Übungen zur Vorlesung "Analysis I"

Blatt 5

Abgabetermin: Montag, 19.11.2018, bis 10.00 Uhr in den Briefkästen im Math. Institut (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Zeigen Sie, dass die Folge $(a_n)_{n\geq 2}$ mit

$$a_n = \frac{1}{\sqrt{n}(\sqrt[n]{n} - 1)}$$

über alle Grenzen wächst.

HINWEIS: Sie können dazu ähnlich vorgehen, wie im Konvergenzbeweis für $\sqrt[n]{n}$ und dürfen verwenden, dass $\sqrt[3]{n} = n^{1/3}$, sowie Ihnen aus der Schule bekannte Rechenregeln für Potenzen.

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge reeller Zahlen mit $\lim_{n\to\infty} a_n = a$. Die Folge $(s_n)_{n\in\mathbb{N}}$ sei definiert durch

$$s_n := \frac{a_1 + a_2 + \dots + a_n}{n} = \frac{1}{n} \sum_{k=1}^n a_k.$$

Zeigen Sie, dass $\lim_{n\to\infty} s_n = a$ gilt.

Aufgabe 3 (4 Punkte)

Es sei $c \geq 0$ und die Folge $(a_n)_{n \in \mathbb{N}}$ rekursiv definiert durch $a_1 = 1$ und

$$a_{n+1} = \sqrt{a_n + c}, \ n \in \mathbb{N}.$$

Untersuchen Sie die Folge auf Konvergenz und berechnen Sie gegebenenfalls den Grenzwert. HINWEIS: Sie dürfen auch hier verwenden, dass $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\lim_{n\to\infty} a_n}$ gilt.

Aufgabe 4 (4 Punkte)

Es sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $a\in\mathbb{R}$. Zeigen Sie, dass $\lim_{n\to\infty}a_n=a$ genau dann, wenn jede Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ eine Teilfolge $(a_{n_{k_l}})_{l\in\mathbb{N}}$ besitzt, die gegen a konvergiert.