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Exercise 1 (4 points)
Let (2, A, 1) be a measure space. Prove the following:

(a) A¥ .= {AUN : A € A, there exists M € A with u(M) = 0 and N C M} defines a
o-algebra.

(b) (AUN) := u(A) for AUN € A* defines a measure jz on A*.

(c) The measure space (2, A, i) is complete, meaning that for all subsets A, B C Q satisfying
A€ A", B C A and ;i(A) = 0 we automatically have B € A*.

Exercise 2 (4 points)

Let (©;,4;) = ([0,1], #([0,1])) for i = 1,2 and (2, A) = (21 X Q2, A; ® Az) the corresponding
product space.

(a) Give an example of a set A C Q, such that for all wy € [0, 1] we have for the w;-section
Ay = A{w2 | (w1,w2) € A} € Ay and correspondingly A, € A;, but A ¢ A.
HINT: Recall (without proof) from your analysis course that Z(R) # P(R).

(b) Let D = {(x,z) | x € [0,1]} be the diagonal in €2, A the Lebesgue measure on ©; and
the counting measure on €29, i.e.

A|, if A is finite,
u(A) = {' |
oo else.

Prove that D € A and evaluate the integrals
[ [ epa@ie  wd [ i,
QQ Ql Ql Q2

(c) Is your result in (b) a contradiction to Fubini’s theorem?

Exercise 3 (4 points)
Let (2, A,P) be a probability space and X a Weibull-distributed random variable, i.e. PX
admits the Lebesgue density fx(z) = ]1(0700)(1')045$ﬁ_16_axﬁ with a, 8 > 0. Find the distri-
bution function Fy(t) := P(Y < t) for Y := max{X, 1} and the Lebesgue decomposition of
PY with respect to the Lebesgue measure on (R, Z(R)).
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Exercise 4 (4 points)

Let (€2,A,P) be a probability space and A" := {A € A|P(A) € {0,1}}. Prove the following:
(a) A’ C Ais a sub-c-algebra,
(b) A and A’ are stochastically independent.

(¢) A’ is stochastically independent of itself.

Exercises for self-monitoring
(1) Give the definition of the product-o-algebra.

(2) When is a topological space called Polish? Recall a finite and an infinite dimensional
example of such a space.

Give the definition of a (stochastic) kernel.
For which choice of the kernel do you recover Fubini’s theorem from Theorem 1.297
Recall the definition of n o-algebras being independent.

Assume we have P(A; N Ay N A3) = P(A1)P(A2)P(As) for events Aj, As and As. Does
this already imply independence of these events?



