Homework accompanying the lecture "Basics in Applied Mathematics"

Homework 5

Hand in: Tuesday, 19.11.2024, after the lecture in the mailbox at the Math Institut (Don't forget to put your name on your homework.

Please hand in your solutions in groups of two.)

Exercise 1 (4 points)

Suppose we roll a six sided dice repeatedly. Let N_i be the number of the roll on which we see i for the first time.

- (a) Find the joint distribution of N_1 and N_6 .
- (b) Prove that the marginal distributions of N_1 is the geometric distribution with parameter p = 1/6.

Note: The marginal distribution of X given the joint distribution of X, Y is given by

$$p_X(x) \coloneqq \sum_{y \in \Omega^Y} p_{X,Y}(x,y).$$

(c) The conditional distribution of N_6 given $N_1 = i$.

Exercise 2 (4 points)

Prove the linearity of the conditional expectation. More precisely, let X, Y, Z be discrete random variables with existing expectation then for any constants $a, b \in \mathbb{R}$ prove the equality

$$E[aY + bZ \mid X] = a E[Y \mid X] + b E[Z \mid X].$$

HINT: You may want to first prove that it suffices to show

$$\mathbb{E}[aY + bZ \mid X = x] = a \mathbb{E}[Y \mid X = x] + b \mathbb{E}[Z \mid X = x]$$
 for every $x \in \Omega^X$ with $\mathbb{P}(X = x) > 0$.

Exercise 3 (4 points)

A continuous random variable on \mathbb{R} is a type of random variable not covered in this lecture. It can take values in an inverval and for each specific $x \in \mathbb{R}$ the probability $\mathbb{P}(X = x)$ is zero. An example would be the uniform distribution on the interval [0,1]. Suppose $X \sim \text{Uinf}([0,1])$, then the probability that X lies in the interval [a,b] is precisely b-a for all $0 \le a \le b \le 1$.

The distribution of a continuous random variable X on \mathbb{R} is uniquely defined by its socalled density $f_X : \mathbb{R} \to [0, \infty)$. For every intervall [a, b], with $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$, the probability that X is in [a, b] has the form

$$\mathbb{P}(X \in [a,b]) = \int_a^b f_X(t) dt .$$

The distribution of a continuous random variable X on \mathbb{R} is also uniquely defined by its (cumulative) distribution function

$$F_X(x) := \mathbb{P}(X \le x) = \int_{-\infty}^x f_X(t) dt$$
.

Here we also see the reason behind the notation f_x and F_X , since f_X is the derivative of F_X .

- a) The density of the uniform distribution is $f_{\mathrm{Unif}([0,1])}(t) = \begin{cases} 1 & \text{for } t \in [0,1] \\ 0 & \text{else} \end{cases}$. What is the distribution function? Give $F_{\mathrm{Unif}([0,1])}(x)$ for all values $x \in \mathbb{R}$.
- b) The exponential distribution with parameter 1 satisfies $F_{\text{Exp}(1)}(x) = \begin{cases} 1 e^{-x} & \text{for } x \geq 0 \\ 0 & \text{for } x < 0 \end{cases}$. Find the density $f_{\text{Exp}(1)}$ and prove by calculation that $1 = \int_{\mathbb{R}} f_{\text{Exp}(1)}(t) \, dt$.

(This property is true for all density functions, since $1 = \mathbb{P}(X \in \mathbb{R}) = \int_{\mathbb{R}} f_X(t) dt$.)

c) The mean of a continuous random variable is given by $E[X] = \int_{-\infty}^{\infty} t f_X(t) dt$. Even better, we have

$$E[g(X)] = \int_{-\infty}^{\infty} g(t) f_X(t) dt$$

for any continuous function $g: \mathbb{R} \to \mathbb{R}$.

Calculate E[X] for $X \sim Exp(1)$.

d) The (standard) normal distribution $\mathcal{N}(0,1)$ has the density $f_{\mathcal{N}(0,1)}(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$. Prove that $\mathrm{E}[X] = 0$ for $X \sim \mathcal{N}(0,1)$. Exercise 4 (4 points)

This is a bonus exercise. The 4 achievable points are not counted to the point-total.

Two continuous random variables X, Y on \mathbb{R} can have a joint density $f_{(X,Y)}$, which will satisfy

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(s,t) f_{(X,Y)}(s,t) \, ds \, dt$$

for any continuous function g. Let (X,Y) have the jointly normal distribution

$$\left(\begin{array}{c} X \\ Y \end{array}\right) \sim \mathcal{N}\left(\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \underbrace{\left(\begin{array}{cc} a & c \\ c & b \end{array}\right)}_{=:\Sigma}\right) \,,$$

where a, b > 0 and $ab > c^2$. The joint density is

$$f_{(X,Y)}(s,t) = \frac{1}{2\pi\sqrt{\det(\Sigma)}} \exp\left(-\frac{1}{2}\begin{pmatrix} s & t \end{pmatrix} \cdot \Sigma^{-1} \cdot \begin{pmatrix} s \\ t \end{pmatrix}\right).$$

Prove that the covariance Cov[X, Y] is equal to c. You may use:

i)
$$E[X] = 0 = E[Y]$$

ii)
$$\Sigma^{-1} = \frac{1}{ab-c^2} \begin{pmatrix} b & -c \\ -c & a \end{pmatrix}$$

iii)
$$\int_{-\infty}^{\infty} s \exp\left(-\frac{1}{2} \frac{(s-A)^2}{B}\right) ds = \sqrt{2\pi B} A$$
 for all $A \in \mathbb{R}$ and $B > 0$

iv)
$$\int_{-\infty}^{\infty} t^2 \exp\left(-\frac{1}{2}\frac{t^2}{B}\right) dt = \sqrt{2\pi B} B$$
 for all $B > 0$

Programming exercise 5

(2 points)

Let us introduce the uniform distribution U([0,1]) on the interval [0,1]. Let $Z \sim U([0,1])$ be an continuous random variable, which means that $\mathbb{P}(Z \leq z) = z$ for all $z \in [0,1]$.

We can simulate draws from any one dimensional distribution using draws from Z. This is called the inverse transform sampling.

Guided by a jupy ter notebook you will implement such an inverse transform sampling for discrete variables.