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Abstract. We propose a general one-factor model for the term structure of inter-
est rates which based upon a model for the short rate. The dynamics of the short
rate is described by an appropriate function of a time-changed Wiener process.
The model allows for perfect fitting of given term structure of interest rates and
volatilities, as well as for mean reversion. Moreover,everytype of distribution of
the short rate can be achieved, in particular, the distribution can be concentrated
on an interval. The model includes several popular models such as the gener-
alized Vasicek (or Hull-White) model, the Black-Derman-Toy, Black-Karasinski
model, and others. There is a unified numerical approach to the general model
based on a simple lattice approximation which, in particular, can be chosen as a
binomial orN -nomial lattice with branching probabilities 1/N .
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1. Introduction

Over the last decade, the increasing volume in interest rate related derivative
products has caused immense efforts in modeling the stochastic behaviour of
interest rates. Due to the fact that for each point in time there is a whole term
structure of interest rates, realistic modeling is much more involved than the
popular and useful modeling of stock prices by the famous Black and Scholes
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model. From the practitioners point of view, it is important to develop not only
realistic but also computationally tractable models. In particular, a realistic model
should be consistent with the current term structure of interest rates and bond
prices should tend to the face value of the bond as time approaches the maturity
of the bond.

A popular class of models of practical relevance is the class of so-called
one-factor models. There, the short rate (rt ) is usually given by a stochastic
differential equation of Markovian type

drt = µ(rt , t)dt + σ(rt , t)dWt

driven by a Wiener processW. Some examples with their specification ofµ and
σ are:

µ(rt , t) σ(rt , t)
Ho and Lee θt σ
Vasicek (generalized) θt − at rt σt

Cox, Ingersoll, and Ross (generalized) θt − at rt σt
√

rt

Black and Karasinski rt (θt − at ln(rt )) rtσt

Based on the general framework of arbitrage free pricing, the given dynamics
of the short rate determines the stochastic behaviour of zero bond prices and thus,
of the whole yield curve.

To be more precise, let us introduce some basic notation. Let (Ω,F ) be a
measurable space equipped with a filtration IF = (Ft )t≥0. The setΩ is representing
the set of all states of the world andF (resp.Ft ) are the events in the economy
observable (resp. untilt). Now let B(t ,M )(ω), t ≤ M , ω ∈ Ω, denote the price
at time t of a zero bondwith maturity M and face value of 1. We assume that
B(.,M ) is an IF-adapted stochastic process. Theyield curve(rt,M )M>t is then
given by

rt,M = − ln B(t ,M )
M − t

.

Supposing the limit
rt = lim

M↓t
rt,M

exists, we call (rt )t≥0 the short rateprocess. We denote by

βt = exp(
∫ t

0
rudu)1

the savings account, which is the price at timet of one unit invested at time 0
and rolled over continuously at the short rate.

Following the spirit of Harrison and Pliska [10], we assume that the market
is complete and without arbitrage opportunities. This is essentially equivalent to
the following assumption:

1 We assume that the integral exists.
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There exists a probabilityQ on (Ω,F ) such that for every security S without
intermediate payments on a time interval[0,M ] its price process under the savings
account as numeraire, St/βt , is a Q-martingale.

This yields

St = IEQ

(
e−
∫ M

t
ruduSM |Ft

)
,

and, in particular,

B(0,M ) = IEQ

(
e−
∫ M

0
rudu
)
,

which is the condition of consistency with the current term structure of interest
rates. For an interest rate dependent contingent claimCM = C((ru)u≤M ) at time
M , its price at timet < M is then given by

Ct = IEQ

(
e−
∫ M

t
ruduCM |Ft

)
. (1)

There are principally four techniques to calculateCt (closely related to each
other):
(i) PDE-technique.Using the Markov property of (rt ), the conditional expectation

Ct = IEQ

(
e−
∫ M

t
ruduCM |rt

)
is a certain functionCt = C(t ,M , rt ) which, by the

famous Feynman-Kac theorem (cf. [18]), turns out to be a solution of a partial
differential equation (PDE). Except some particular cases (e.g. the generalized
Vasicek or Cox-Ingersoll-Ross model), the PDE can not be solved explicitly.
However, numerical methods are available.
(ii) Numeraire change.This technique is basically a trick for easier calculation of
the expectation (1) by choosing an appropriate numeraire in which all securities
are measured. For example, replacing the savings accountβt by the zero bond
B(t ,M ) as new numeraire and the measureQ on FT by QM with

dQM =
e−
∫ M

0
rudu

B(0,M )
dQ,

the priceC0 of the contingent claimC is

C0 = B(0,M )IEQM C .

Knowing the distribution ofC under the new probabilityQM , the expectation can
be calculated. For interest rate contingent claims, this technique was introduced
in [4]. The use of this powerful technique is demonstrated e.g. in [5], [6], [7].
(iii) Weak convergence.Suppose we have a sequencer n of stochastic processes
weakly converging tor : r n ⇒ r . Then under some technical conditions,

IEQ

(
e−
∫ M

0
r n

u duC(r n)

)
→ IEQ

(
e−
∫ M

0
ruduC(r )

)
.
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Suppose nowr n is a Markov process with a discrete state space. Then the expec-

tation IE

(
e−
∫ M

0
r n

u duC(r n)

)
can be calculated by so-called backward induction,

which is based on the rule of iterated conditional expectations and the Markov
property. This is the core of the popular lattice methods (cf. Hull and White
[12],[13],[14], [15]) which are also related to explicit finite difference methods
in the PDE-approach.

(iv) Monte-Carlo simulation.The expectation IE

(
e−
∫ M

0
ruduC(r )

)
is approxi-

mated by simulating a large number of realizations of e−
∫ M

0
ruduC(r ) and cal-

culating its arithmetic mean, which, by the law of large numbers, tends to the
expectation. This technique is very time consuming since a large number of sim-
ulations is necessary to obtain sufficiently precise results. Improvements can be
achieved using several variance reduction techniques.

The present paper introduces a general class of one-factor models and a so-
called lattice approximation of the short rate which is then used in the framework
of approach (iii) to evaluate prices of interest rate dependent contingent claims.
Also, we discuss the calibration of our model to the current term structure of
interest rates and to other market data.

2. A general class of term structure models

In this section, we are going to propose a general class of one-factor term structure
models. The model allows for a perfect fitting of a given term structure of interest
rates and volatilities as well as for mean reversion. One of the major advantages
of our approach is, thateverytype of distribution of the short rate can be achieved.

2.1. The model

Rather than setting up a model implicitly by a stochastic differential equation for
the short rate, our approach is based on an explicit equation for the short rate.
We will consider the following model for the short rate (rt ):

rt = F
(
f (t) + g(t)WT(t)

)
, t ≥ 0, (2)

whereW is a Wiener process on a filtered probability space (Ω,F ,Q), IFW , and

f |[0,∞) −→ IR,

is a continuous function,



A general class of one-factor models 7

g|[0,∞) −→ (0,∞),

is continuous and positive, and,

T|[0,∞) −→ [0,∞),T(0) = 0,

F |IR −→ IR,

are both continuous strictly increasing functions. The processWT(t) is a so-called
time-changed Wiener process; it is a Wiener process running with a new (de-
terministic) clockT(t). The information generated by observing the short rate is
given by the filtration IF = (Ft ), whereFt = F W

T(t).
As we shall see in the next section, the generalized Vasicek and the Black-

Derman-Toy, or Black-Karasinski, model are special cases of our general model.
Let us now discuss the role of the ingredients of the model. The random

variableXt = f (t) + g(t)WT(t) is Gaussian with meanf (t) and varianceg2(t)T(t).
The correlation ofXt andXs is T(t∧s)√

T(t)T(s)
. Thus the time-changeT(t) determines

primarily the correlation structure of the processXt .
The functionF transforms the Gaussian variableXt into a random variable

with distribution functionN ◦F (−1) 2. Choosing a suitable functionF , we are able
to realizeeverytype of continuous distribution of the short rate. In particular, if
the imageF (IR) is an intervalF (IR) = (r∗, r ∗), the short ratert takes values in
(r∗, r ∗) only, never reaching the upper and lower boundariesr∗, r ∗.

The functionf (t) is used for the fitting of the current term structure of interest
rates; in particular,f (0) = F (−1)(r0).

Since the variance ofXt is justg2(t)T(t), the functiong(t) together withT(t)
determine the variance of the short rate.

The functiong(t) can be interpreted as a (positive or negative) mean reversion
force. For example, letg(t) = e−at with some positivea. Then g(t) causes a
reduction of the stochastic term in the definition ofrt , and this reduction increases
as t increases. If, moreover,T(t) =

∫ t
0 g

−2(u)σ2du as in the simple Vasicek, or
Black-Karasinski, model, the variance ofF (−1)(rt ) = f (t) + g(t)WT(t) will tend to
the constant levelσ2/2a if t increases to infinity. Ifg2(t) decreases even faster
thanT(t), i.e. g2(t)T(t) → 0, we have|rt − F (f (t))| → 0.

Following the general theory (cf. Sect. 1) we assume that:

For every security S without intermediate payments on a time interval[0,T] its
price process under the savings account as numeraire, St/βt , is a Q-martingale.

Remarks. 1. A slightly more general model would be

rt = F (t ,WT(t)), t ≥ 0,

and our numerical approach below would also work for this model. Nevertheless,
the additional structure in our setup (2) will give us more insight into the role of

2 N denotes the Gaussian cummulative distribution function andF (−1) is the inverse function to
F .
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the ingredients of the model, and it will simplify the calibration of the model to
market data.
2. Observe that our general model (2) is a generalization of a class of so-called
Brownian-path independent models introduced by Jamshidian [17]. The main
difference to these models is the time-change in the Wiener process which allows
us to cover the majority of the popular models used in practice.

2.2. Examples

Let us now review how several popular models fit into our general model.

(i). The generalized Vasicek model.In this model, the short rate (rt ) is given by
the stochastic differential equation

drt = (θt − at rt )dt + σt dBt ,

with some Wiener process (Bt ). The solution of this linear stochastic differential
equation is known to be given by (cf. e.g. [18])

rt = g(t)

[
r0 +

∫ t

0
g−1(u)θudu +

∫ t

0
g−1(u)σudBu

]
,

whereg(t) = e−
∫ t

0
audu. The source of randomness inrt is a stochastic Ito integral

w.r.t. the Wiener processB and with a deterministic integrand. We now use a
well-known lemma (cf. e.g. [18], Ch.3.4)

Lemma 1. Let h|[0,∞) → IR be such that
∫ t

0 h2(u)du <∞, t ≥ 0, and consider

the stochastic integral
∫ t

0 h(u)dBu. Then there exists a Wiener process W such
that ∫ t

0
h(u)dBu = WT(t), t ≥ 0,

where T|[0,∞) → [0,∞) is given by

T(t) =
∫ t

0
h2(u)du.

Applying this lemma, the short rate process in the generalized Vasicek model
can by written as

rt = f (t) + g(t)WT(t), t ≥ 0,

where

g(t) = e−
∫ t

0
audu

f (t) = g(t)r0 + g(t)
∫ t

0
g−1(u)θudu

T(t) =
∫ t

0
g−2(u)σ2

udu.
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Consequently, the generalized Vasicek model fits into our general model for the
caseF (x) = x.

(ii). The Black-Derman-Toy and the Black-Karasinski model.In the Black-
Karasinski model, the short rate (rt ) is given by the stochastic differential equation

d ln(rt ) = (θt − at ln(rt ))dt + σt dBt ,

with some Wiener process (Bt ). The solution of this equation is

ln(rt ) = g(t)

[
ln(r0) +

∫ t

0
g−1(u)θudu +

∫ t

0
g−1(u)σudBu

]
,

whereg(t) = e−
∫ t

0
audu. Again, using Lemma 1, we see that the short rate process

satisfies
rt = ef (t)+g(t)WT(t) , t ≥ 0,

where

g(t) = e−
∫ t

0
audu

f (t) = g(t) ln(r0) + g(t)
∫ t

0
g−1(u)θudu

T(t) =
∫ t

0
g−2(u)σ2

udu.

In case of the continuous limit of the popular Black-Derman-Toy model, we have
at = −σ′t/σt , 3 which impliesg(t) = σt/σ0 and T(t) = tσ2

0. Therefore, in the
Black-Derman-Toy model the short rate process (rt ) reduces to

rt = ef (t)+σ(t)Wt , t ≥ 0.

Both models fit into our general model for the caseF (x) = ex .

(iii). The quadratic Gaussian model.In the quadratic Gaussian model, the short
rate (rt ) is a second order polynomial of a certain state variable which is Gaussian
(cf. e.g. [6]). For example, let

dξt = (a1(t) + a2(t)ξt )dt + b(t)dBt ,

and definert = ξ2
t . As we have seen in our first example,ξt is of the form

ξt = f (t) +g(t)WT(t). Thusrt = F
(
f (t) + g(t)WT(t)

)
with F (x) = x2. In particular,

let a1(t) ≡ 0, 2a2(t) = −at and 2b(t) = σt . Then by Ito’s formula

drt = (b2(t)− at rt )dt + σt
√

rt dB̃t ,

whereB̃ is a certain Wiener process. But this is a special case of the well-known
Cox-Ingersoll-Ross model with time dependent coefficients.

3 σ′t denotes the derivative ofσt . It is assumed thatσ is smooth.
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(iv). The Sandmann-Sondermann model.Sandmann and Sondermann [19] propose
a model which dynamically combines properties of a lognormal and a normal
model. Their approach is to model the effective annual rate by a lognormal setup
and then transform this into a model for the continuously compounded rate. One
motivation for this approach was, that lognormal models for the continuously
compounded rate yield infinite expected rollover returns, whereas the model pro-
posed by Sandmann and Sondermann overcomes this drawback. The continuous
limit of their model is given by

rt = ln(1 +ξt ), where

dξt = µ(t)ξt dt + σ(t)ξt dBt ,

with some Wiener processB. The solution (ξt ) of the second equation is given
by

ξt = exp

(
ln(ξ0) +

∫ t

0
σ(u)dBu +

∫ t

0
(µ(u)− 1

2
σ2(u))du

)
= exp

(
WT(t) + f (t)

)
,

where

T(t) =
∫ t

0
σ2(u)du, f (t) = ln(ξ0) +

∫ t

0
(µ(u)− 1

2
σ2(u))du

and W is a Wiener process. Consequently, the short rate in the Sandmann-
Sondermann model is given by

rt = F
(
f (t) + WT(t)

)
, with F (x) = ln(1 + ex).

The model in its original form does not incorporate mean reversion. However,
we can easily modify the model to involve mean reversion. To this end let,

for example,g(t) = e−
∫ t

0
a(s)ds with some deterministic integrable functiona(s).

Then a generalization of the Sandmann-Sondermann model which includes mean
reversion would be

rt = F
(
f (t) + g(t)WT(t)

)
, with F (x) = ln(1 + ex).

3. A unified lattice approach

The reason for introducing our model (2) was not only its generality, but also to
present a simple numerical approach to the valuation of interest rate dependent
claims, based on a lattice technique as explained in (iii) of the introduction. The
main task is to find an appropriate sequencer n of processes (weakly) converging
to r and such that expressions of the form

IE

(
e−
∫ T

0
r n

u duC(r n)

)
can be calculated more easily.
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Hull and White (cf. [14], [15]) propose an approach based upon a trinomial
lattice approximation ofr . Due to the fact thatr is an inhomogeneous diffusion,
the probabilities of the branchings in their lattice depend on the specific point in
time and on the state ofr n. Therefore, building the lattice on a computer requires
considerable memory resources.

Our approach is much simpler; we will provide a method to construct a simple
and easy to implement lattice approximation forr . As a special case we obtain a
N -nomial lattice, where the probabilities for all branchings are equal and 1/N .

3.1. Constructing a lattice for the short rate

Since the short rate (rt ) is a deterministic (yet time dependent) function of a time-
changed Wiener process (WT(t)), it suffices to find a suitable lattice approximation
for (WT(t)). This is easily accomplished using a generalization of the well-known
Donsker’s invariance principle (cf. [8]).

Lemma 2. For every n let0 = tn
0 < tn

1 < . . . be a discretization of the time axis
satisfyingsupi |tn

i − tn
i−1| ↓ 0 as n→∞. Given a sequence∆n ↓ 0, for every n let

(Yn
i )i =1,2,... be a sequence of independent random variables taking values in the

set Ln = {k∆n : k = 0,±1, . . . ,±K}. Denote by pni (k) the probability of taking
the value k∆n: pn

i (k) = Q(Yn
i = k∆n). Now assume that the probabilities pn

i (k)
are such thatIEQYn

i = 0, VarQYn
i = T(tn

i )− T(tn
i−1). Define

kn(t) = sup{i : tn
i ≤ t}

and

M n
t =

kn(t)∑
i =1

Yn
i . (3)

Then the process(M n
t ) (weakly) converges to(WT(t)).

The proof of this lemma is easily accomplished using Theorem 7.1.4 of [8].
For every n, the process (M n

t ) is a square integrable martingale with jumps
bounded byK∆n. The previsible increasing process in the Doob-Meyer decom-
position of the submartingale (M n)2 is just

An
t =

kn(t)∑
i =1

VarQYn
i = T(tn

kn(t)).

Consequently, for everyt , An
t → T(t) as n → ∞. Moreover, forn → ∞ the

jumps of M n and An tend to zero uniformly on every compact time interval.
Now the assertion of the lemma follows from Theorem 7.1.4 of [8]. �

Let us illustrate the assertion of the lemma by two simple examples.

Example 1: Binomial lattice with equal branching probabilities of1/2.
Let n > 0 and define
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tn
i = inf{t ≥ 0 : T(t) > i /n}, i = 0, 1, 2, . . .

Let (Yn
i )i =1,2,... be a sequence of independent random variables withQ(Yn

i =
1√
n

) = Q(Yn
i = − 1√

n
) = 1

2. Then the process

M n
t =

kn(t)∑
i =1

Yn
i =

[nT(t)]∑
i =1

Yn
i

4

converges weakly to (WT(t)). Starting atM n
0 = 0 the processM n jumps with

equal probability1
2 by ± 1√

n
at timest where the new clockT(t) first exceeds

a level i
n , i = 1, . . .. This means that the jump times are equidistant in the new

clock T(t) but in general their distances in real timet differ from step to step.

-

6

1
n

2
n

3
n

4
n

5
n

tn
1 tn

2 tn
3 tn

4 tn
5 t

T(t)

It is easy to generalize the binomial lattice approximation of (WT(t)) to aN -nomial
lattice with equal branching probabilities of 1/N .

Despite its simplicity, the above binomial lattice approximation has the dis-
advantage that the discretization in time is completely determined by the time-
changeT(t). For example, in the simple Vasicek modelT(t) = σ2

2a (e2at−1), a > 0
and the time-change increases exponentially causing a relatively tight discretiza-
tion in time for large time pointst compared to small time points.

This shortcoming can be avoided using a lattice approximation with more
than two branches in every time step, which allows us to chose the discretization
in time to a certain extend independently from the time-changeT(t). The next
example seems to be the simplest example in this direction. It gives the freedom
to chose an appropriate sequence of time discretizations. However, in order to
match the covariance structure of the process (WT(t)) in the limit, we have to give
up something and make the branching probabilities varying from step to step.

Example 2: Trinomial lattice with time varying branching probabilities.
Let 0 = tn

0 < tn
1 < . . . be a sequence of discretizations of the time axis and let

4 [nt] denotes the integer part ofnt.
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∆n ↓ 0 be the grid width in the state space of our lattice approximation. We
assume that

T(tn
i )− T(tn

i−1)

∆2
n

< 1, i = 1, 2, . . . (4)

Now for everyn let (Yn
i )i =1,2,... be a sequence of independent random variables

taking values in{−∆n, 0, ∆n} with probabilities

Q(Yn
i = −∆n) = Q(Yn

i = ∆n) = pn
i =

T(tn
i )− T(tn

i−1)

2∆2
n

,

Q(Yn
i = 0) = 1− 2pn

i .

Then the process (M n
t ) defined by (3) converges weakly to (WT(t)).

Remark. Assuming condition (4) is fulfilled there is also a binomial lat-
tice approximation with time varying branching probabilitiesbut now with
time varying jumps. For everyn let Yn

i take the two valuesδn
i := ∆n −√

∆2
n − (T(tn

i )− T(tn
i−1)), δn

i − 2∆n with probabilities

Q(Yn
i = δn

i ) = 1− δn
i

2∆n
, Q(Yn

i = δn
i − 2∆n) =

δn
i

2∆n
.

Then (M n
t ) given by (3) converges weakly to (WT(t)). Observe that although the

jumps are varying from time step to time step the approximation gives a lattice,
i.e. is recombining. Indeed, the nodes of the lattice at timetn

i are {∑i
j =1 δ

n
j −

2k∆n : k = 0, 1, . . . , i }.

Based upon Lemma 2 we are now able to give a lattice approximation for
the short rate process (rt ) given by (2),

rt = F (f (t) + g(t)WT(t)).

From the above approximation for (WT(t)) and from the continuity of the functions
F , f , g, we get the following simple approximating lattice for (rt ).

Let 0 = tn
0 < tn

1 < . . ., ∆n and the sequence of random variables (Yn
i )i =1,2,...

be as in Lemma 2. The approximating latticer n at tn
i takes the values

r n
tn
i
(j ) = F

(
f (tn

i ) + g(tn
i )j∆n

)
, j = −iK ,−iK + 1, . . . , iK − 1, iK ,

and, from a nodeF (f (tn
i ) + g(tn

i )j∆n) at time tn
i , it branches with probability

pn
i +1(k) to

r n
tn
i +1

(j + k) = F
(

f (tn
i +1) + g(tn

i +1)(j + k)∆n

)
at time tn

i +1.

In the case of the binomial lattice of Example 1 we have∆n = 1√
n

, K = 1,

pn
i (−1) = pn

i (1) = 1
2 andpn

i (0) = 0, and we can illustrate the lattice approximation
with the following picture
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Observe that building the lattice for (rt ) as in Example 1 does not require
extra memory on a computer; once the functionsF , f , g and the time-changeT(t)
are known, all nodes of the lattice and their probabilities are known. The same
holds true for a trinomial lattice as in Example 2; given the time discretization
and lattice width, the approximating lattice (r n

t ) is completely determined by
F , f , g and the time-changeT(t).

Calibrating the model to market data is done by estimating the functions
F , f , g andT(t). For example, as explained in Sect. 2.1, the functionf determines
the term structure of interest rates implied by the model. Therefore, calibrating
the model to the current term structure of interest rates, requires estimating the
function f . We will address to these problems in Sects. 3.2 and 3.3.

Usually, interest rate related contingent claims depend not directly on the
short rate but rather on several zero bond prices. Therefore, we are interested in
a lattice approximation for prices of zero bonds. Using our lattice for the short
rate, it is easy to obtain a respective lattice approximationBn(t ,M ) for the price
of a zero bondB(t ,M ). For simplicity of notation we keepn fixed and suppress
the upper index indicating the dependence onn

Let iM be such thattiM < M ≤ tiM +1. Then the values forBn(tiM ,M ) are

Bn(tiM ,M )(j ) = exp
[−F

(
f (tiM ) + g(tiM )j∆

)
(M − tiM )

]
,

j = −iM K , . . . , iM K . For i < iM the nodes forBn(ti ,M ) are calculated back-
wards

Bn(ti ,M )(j ) =
k=K∑

k=−K

e−F (f (ti )+g(ti )(j +k)∆)(ti +1−ti )pi +1(k)Bn
(
ti +1,M

)
(j + k)

j = −iK ,−iK + 1, . . . , iK − 1, iK . Having accomplished this construction, we
obtain a lattice approximationBn(t ,M ) of B(t ,M ); being at a nodeBn(ti ,M )(j )
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at timeti , the latticeBn branches with a probability ofpi +1(k) to Bn(ti +1,M )(j +k),
k = −K , . . . ,K at timeti +1. Now, the well-known backwards iteration technique
can be applied to evaluate European or American options on the zero bond
B(t ,M ). Observe, that in general it is necessary to construct the lattice for the
zero bond until its maturity and not only until the maturity of the option, which
can be very time and memory consuming.

A remarkable exception is provided by Gaussian models for whichF (x) = x.
For these models, prices of zero bonds, at every point in timet , can be expressed
analytically as a function of the short rate at timet . Thus, our lattice for the short
rate immediately gives us a lattice for every zero bond. We will investigate this
in more detail in Sect. 4.

3.2. Fitting the model to the term structure of interest rates

Suppose now we know only the functionsF , g and the time-changeT(t) of our
model. The unknown functionf has to be determined in order to calibrate the
model to the current term structure of interest ratesB(0,M ), 0 < M . We use the
known technique of forward induction (cf. [17]).

Suppose we are in our approximating lattice framework withti = tn
i , rti (j ) =

r n
tn
i
(j ) etc. as in the preceding section. LetAD(ti , j ) 5 denote the price at time 0

of a security that pays one unit at timeti in statej , and 0 otherwise. Then, by
(1) and the rule of iterated conditional expectations

AD(ti , j ) = IEQ

(
i−1∏
l =0

e−rtl ·(tl +1−tl )1{ti ,j }

)
6

= IEQ

(
IEQ

(
i−1∏
l =0

e−rtl ·(tl +1−tl )1{ti ,j }|Fti−1

))

= IEQ

(
i−1∏
l =0

e−rtl ·(tl +1−tl )IEQ
(
1{ti ,j }|Fti−1

))
.

In view of

IEQ
(
1{ti ,j }|Fti−1

)
=

min(K ,j +(i−1)K )∑
k=max(−K ,j−(i−1)K )

1{ti−1,j−k}pi (k)

and, rti−11{ti−1,m} = rti−1(m)1{ti−1,m}, from the above equality forAD(ti , j ) we
obtain

5 AD(ti , j ) is a so-called Arrow-Debreu price.
6 1{ti ,j} denotes the random payoff which is one unit in statej at time ti , and 0 otherwise.
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AD(ti , j ) = (5)
min(K ,j +(i−1)K )∑

k=max(−K ,j−(i−1)K )

AD(ti−1, j − k)pi (k)e−rti−1(j−k)(ti−ti−1)

j = −iK , . . . , iK .

Moreover, again using (1), we have,

B(0, ti ) =
(i−1)K∑

j =−(i−1)K

AD(ti−1, j )e−rti−1(j )(ti−ti−1). (6)

Equations (5), (6) are the basis for our calibration to the current term structure
of interest rates.

First, for t0 = 0 we putf (t0) = F (−1)(r0). For t1 we have

AD(t1, j ) = e−r0t1p1(j ), j = −K , . . . ,K ,

and, using (6),

B(0, t2) = e−r0t1
K∑

j =−K

e−F (f (t1)+g(t1)j∆)(t2−t1)p1(j ). (7)

The unknownf (t1) can be calculated from this. More generally, suppose we have
already foundf (t0), . . . , f (ti−1). Then AD(ti , j ) can be calculated from (5) and
by (6)

B(0, ti +1) =
iK∑

j =−iK

AD(ti , j )e−F (f (ti )+g(ti )j∆)(ti +1−ti ).

From this equation, we calculatef (ti ). Usually, a simple numeric algorithm such
as the Newton algorithm or regula falsi works quite well.

3.3. Calibrating the model to further market data

As outlined in Sect. 2.1, the time-changeT(t) and the functiong(t) together
determine the volatility and the mean reversion of the short rate. There is a
compelling need for calibrating these inputs of our model to match further in-
formation from the market. From the point of view of a practitioner, observable
market information is provided by prices of liquid derivative instruments.

Suppose we haveN liquid derivative instruments with pricesP1, . . . ,PN

and maturitiesM1, . . . ,MN . The prices of these instruments as provided by
our model depend upon the choice ofT(t) and g(t). We denote them by
C1(T, g), . . . ,CN (T, g) always assuming that the model is fitted to the current
term structure of interest rates as described in Sect. 3.2. ThenT and g should
be determined such that the difference betweenPi and Ci (T, g) gets as small
as possible. One may think of an analogous algorithm as described in Sect. 3.2,
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where we successively determinedf (ti ), i = 1, 2, . . .. However, if for example,
Ci (T, g) is a price of a swaption, it involves not only the functionsT(t), g(t) for
t ≤ Mi , but for a much longer period (namely until the end of the swap). It is
therefore, in general, unrealistic, to hope for a tractable way to do an analogous
successive calibration in a feasible time frame.

One way out of this problem is to describe the functions to be calibrated
by a finite set of parametersα1, . . . , αk : T(t) = T(t)(α1, . . . , αk), g(t) =
g(t , α1, . . . , αk). For example, as in the Vasicek model,α1 = a, α2 = σ and
T(t) = σ2

2a

(
e2at − 1

)
, g(t) = e−at. Then one can determine the parameters

α1, . . . , αk by a numerical algorithm such that the deviation of the theoretical
prices from the market prices becomes minimal:

N∑
i =1

(Ci (T, g)− Pi )
2 → min .

This approach is proposed, for example, by Hull and White [15] and they have
found a rather good calibration in the Vasicek model using two parameters.

Other authors use the volatility curve (cf. [2],[3],[17]), to say the current
volatility of the yield on zero bonds of all maturities, or prices of contingent
claims on the short rate, such as differential caps (cf. [3]) as market information.
However, this information is hardly observable from the market. Nevertheless,
we describe how our model can be calibrated to such information.

Let v(t ,M ), M > t , denote the volatility structure, that isv(t ,M ) is the
volatility at time t of the yield corresponding to maturityM :

v(t ,M ) = Var Q (ln(B(t ,M ))) .

Our aim is to calibrate the model to the term structure of interest rates and, at
the same time, to the term structure of volatilities.

Suppose we are in our lattice framework as described in Sect. 3.1. Then the
term structure of interest rates is given byB(0,M ), M > 0, and the current
volatility structure is

v(t1,M ) =
K∑

j =−K

ln2 B(t1,M )(j )p1(j )

−
 K∑

j =−K

ln B(t1,M )(j )p1(j )

2

, M > t1. (8)

In the binomial lattice approximation of Example 1, the time-changeT(t) is
determined by the pointsti whereT(t) first exceeds the numberin . Thus cali-
brating the time-changeT(t) to market data is done by determining successively
the pointsti , i = 1, . . ..
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In the general lattice approximation the calibration of the time-changeT(t)
is done by solving for the appropriate probabilitiespi (k) given the discretization
in time 0 = t0 < t1 < . . . However, recall that both, the time-changeT(t) and
the functiong(t) can be chosen in order to calibrate the model to the volatility
structure.

To describe the calibration technique by forward induction, we need the prices
at time t1 and statem of a security that pays one unit at timeti in statej , and 0
otherwise,i ≥ 2. We denote them byADt1,m(ti , j ). Then using (1) and the rule
of iterated conditional expectations, we get the following identities which are
analogous to (5) and (6). Fori ≥ 2

ADt1,m(ti , j ) =
min(K ,j +(i−1)K )∑

k=max(−K ,j−(i−1)K )

ADt1,m(ti−1, j − k)pi (k)e−rti−1(j−k)(ti−ti−1)

j = −iK , . . . , iK , (9)

B(t1, ti )(m) =
(i−1)K∑

j =−(i−1)K

ADt1,m(ti−1, j )e−rti−1(j )(ti−ti−1). (10)

We start our calibration withf (t0) = F (−1)(r0) and t1 known. Then from (7)

B(0, t2) = e−r0t1
K∑

j =−K

e−F (f (t1)+g(t1)j∆)(t2−t1)p1(j ). (11)

Using (10) we get

B(t1, t2)(m) = e−F (f (t1)+g(t1)m∆)(t2−t1) (12)

v(t1, t2) =
K∑

j =−K

ln2 B(t1, t2)(j )p1(j )

−
 K∑

j =−K

ln B(t1, t2)(j )p1(j )

2

. (13)

Substituting (12) into (13), together with (11) we obtain two equations which
have to be solved for the unknownsf (t1), g(t1), p1(.) (resp.t2 in the case of the
binomial lattice of Example 1). IfT(t) (resp.g(t)) is given we have, of course,
only two unknowns.

Now suppose we have already foundf (t1), . . . , f (ti−1), g(t1), . . . , g(ti−1) and
the probabilitiesp1(.), . . . , pi−1(.) (resp. ti in the case of the binomial lattice).
Then calculateAD(ti , j ) andADt1,m(ti , j ) from (5) resp. (9). From this we derive
B(0, ti +1) using (6) andB(t1, ti +1)(m) using (12). Together with (8) applied for
v(t1, ti +1) this yields two equations for the unknownsf (ti ), g(ti ) and the proba-
bilities pi (.) (resp.ti +1) to be solved.
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3.4. Calibrating volatility in the Black-Derman-Toy model

In the particular case of the Black-Derman-Toy model, i.e., in the case ofF (x) =
exp(x) in our general model, the model can be explicitly calibrated to the term
structure of volatilities. Recall from Sect. 2.2(ii), that the time change for the
Black-Derman-Toy model is justT(t) = tσ2

0.
Suppose the term structure of volatilities is given by the at the money forward

volatilities σ(s, t) in a Black model, i.e., to value an at the money caplet with
reference period (s, t) in a Black (lognormal rate) model, the market usesσ(s, t)
as appropriate volatility. For a caplet with reference period (s, t) the Black model
postulates a lognormal distribution of the ratezs fixed at times for the period
(s, t) with variance of lnzs

Var ln zs = σ2(s, t)s.

Taking our lattice approximation with discretization in timeti , i = 1, . . ., the ran-
dom variablerti is the rate at timeti for the period [ti , ti +1). Thusrti corresponds
to zti in the Black model. Moreover,rti has a distribution that is approximately
lognormal with variance of lnrti

Var Q ln rti = g2(ti )T(ti ) = g2(ti )σ
2
0ti .

This leads us to an explicit calibration of our lattice model to the given term
structure of volatilities; simply putσ0 = 1 and

g(ti ) = σ(ti , ti +1), i = 1, 2, . . . . (14)

Some tests have shown that, in case of a Black-Derman-Toy model, this calibra-
tion technique yields quite good results. The calibration error for every single
caplet of a cap is usually less than 1%.

4. Special example: Gaussian short rates

For the case ofF (x) = x in our general model, the short rate is a Gaussian and a
Markovian process. If moreover, the functionsf , g andT(t) are differentiable, the
model reduces essentially to the generalized Vasicek model, which was studied
in detail by several authors (cf. [4],[5],[6],[7],[12],[15],[16]). For the generalized
Vasicek model, the priceB(t ,M ) of a zerobond can be expressed explicitly as
a function of the short ratert at time t . As a consequence, the model can be
analytically calibrated to the term structure of interest rates and to the term
structure of volatilities. Also, once having a lattice approximation for the short
rate we get immediately an appropriate lattice approximation for all zero bonds.

In this section, we are going to derive these results for our slightly more
general Gaussian model.

Let rt = f (t) + g(t)WT(t), t ≥ 0. Then by (1) and the Markov property of the
short ratert
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B(t ,M ) = IEQ

(
e−
∫ M

t
rudu|Ft

)
= IEQ

(
e−
∫ M

t
rudu|rt

)
= G(t ,M , rt )

with a certain functionG. We are interested in an explicit expression forG. We
have∫ M

t
rudu =

∫ M

t
f (u)du +

∫ M

t
g(u)(WT(u) −WT(t))du + WT(t)

∫ M

t
g(u)du,

where the second integral on the right hand side is independent ofFt and the
last term is measurable w.r.t.Ft . Moreover,∫ M

t
g(u)(WT(u) −WT(t))du

is Gaussian with expectation 0 and variance
∫ M

t

(∫ M
u g(v)dv

)2
dT(u). This yields

IEQe−
∫ M

t
g(u)(WT(u)−WT(t))du = e

1
2

∫ M

t

(∫ M

u
g(v)dv

)2
dT(u)

and thus

B(t ,M ) =

exp

{
−
∫ M

t
f (u)du +

1
2

∫ M

t

(∫ M

u
g(v)dv

)2

dT(u)− rt − f (t)
g(t)

∫ M

t
g(u)du

}
.

(15)
Observe that the right hand side of this equality provides just the desired function
G(t ,M , rt ). For t = 0, in view of f (0) = r0, (15) implies

B(0,M ) = exp

{
−
∫ M

0
f (u)du +

1
2

∫ M

0

(∫ M

u
g(v)dv

)2

dT(u)

}
. (16)

On the other hand, (16) leads to the following explicit expression for the function
f (t)

f (t) =
d
dt

(
− ln(B(0, t)) +

1
2

∫ t

0

(∫ t

u
g(v)dv

)2

dT(u)

)
, (17)

where we assume that the derivative exists. Equation (17) allows an explicit
fitting of the model to the current term structure of interest rates. In the same
way, calibration of the model to a given term structure of volatilities can be done
explicitly. In fact, using (15) we have
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v(t ,M ) = Var (ln(B(t ,M )))

= Var
(
− rt

g(t)

∫ M

t
g(u)du

)
=

(∫ M

t
g(u)du

)2

T(t). (18)

The unknown time-changeT(t), or the unknown functiong, or both, can be
immediately obtained from the volatility structure.

In the case of the original Vasicek model, that is in the case ofg(t) =
e−at, T(t) =

∫ t
0 g

−2(u)σ2du, the above identities simplify considerably to:

B(t ,M ) =
B(0,M )
B(0, t)

exp

{
rt − f (t)

a

(
e−a(M−t) − 1

)
+
σ2

4a3

[
(1− e−2a(M−t))(1− e−2at)− 4(1− e−a(M−t))(1− e−at)

]}
,

and

f (t) =
d
dt

(− ln B(0, t)) +
σ2

2a2
(e−at − 1)2

v(t ,M ) =
σ2

2a3
(e2at − 1)(e−aM − e−at)2.

5. Some numerical results

To illustrate the lattice approximation proposed in Sect. 3, in this section we
present some numerical results on the speed of the convergence and the ability
of the model to calibrate to given market prices of caps and swaptions.

In the case of a Gaussian short rate closed form solutions for the prices of
caps and swaptions are available. Therefore this model is best suited to test the
speed of the convergence of the lattice approximation. We consider a flat interest
rate term structure of 6%, i.e.B(0, t) = e−0.06 t . The time changeT(t) and the
functiong(t) are as at the end of Sect. 4 with mean reversion parametera = 0.22
and short rate varianceσ = 0.018. Observe that these numbers are in line with
numbers usually obtained from calibrating the model to market prices of caps.
We use the binomial lattice approximation of Sect. 3.1, Example 1 to price a 5-
year cap on a 6-month rate and compare the results with exact prices from closed
form solutions. The time from today to 5 years is divided intoN non-equidistant
time intervals as described in the binomial lattice approximation of Example 1.
In the tables belown denotes the number of time steps in the binomial tree from
time 0 to the reset date of the respective caplet.
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Table 1. At the money cap (strike = 6%)

N = 50 N = 100 N = 200
caplet exact lattice n lattice n lattice n

1 0.2431 0.2563 1 0.2595 3 0.2390 6
2 0.3092 0.3222 3 0.2946 6 0.3097 13
3 0.3461 0.3528 5 0.3497 11 0.3484 23
4 0.3676 0.3614 8 0.3710 17 0.3693 35
5 0.3796 0.3788 12 0.3798 24 0.3802 49
6 0.3852 0.3904 17 0.3867 34 0.3864 68
7 0.3863 0.3885 22 0.3876 45 0.3863 91
8 0.3844 0.3874 29 0.3851 59 0.3840 119
9 0.3803 0.3831 38 0.3804 77 0.3804 155

sum 3.1817 3.2209 3.1946 3.1837
error -1.23% -0.40% -0.06%

Table 2. Out of the money cap (strike = 7%)

N = 50 N = 100 N = 200
caplet exact lattice n lattice n lattice n

1 0.0702 0.0197 1 0.0656 3 0.0641 6
2 0.1272 0.0979 3 0.1234 6 0.1274 13
3 0.1636 0.1445 5 0.1638 11 0.1655 23
4 0.1873 0.1919 8 0.1897 17 0.1883 35
5 0.2026 0.2071 12 0.1991 24 0.2020 49
6 0.2121 0.2147 17 0.2107 34 0.2134 68
7 0.2175 0.2187 22 0.2192 45 0.2175 91
8 0.2200 0.2229 29 0.2209 59 0.2205 119
9 0.2202 0.2193 38 0.2205 77 0.2209 155

sum 1.6208 1.5367 1.6129 1.6195
error 5.19% 0.49% 0.08%

Table 3. In the money cap (strike = 5%)

N = 50 N = 100 N = 200
caplet exact lattice n lattice n lattice n

1 0.5662 0.5200 1 0.5690 3 0.5631 6
2 0.6027 0.5910 3 0.5941 6 0.6016 13
3 0.6224 0.6200 5 0.6268 11 0.6197 23
4 0.6310 0.6331 8 0.6344 17 0.6313 35
5 0.6322 0.6300 12 0.6351 24 0.6339 49
6 0.6284 0.6341 17 0.6313 34 0.6287 68
7 0.6210 0.6240 22 0.6225 45 0.6209 91
8 0.6112 0.6134 29 0.6137 59 0.6121 119
9 0.5996 0.6038 38 0.6013 77 0.6005 155

sum 5.5147 5.4693 5.5283 5.5117
error 0.82% -0.25% 0.05%

Finally we present some results on the quality of the calibration of the model
to given market prices of liquid derivatives. We consider a model with log-
normally distributed short rate and use a lattice approximation as proposed in
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Table 4. Calibration to at the money caps

maturity 1Y 2Y 3Y 4Y 5Y 7Y 10Y
market price 0.1808 0.8170 1.6675 2.5458 3.4918 4.6119 6.9072

model 0.1863 0.8085 1.6503 2.5719 3.5038 4.5924 6.9021

Table 5. Calibration to at the money swaptions

maturity 3M 6M 1Y 2Y
swap term

market 0.3963 0.5510 0.7823 1.04462Y
model 0.3884 0.5591 0.7796 0.9810
market 0.5476 0.7296 1.0270 1.34723Y
model 0.5444 0.7666 1.0620 1.3276
market 0.6688 0.9373 1.2546 1.52804Y
model 0.6774 0.9557 1.2843 1.5438
market 0.7914 1.0704 1.4032 1.74145Y
model 0.7647 1.0608 1.4192 1.7820
market 0.9055 1.2352 1.7054 2.05827Y
model 0.8860 1.2593 1.6980 2.0822

Example 2 of Sect. 3.1 with suitably parametrized functionsg(t), T(t) and ap-
propriately chosen time discretization. The model is calibrated simultaneously to
market prices of 7 at the money caps and 20 swaptions. The results show a quite
good calibration of the model to the market. Observe that in practice one would
probably choose less reference options to calibrate to. All prices and the term
structure of interest rates refer to the DEM market as of June 24, 1996.

6. Conclusion

There is a general one-factor model for the term structure of interest rates based
upon an explicit formula for the dynamics of the short rate. The short rate is
modeled as a Wiener process with a deterministic new clock which is then subject
to an addition of a drift and a transformation of the state space. Essentially every
popular short rate model used in practice turns out to be a particular case of this
general approach. Several easy to implement lattice approximations of the short
rate process all ow pricing of interest related contingent claims using the well-
known backward induction method. In the simplest case the lattice approximation
is a binomial lattice with branching probabilities 1/2 but non-equidistant spacing
in time. The model can be calibrated to the given term structure of interest rates
as well as to given market prices of liquid derivative products or the volatility
structure of zero bonds.
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