Exercises for the lecture "Probability Theory I"

Sheet 9

Submission deadline: Thursday, 03.07.2025, until 10:15 o'clock in the mailbox in the math institute (You may deliver the exercise solutions in pairs.)

Exercise 1

(4 points)

(4 points)

(4 points)

A monkey randomly types a capital letter on a keyboard at any time $n \ge 1$, i.e. we observe a sequence $(U_n)_{n\in\mathbb{N}}$ of independent random variables that are uniformly distributed on $\{A, B, \ldots, Z\}$. Let τ be the first time that the monkey has typed *ABRACADABRA*, i.e.

$$\tau = \inf\{n \ge 1 \mid U_{n-10} = A, U_{n-9} = B, \dots, U_n = A\}.$$

Determine $\mathbb{E}[\tau]$.

HINT: Consider a sequence of players, where at each time n a new player starts by betting one euro on $U_n = A$. In case he wins, he receives 26 euro, which he bets on $U_{n+1} = B$. In case of winning again, he receives 26^2 euro, places them on a bet on $U_{n+2} = R$, possibly wins 26^3 euro that are invested in a bet on $U_{n+3} = A$ and so on. If he loses one of the rounds, the game is over for him. Consider further the total payout to all active players for each point in time $n \in \mathbb{N}$.

Exercise 2

Let $(X_n)_{n \in \mathbb{N}}$ be a martingale satisfying $\sup_{n \ge 1} \mathbb{E}[X_n^2] < \infty$. Prove that X_n converges almost surely and in L^2 towards a random variable $X_\infty \in L^2(\mathbb{P})$.

HINT: For the existence of a limit in L^2 , it is sufficient to prove that $(X_n)_{n \in \mathbb{N}}$ is a L^2 -Cauchy sequence.

Exercise 3

- (a) Let \mathfrak{X} be a set of random variables for which an integrable majorant exists, i.e. there exists $Y \in L^1(\mathbb{P})$ with $|X| \leq Y$ for all $X \in \mathfrak{X}$. Prove that \mathfrak{X} is uniformly integrable.
- (b) Let \mathfrak{X} be a set of random variables and assume existence of p > 1 such that $\mathbb{E}[|X|^p] < C < \infty$ for all $X \in \mathfrak{X}$. Prove that \mathfrak{X} is uniformly integrable.
- (c) Let U be uniformly distributed on [0, 1]. Prove or disprove if $\mathfrak{X} := \left\{ n \mathbb{1}_{[0,\frac{1}{n}]}(U) \mid n \in \mathbb{N} \right\}$ is uniformly integrable.
- (d) Find an example of a uniformly integrable set $\mathfrak{X} = \{X_n \mid n \in \mathbb{N}\}$ of random variables that has no integrable majorant, i.e. such that $\mathbb{E}[\sup_{n \in \mathbb{N}} |X_n|] = \infty$.

(please turn over)

Exercise 4

(4 points)

- (a) Assume $X_n \longrightarrow_{\mathbb{P}} X$ and $\mathbb{E}[|X_n|] \longrightarrow \mathbb{E}[|X|] < \infty$. Prove that $\{X_n : n \in \mathbb{N}\}$ is uniformly integrable (Proposition 5.28, (iii) \Rightarrow (i)).
- (b) Let X be a random variable with $\mathbb{E}[|X|] < \infty$ and $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ an increasing sequence of σ -algebras and define $\mathcal{F}_{\infty} = \sigma(\bigcup_{n \in \mathbb{N}} \mathcal{F}_n)$. Prove that for $n \to \infty$,

$$\mathbb{E}[X|\mathcal{F}_n] \longrightarrow \mathbb{E}[X|\mathcal{F}_\infty]$$
 a.s. and in L^1 .

Exercise 5

(4 bonus points)

Let $(X_n)_{n \in \mathbb{N}}$ be identically distributed and independent random variables satisfying

$$\mathbb{P}(X_1 = 1) = p = 1 - \mathbb{P}(X_1 = -1) = 1 - q$$

for $p \in (0,1) \setminus \{\frac{1}{2}\}$ and $a, b \in \mathbb{N}$. Let $S_0 = 0, S_n := \sum_{i=1}^n X_i$ and

$$\tau := \inf\{n \ge 0 \mid S_n \in \{-a, b\}\}.$$

Prove that

$$\mathbb{P}(S_{\tau} = -a) = \frac{1 - (p/q)^b}{1 - (p/q)^{a+b}}$$

HINT: First, show that $((q/p)^{S_n})_{n \in \mathbb{N}}$ is a martingale with respect to a suitably chosen filtration. Then, use the optional sampling theorem.

Exercises for self-monitoring

- (1) Recall the martingale convergence theorem. Pay close attention to its conditions. Does convergence in L^1 follow?
- (2) Do non-negative supermartingales converge? What about non-positive submartingales?
- (3) Recall the definition of *uniform integrability*.
- (4) Give the definition of a branching process and explain its name.
- (5) Under which condition does a martingale converge in L^{1} ?
- (6) Prove that $\mathbb{E}[|X_n X|] \to 0$ implies $\mathbb{E}[|X_n|] \to \mathbb{E}[|X|]$.