|X|

η
for every η > 0.

(ii) Chebyshev inequality: If E(X2) < ∞, then we have for all η > 0 and a ∈ R

P
(
|X − a| ≥ η

)
≤

E
(
(X − a)2

)
η2

.

For a = EX, we get in particular

P
(
|X − EX| ≥ η

)
≤ Var(X)

η2
.

Proof. (i)

P
(
|X| ≥ η

)
=

∑
x:|x|≥η

pX(x)

|x|
η
≥1

≤
∑

x:|x|≥η

|x|
η
pX(x) ≤ 1

η

∑
x

|x|pX(x) =
E|X|
η

.

(ii)

P
(
|X − a| ≥ η

)
= P

(
|X − a|2 ≥ η2

) (i)

≤ 1

η2
E
(
|X − a|2

)
.

3.2 Multidimensional distributions

Suppose that we have two random variables, for instance X = size of a fish, Y = age of

that fish. Can we conclude from values of X to values of Y ?

Definition 3.16. Let X1, . . . , Xn be random variables on a joint discrete probability

space and

F (x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn) = P
(
X−1

1 ((−∞, x1]) ∩ · · · ∩X−1
n ((−∞, xn])

)
the joint distribution function of X1, . . . , Xn. The function p : Rn → [0, 1], given by
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p(x1, . . . , xn) := P(X1 = x1, . . . , Xn = xn),

is called joint probability mass function. For 1 ≤ i1 < i2 < · · · < ik ≤ n, the joint distri-

bution of (Xi1 , . . . , Xik) is called a k-dimensional marginal distribution of X1, . . . , Xn.

Remark 3.17. For I ⊂ {1, . . . , n}, we have

p(Xi: i∈I)
(
(xi)i∈I

)
= P(Xi = xi for i ∈ I) =

∑
j∈Ic

∑
xj∈ΩXj

p(X1, . . . , xn).

Example 3.18 (Thrice flipping a coin). Let 0 standing for “Head” and 1 for “Number”,

Ω = {0, 1}3, P = Laplace distribution on (Ω,P(Ω)). Define the random variables

X : Ω → R, ω = (ω1, ω2, ω3) 7→ ω1 with ΩX = {0, 1} and

Y : Ω → R, ω = (ω1, ω2, ω3) 7→ ω1 + ω2 + ω3 with ΩY = {0, 1, 2, 3}.

The joint distribution P(X,Y ) of X,Y is a probability measure on
(
ΩX×ΩY ,P

(
ΩX×ΩY

))
with P(X,Y )(C) = P

(
(X,Y )−1(C)

)
for C ∈ P

(
ΩX × ΩY

)
, where

(X,Y ) : Ω → ΩX × ΩY , ω 7→
(
ω1, ω1 + ω2 + ω3

)
.

For instance, if C = {(0, 1), (1, 2)}, we find

(X,Y )−1(C) =
{
(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)

}
and

P(X,Y )(C) =
|(X,Y )−1(C)|

|Ω|
=

4

8
=

1

2
.

The joint probability mass function takes the values pX,Y (0, 0) = 1
8 , pX,Y (0, 1) = 2

8 ,

pX,Y (0, 2) = 1
8 , pX,Y (0, 3) = 0, pX,Y (1, 0) = 0, pX,Y (1, 1) = 1

8 , pX,Y (1, 2) = 2
8 ,

pX,Y (1, 3) = 1
8 . The marginal probability mass function pX can be extracted from the

joint probability mass function pX,Y by summing over all values of Y :

pX(x) = P(X = x) = P(X = x, Y ∈ ΩY ) =
∑
y∈ΩY

P(X = x, Y = y) =
∑
y∈ΩY

pX,Y (x, y).

Definition 3.19. Let X1, . . . , Xn be random variables on a joint discrete probability

space. X1, . . . , Xn are called stochastically independent, if

P(X1 = x1, . . . , Xn = xn)︸ ︷︷ ︸
pX1,...,Xn (x1,...,xn)

=
n∏

i=1

P(Xi = xi)︸ ︷︷ ︸
pXi

(xi)

∀x1, . . . , xn ∈ R.
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Remark 3.20. (i) Equivalent is

FX1,...,Xn(x1, . . . , xn) =

n∏
i=1

FXi(xi).

(ii) For stochastically independent random variables X1, . . . , Xn, we have more general

P(X1 ∈ B1, . . . , Xn ∈ Bn) =
n∏

i=1

P(Xi ∈ Bi) ∀ measurable︸ ︷︷ ︸
→later!

Bi ⊂ R

In case of discrete random variables as treated up to now, it is sufficient consider

Bi ∈ P(ΩXi), i = 1, . . . , n.

In the situation of Definition 3.19, one says that the joint density pX1,...,Xn “factorizes”.

Example 3.21 (Convolution). Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) be stochastically

independent. X + Y ∼ ?

P(X + Y = k) =

k∑
l=0

P(X + Y = k,X = l)

=

k∑
l=0

P(Y = k − l,X = l)

=

k∑
l=0

(
m

k − l

)
pk−l(1− p)m−(k−l)

(
n

l

)
pl(1− p)n−l

=
k∑

l=0

(
n

l

)(
m

k − l

)
pk(1− p)n+m−k

=

(
m+ n

k

)
pk(1− p)n+m−k,

where the last equality is Exercise 2 b), Homework 3. That is, X + Y ∼ Bin(n+m, p).

By induction, one can show in this way:

X1, . . . , Xn
iid∼ Bin(1, p) =⇒

n∑
i=1

Xi ∼ Bin(n, p).

[“iid” stands for independent identically distributed.]

Theorem 3.22. Let X and Y be independent random variables on a joint discrete

probability space with E(X2) < ∞, E(Y 2) < ∞. Then

(i) E(XY ) = (EX)(EY ) and

(ii) Var(X + Y ) = Var(X) + Var(Y ).
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Proof. (i) With U = XY , we find

E(XY ) =
∑
u

upU (u)

=
∑
u

u
∑

x∈ΩX ,y∈ΩY :
xy=u

P(X = x, Y = y)

=
∑
u

∑
x∈ΩX ,y∈ΩY :

xy=u

xyP(X = x)P(Y = y)

=
∑

x∈ΩX ,y∈ΩY

xypX(x)pY (y)

=

( ∑
x∈ΩX

xpX(x)

)
·
( ∑

y∈ΩY

ypY (y)

)
= (EX)(EY ).

(ii) By linearity of the expectation and (i), we have

E
(
(X − EX)(Y − EY )

)
= E(XY )− (EX)(EY ) = 0.

Consequently,

Var(X + Y ) = E
((

X + Y − E(X + Y )
)2)

= E
((

(X − EX) + (Y − EY )
)2)

= E
(
(X − EX)2 + 2(X − EX)(Y − EY ) + (Y − EY )2

)
= E

(
(X − EX)2

)
+ 2E

(
(X − EX)(Y − EY )

)︸ ︷︷ ︸
=0

+E
(
(Y − EY )2

)
= Var(X) + Var(Y ).

Theorem 3.23 (Weak law of large numbers). Let X1, . . . , Xn be iid (discrete) random

variables on a joint probability space with finite variance Var(X1) = σ2. Then

P
( 1

n

n∑
i=1

(Xi − EXi)
 > ε

)
−→
n→∞

0 for every ε > 0.

Proof. By the Chebyshev inequality,

P
( 1

n

n∑
i=1

(Xi − EXi)
 > ε

)
≤ 1

ε2
Var

(
1

n

n∑
i=1

Xi

)
3.22
=

1

n2ε2

n∑
i=1

Var(Xi) =
σ2

nε2
→ 0.
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Remark 3.24. The type of convergence of the random variables Yn = 1
n

∑n
i=1Xi towards

EX1, i.e.

P(|Yn − EX1| > ε) −→
n→∞

0 for every ε > 0,

is called convergence in probability or stochastic convergence. There also exists a so-

called strong law of large numbers, whose notion of convergence is stronger than in

Theorem 3.23. Grant the conditions of the latter, our proof of the weak law of large

numbers actually reveals convergence in quadratic mean E
(
(Yn − EX1)

2
)
→ 0, which by

Chebyshev’s inequality implies stochastic convergence.

Definition 3.25. Let X and Y be random variables on a joint discrete probability space

with E(X2) < ∞, E(Y 2) < ∞. Then

Cov(X,Y ) :=E
(
(X − EX)(Y − EY )

)
=E(XY )− (EX)(EY )

is called covariance of X and Y . If Cov(X,Y ) = 0, the random variables X and Y are

called uncorrelated.

Theorem 3.26. Let X1, . . . , Xn be random variables on a joint discrete probability space

with E(X2
i ) < ∞, i = 1, . . . , n. Then

Var

( n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑

i,j:i<j

Cov(Xi, Xj).

IfX1, . . . , Xn are independent, then Var
(∑n

i=1Xi

)
=
∑n

i=1Var(Xi) by Theorem 3.22.

That is, independence implies uncorrelatedness (provided E(X2
i ) < ∞). The reverse

direction is not true in general.

Proof. Immediate consequence of the linearity of the expectation (Theorem 3.10).

Definition 3.27. Let X and Y be random variables on some joint discrete probability

space with E(X2) < ∞, E(Y 2) < ∞, Var(X) > 0, Var(Y ) > 0. The quantity

ρ(X,Y ) :=
Cov(X,Y )√

Var(X)
√
Var(Y )

is called correlation coefficient of X and Y .

The correlation coefficient is a measure for the linear relation between two random

variables X and Y in the following sense.

Theorem 3.28. Let X and Y be random variables on some joint discrete probability

space with E(X2) < ∞, E(Y 2) < ∞, Var(X) > 0, Var(Y ) > 0. Then |ρ(X,Y )| ≤ 1 and
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ρ(X,Y ) = ±1 if and only if there ecists a, b ∈ R such that P(Y = aX + b) = 1. Here,

b > 0 if ρ(X,Y ) = 1 and b < 0 if ρ(X,Y ) = −1.

Proof. The statement |ρ(X,Y )| ≤ 1 is a consequence of the Cauchy-Schwarz inequality.

For ρ(X,Y ) = 1, we find

Var

(
X√

Var(X)
− Y√

Var(Y )

)
= Var

(
X√
X

)
+Var

(
Y√

Var(Y )

)
− 2Cov

(
X√

Var(X)
,

Y√
Var(Y )

)
= 1 + 1− 2 = 0.

This is equivalent to

P
(

X√
Var(X)

− Y√
Var(Y )

= c

)
= 1

for some c ∈ R, whence P(Y = a+ bX) = 1 with

b =

√
Var(X)√
Var(Y )

> 0.

The claim for ρ(X,Y ) = −1 follows analogously with b = −
√

Var(X)√
Var(Y )

< 0.

Definition 3.29. Let X1, . . . , Xn be random variables on a joint discrete probability

space with E(X2
i ) < ∞, i = 1, . . . , n. Then the matrix

Σ =
(
Cov(Xi, Xj)

)
i,j=1,...,n

is called covariance matrix of X = (X1, . . . , Xn)
′ ( ′ stands for transposition).

For any γ = (γ1, . . . , γn)
′ ∈ Rn, bilinearity of Cov implies

Var
(
γ′X

)
= γ′Σγ.

The matrix Σ is symmetric and positive semidefinite (since Var
(
γ′X

)
≥ 0 for all γ ∈ Rn).

3.3 Conditional distribution and conditional expectation

Lemma and Definition 3.30. Let X and Y be random variables on some discrete prob-

ability space (Ω,P(Ω),P). Let x ∈ R such that P(X = x) > 0. The probability measure

A 7→ P(Y ∈ A|X = x) on (ΩY ,P(ΩY )) is the conditional distribution of Y given X = x.
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The corresponding conditional probability mass function of Y given X = x is given by

pY |X=x(y) := P(Y = y|X = x) =
pX,Y (x, y)

pX(x)
.

Proof. Provided that P(X = x) > 0, we have pY |X=x(y) ≥ 0 and

∑
y∈ΩY

pY |X=x(y) =
∑
y∈ΩY

pX,Y (x, y)

pX(x)
=

1

pX(x)

∑
y∈ΩY

px,y(x, y) =
pX(x)

pX(x)
= 1.

Hence, pY |X=x : ΩY → [0, 1] is a probability mass function. Its associated probability

measure is the conditional distribution of Y given X = x.

Remark. One also writes PY |X=x(A) for P(Y ∈ A|X = x).

Example 3.31. Let X ∼ Bin(n, p) and Y ∼ Bin(m, p) be independent. Then we find

for the conditional probability mass function of X given X + Y = k:

pX|X+Y=k(j) =P(X = j|X + Y = k)

=
P(X = j,X + Y = k)

P(X + Y = k)

=
P(X = j, Y = k − j)

P(X + Y = k)
X,Y
indep.
=

P(X = j)P(Y = k − j)

P(X + Y = k)

3.21
=

(
n
j

)
pj(1− p)n−j

(
m
k−j

)
pk−j(1− p)m−(k−j)(

m+n
k

)
pk(1− p)n+m−k

=

(
n
j

)(
m
k−j

)(
n+m
k

) .

That is, the conditional distribution of X given X + Y = k is hypergeometric (Home-

work 1, Exercise 4 c)) with parameters n+m, n and k.

Definition 3.32. Let X and Y be random variables on some discrete probability space

(Ω,P(Ω),P). Let x ∈ R such that P(X = x) > 0.

(i) If
∑

y∈ΩY |y|pY |X=x(y) < ∞, the conditional expectation of Y given X = x is de-

fined as

E(Y |X = x) :=
∑
y∈ΩY

ypY |X=x(y).

(ii) If
∑

y∈ΩY y2pY |X=x(y) < ∞,

Var(Y |X = x) := E
((

Y − E(Y |X = x)
)2X = x

)
is called the conditional variance of Y given X = x.

25



In other words, conditional expectation and variance of Y given X = x are expectation

and variance corresponding to the conditional distribution of Y given X = x. Therefore,

all theorems and identities which have been shown so far for expectation and variance

transfer to the respective conditional versions.

Definition 3.33. Let X and Y be random variables on some discrete probability space

(Ω,P(Ω),P),
∑

y∈ΩY |y|pY |X=x(y) < ∞ for all x ∈ ΩX with pX(x) > 0. Let

g(x) :=

E(Y |X = x) if pX(x) > 0

0 otherwise.

Then the random variable g ◦X = g(X) is called conditional expectation of Y given X

and is denoted by E(Y |X). Correspondingly, the conditional variance of Y given X is

defined as composition h ◦X = h(X), where

h(x) :=

Var(Y |X = x) if pX(x) > 0

0 otherwise.

With this definition, conditional expectation E(Y |X) and conditional variance Var(Y |X)

are random variables themselves!

Theorem 3.34 (Properties of E(Y |X)). Let X,Y, Z be random variables on some dis-

crete probability space (Ω,P(Ω),P), E|X| < ∞, E|Y | < ∞, E|Z| < ∞. Then

(i) E
(
E(Y |X)

)
= EY

(ii) X,Y stochastically independent =⇒ E(Y |X) = EY with probability 1

(iii) Linearity: For a, b ∈ R, E(aY + bZ|X) = aE(Y |X) + bE(Z|X) with probability 1.

[If a statement holds true with P-probability 1, one also says it holds “P-almost surely”.]

Proof. (i)

E
(
E(Y |X)

)
=

∑
x∈ΩX :
pX(x)>0

E(Y |X = x)pX(x)

=
∑

x∈ΩX :
pX(x)>0

∑
y∈ΩY

y pY |X=x · pX(x)︸ ︷︷ ︸
=pX,Y (x,y)

=
∑
y∈ΩY

y
∑
xΩX

pX,Y (x, y)︸ ︷︷ ︸
=pY (y)

= EY.
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(ii) For all x ∈ ΩX with pX(x) > 0, we find

E(Y |X = x) =
∑
y∈ΩY

ypY |X=x(y) =
∑
y∈ΩY

y
pX,Y (x, y

pX(x)
=
∑
y∈ΩY

y
pX(x)pY (y)

pX(x)
= E(Y ),

where we have used that pX,Y (x, y) = pX(x)pY (y) by independence.

(iii) Homework 5, Exercise 2.

Theorem 3.35. Let X and Y be stochastically independent random variables on some

discrete probability space (Ω,P(Ω),P), f : R2 → R some function with E|f(X,Y )| < ∞.

Then

E
(
f(X,Y )

X = x0

)
= E

(
f(x0, Y )

)
(3.3)

for all x0 with P(X = x0) > 0.

Proof. For the random variable Z = f(X,Y ), we find

E(Z|X = x0) =
∑
z∈ΩZ

zpZ|X=x0)(z) =
∑
z∈ΩZ

z
P(Z = z,X = x0)

P(X = x0)

=
∑
z∈ΩZ

z
P(f(x0, Y ) = z,X = x0)

P(X = x0)

=
∑
z∈ΩZ

z
∑

y:f(x0,y)=z

P(Y = y,X = x0)

P(X = x0)

X,Y
indep.
=

∑
z∈ΩZ

∑
y:f(x0,y)=z

f(x0, y)
P(Y = y)P(X = x0)

P(X = x0)

=
∑
y∈ΩY

f(x0, y)pY (y) = E
(
f(x0, Y )

)
.

Remark 3.36. If f in Theorem 3.35 is of the form f(x, y) = y ·h(x), then (3.35) reveals

E
(
Y h(X)

X) = h(X) · E(Y |X) P-a.s.

Moreover, E(Y |X) = EY P-a.s. if X and Y are stochastically independent.

Applying the above considerations, we deduce a discrete version of Fubini’s theorem.

Theorem 3.37 (Theorem of Fubini, discrete version). Let X and Y be stochastically

independent random variables on some discrete probability space (Ω,P(Ω),P), f : R2 →
R some function with E|f(X,Y )| < ∞. Let g(x) := E

(
f(x, Y )

)
and h(y) := E

(
f(X, y)

)
.

Then

E
(
f(X,Y )

)
= Eg(X) = Eh(Y ).
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Proof. The identity is an immediate consequence of Theorem 3.34 (i) and Theorem 3.35.

Alternatively, we may verify directly

E
(
f(X,Y )

)
=
∑
x,y

f(x, y)pX,Y (x, y)

X,Y
indep.
=

∑
x

(∑
y

f(x, y)pY (y)

)
pX(x) = E

(
E
(
f(X,Y )

X)).

If X is a discrete random variable with E
(
X2
)
< ∞, then

E
(
(X − a)2

)
≥ Var(X)

for every a ∈ R by Theorem 3.13. That is, EX minimizes the deviation in quadratic

mean. In this sense, one talks of EX as the “best constant predictor” for the random

variable X. A similar optimality property is true for the conditional expectation.

Theorem 3.38. Let X and Y be random variables on some discrete probability space

(Ω,P(Ω),P), E
(
X2
)
< ∞ and ϕ : R → R some function with E

(
ϕ(X)2

)
< ∞. Then

E
((

Y − ϕ(X)
)2) ≥ E

((
Y − E(Y |X)

)2)
with equality if and only if ϕ(X) = E(Y |X) almost surely.

Proof. Define

g(x) :=

E
(
(Y − ϕ(X))2

X = x
)

if pX(x) > 0

0 otherwise.

Then E
(
(Y − ϕ(X))2

)
= Eg(X) by Theorem 3.34 (i). We prove subsequently:

E
((

Y − ϕ(X)
)2X = x

)
= E

((
Y − ϕ(x)

)2X = x
)
. (3.4)

Denoting f(x, y) := (y − ϕ(x))2 and Z := f(X,Y ) = (Y − ϕ(X))2, we find as in the

proof of Theorem 3.35 for x0 with pX(x0) > 0:

E(Z|X = x0) =
∑
y∈ΩY

f(x0, y)pY |X=x0
(y) = E

(
f(x0, Y )

X = x0
)
,

i.e. (3.4). Correspondingly,

E
((

Y − E(Y |X)
)2X = x

)
= h(x)
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with

h(x) = E
((

Y − E(Y |X = x)
)2X = x

)
.

In order to prove the claim of the theorem, it is sufficient by Homework 3, Exercise 1 b),

to show that g(x) ≥ h(x) for all x with pX(x) > 0 with equality if and only if ϕ(x) =

E(Y |X = x). But this follows from Theorem 3.13.

4 The need of continuous random variables and some examples

Example 4.1. Student S is waiting for his girlfriend. As she planned to arrive at four

o’clock in the afternoon, he considers all time points between four and five as equally

probable arrival times.

First idea: (Approximation) Decompose the interval [a, b] = [4, 5] into n subintervals of

equal length with mitpoints xn1 , . . . , x
n
n and assign to each of them the probability 1/n. If

the arrival time X could only take values in {xn1 , . . . , xnn}, then

P(c ≤ X ≤ d) =
∑

c≤xn
i ≤d

1

n
=

b− a

n

∑
c≤xn

i ≤d

1

b− a
−→
n→∞

∫ d

c

1

b− a
dx.

Definition 4.2. Let f : R → [0,∞) be integrable with
∫
f(x)dx = 1. Then the assign-

ment

P([a, b]) =
∫ b

a
f(x)dx for all intervals [a, b] ⊂ R

defines a probability distribution on (R,B(R)) (where B(R) is the Borel-σ-field → mea-

sure theory!). P is called continuous distribution and f its probability density.

The fact that P is uniquely defined and a probability measure on (R,B(R)) is proven
in the course on measure theory.

Examples 4.3.

(i) Uniform distribution U [a, b] on some interval [a, b] with f(x) = 1
b−a1[a,b](x).

(ii) Exponential distribution E(λ) with parameter λ and probability density

f(x) = λe−λx1[0,∞)(x).

(iii) Normal distribution N (µ, σ2) with parameters µ, σ2 and probability density

f(x) =
1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
.
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