Übungen zu der Vorlesung "Stochastik II" Blatt 01

Abgabe: Freitag, 02.05.2025, 10:15 Uhr.

(Schreiben Sie Ihren Namen auf jedes Aufgabenblatt. Sie dürfen die Übungsblätter in Zweiergruppen bearbeiten.)

Aufgabe 1 (Stetige Uniformverteilung)

(2 Punkte)

Sei X eine reelle uniform-verteilte Zufallsvariable auf $[a,b] \subset \mathbb{R}$ für reelle Zahlen a < b. Berechnen Sie den Erwartungswert $\mathbb{E}[X]$ und die Varianz $\operatorname{Var}(X)$ von X.

Hinweis: Die Dichte $f_X \colon \mathbb{R} \to [0, \infty)$ von X ist gegeben durch

$$f_X(x) = \frac{1}{b-a} \mathbb{1}_{\{x \in [a,b]\}}.$$

Aufgabe 2 (Stochastische Konvergenz)

(4 Punkte)

Wir betrachten das Modell eines n-fachen unabhängigen Münzwurfs aus der Vorlesung. Dazu seien X_1, \ldots, X_n unabhängige Bernoulli-verteilte Zufallsvariablen mit unbekanntem Parameter $p \in (0,1)$ und es bezeichne \hat{p}_n den Schätzer für die Erfolgswahrscheinlichkeit bei n-maligem Münzwurf, d.h.

$$\hat{p}_n := \hat{p}_n(X_1, \dots, X_n) := \frac{1}{n} \sum_{i=1}^n X_i.$$

Zeigen Sie, unter Verwendung von $\hat{p}_n \longrightarrow_{\mathbb{P}_p} p$, dass

$$\frac{1}{\sqrt{\hat{p}_n(1-\hat{p}_n)}} \longrightarrow_{\mathbb{P}_p} \frac{1}{\sqrt{p(1-p)}} \quad \text{für } n \longrightarrow \infty.$$
 (1)

Hinweis: Sei $K_p \subset (0,1)$ eine kompakte Menge mit $p \in K_p$. Zeigen Sie die Konvergenz in (1) zunächst bedingt auf das Ereignis $\{\hat{p}_n \in K_p\}$ und folgern Sie daraus die Behauptung.

Seien X_1, \ldots, X_n unabhängige reelle uniform-verteilte Zufallsvariablen auf [0, b] für einen unbekannten Parameter $b \in (0, \infty)$. Ein möglicher Schätzer für b ist gegeben durch

$$\hat{b}_n := \hat{b}_n(X_1, \dots, X_n) := \max\{X_1, \dots, X_n\}.$$

(a) Zeigen Sie, dass die Dichte von \hat{b}_n gegeben ist durch

$$f: \mathbb{R} \to [0, \infty), \qquad f(t) := \frac{n}{b^n} t^{n-1} \mathbb{1}_{\{t \in [0, b]\}}.$$

Hinweis: Verwenden Sie die Unabhängigkeit der X_i .

- (b) Berechnen Sie unter Verwendung von (a) den Erwartungswert $\mathbb{E}[\hat{b}_n]$ von \hat{b}_n und zeigen Sie, dass \hat{b}_n konsistent für b ist, das heißt dass $\hat{b}_n \longrightarrow_{\mathbb{P}_b} b$ für $n \longrightarrow \infty$ gilt.
- (c) Zeigen Sie, dass $n(b-\hat{b}_n)$ in Verteilung gegen eine exponentialverteilte Zufallsvariable mit Parameter 1/b konvergiert.

Hinweis: Die Verteilungsfunktion einer exponentialverteilten Zufallsvariablen mit Parameter λ ist für $t \in \mathbb{R}$ gegeben durch

$$F(t) := \begin{cases} 1 - \exp(-\lambda t), & t \ge 0, \\ 0, & t < 0. \end{cases}$$

Sie können außerdem verwenden, dass nach Analysis I für jedes $x \ge 0$

$$\lim_{n \to \infty} \left(1 - \frac{x}{n}\right)^n = \exp(-x)$$

gilt.

Aufgaben zur Selbstkontrolle

- (1) Definieren Sie alle Konvergenzarten, welche Sie für Zufallsvariablen $X_n \longrightarrow X$ kennen.
- (2) Formulieren Sie den zentralen Grenzwertsatz.
- (3) Was ist der Vorteil eines Konfidenzbereichs gegenüber einem Punktschätzer?
- (4) Was versteht man unter einem statistischen Modell?
- (5) Es seien X_1, \ldots, X_n unabhängig identisch Poisson-verteilt zum Parameter $\lambda > 0$. Geben Sie die Zähldichte von (X_1, \ldots, X_n) an.