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Monge's Transport Problem

Gaspard Monge (1781). ,,Mémoire sur la théorie des déblais et des remblais”. In: Mem.
Math. Phys. Acad. Royale Sci. Pp. 666704

» Monge’s problem: transport soil from extraction sites to construction sites.
» Goal: minimize total transport cost.

» Cost: product of mass and distance.

Monge's problem is the search of an optimal coupling; He was looking for a deterministic
optimal coupling.

remblais
déblais

Figure: lllustration of Monge's Problem

> The following explanations largely adhere to Villani et al. (2009).



Coupling

Definition (Coupling)

Let (X, ) and (), v) be two probability spaces. Coupling u and v means constructing two
random variables X and Y on some probability space (€2, P), such that law(X) = p,
law(Y) = v. The couple (X,Y) is called a coupling of (i, ). The law of (X,Y") is also
called a coupling of (i, v).

Definition (Deterministic Coupling)

A coupling (X,Y") is said to be deterministic if there exists a measurable function T': X — Y
such that Y = T'(X).

Unlike couplings, deterministic couplings do not always exist. To say that (X,Y) is a
deterministic coupling of x and v is strictly equivalent to any one of the four statements
below:
> (X,Y) is a coupling of x and v whose law 7 is concentrated on the graph of a
measurable function T : X — Y;
» X has law pand Y = T'(X), where Ty pp = v;

» X has law p and Y = T'(X), where T is a change of variables from p to v: for all
v-integrable (resp. nonnegative measurable) functions ¢,

[ ewavw) = [ o) dute; )
Y X

> 7w =(d, T)gp.
It is common to call T' the transport map: Informally, one can say that T transports the mass
represented by the measure p, to the mass represented by the measure v.



Existence of optimal couplings

Definition (Upper Semicontinuous Function)
A function f : X — R is called upper semicontinuous at a point g € X if

limsup f(z) < f(zo).
z—x(

Theorem (Existence of an optimal coupling)

Let (X, ) and (Y, v) be two Polish probability spaces; let a : X — RU {—oco} and

b:Y — RU{—o00} be two upper semicontinuous functions such that a € L' (u), b € L (v).
Letc: X x Y — RU {+o0} be a lower semicontinuous cost function, such that

c(z,y) > a(x) + b(y) for all x,y. Then there is a coupling of (y,v) which minimizes the total
cost E[c(X,Y)] among all possible couplings (X,Y).



Existence of optimal couplings - Proof

Lemma (Lower semicontinuity of the cost functional)

Let X and Y be two Polish spaces, and ¢ : X X Y — RU {400} a lower semicontinuous cost
function. Let h : X X ) — RU {—oo} be an upper semicontinuous function such that ¢ > h.
Let (7 )ken be a sequence of probability measures on X X Y, converging weakly to some

7w € P(X X Y), in such a way that h € L*(my), h € L*(x), and

/ hdmy, 2222 h dr.
X XY XXY

Then

/ cdm < liminf cdmy.
XXy k—oo Jxxy

In particular, if c is nonnegative, then F : w — [ cdm is lower semicontinuous on P(X x Y),
equipped with the topology of weak convergence.

Lemma (Tightness of transference plans)

Let X and Y be two Polish spaces. Let P C P(X) and Q C P(Y) be tight subsets of P(X)
and P(Y) respectively. Then the set II(P, Q) of all transference plans whose marginals lie in
P and Q respectively, is itself tight in P(X X ).



Existence of optimal couplings - Proof

Since X is Polish, {p} is tight in P(X); similarly, {v} is tight in P()). By Lemma (Tightness
of transference plans), II(u, v) is tight in P(X x Y'), and by Prokhorov's theorem this set has
a compact closure. By passing to the limit in the equation for marginals, we see that IT(yu, v)
is closed, so it is in fact compact.

Let (7 )ren be a sequence of probability measures on X x Y, such that

/Cdﬂ‘k — inf /cdﬂ'.
TE(p,v)

Extracting a subsequence if necessary, we may assume that 7, converges to some
7 € (u, v). The function h : (x,y) — a(z) + b(y) lies in L' (7}) and in L*(x), and ¢ > h

by assumption; moreover,
/hd‘n’k :/hd‘n’:/adu+/bdv.

So Lemma (Lower semicontinuity of the cost functional) implies

/cdw < liminf/cdﬂk.
k— oo

Thus 7 is minimizing. O



Lower semicontinuity of the cost functional - Proof

Lemma (Lower semicontinuity of the cost functional)

Let X and Y be two Polish spaces, and ¢ : X X Y — RU {400} a lower semicontinuous cost
function. Let h : X X Y — RU {—oo} be an upper semicontinuous function such that ¢ > h.
Let (7 )ken be a sequence of probability measures on X X Y, converging weakly to some

7w € P(X X Y), in such a way that h € L*(my,), h € L*(x), and

/ hdmy 2222 hdr.
XXY XY
Then
/ cdm < liminf cdmy.
xxy k—oo Jxyxy

In particular, if c is nonnegative, then F : w — [ cdm is lower semicontinuous on P(X x Y),
equipped with the topology of weak convergence.

Proof: Replacing ¢ by ¢ — h, we may assume that c is a nonnegative lower semicontinuous
function. Then c can be written as the pointwise limit of a nondecreasing family (c¢)¢en of
continuous real-valued functions. By monotone convergence,

/cdﬂ' = lim /ce dr = lim lim codmp < liminf/cdwk.
£— o0 £— 00 k— o0 k— oo
O

» Theorem of Baire: Assume X is a metric space. Every lower semicontinuous function
f : & = Ris the limit of a monotone increasing sequence of extended real-valued
continuous functions on X; if f does not take the value —oo, the continuous functions
can be taken to be real-valued.



Tightness of transference plans - Proof

Lemma (Tightness of transference plans)

Let X and Y be two Polish spaces. Let P C P(X) and Q C P(Y) be tight subsets of P(X)
and P(Y) respectively. Then the set II(P, Q) of all transference plans whose marginals lie in
P and Q respectively, is itself tight in P(X X )).

Proof: Let p € P, v € Q, and 7 € II(u, v). By assumption, for any € > 0 there is a compact
set K. C X, independent of the choice of p in P, such that u[X \ K.] < €; and similarly,
there is a compact set L. C Y, independent of the choice of v in Q, such that v[Y \ L] < e.
Then for any coupling (X,Y) of (u,v),

P((X,Y) ¢ K. x L) <PX ¢ K +P[Y ¢ L] < 2.

The desired result follows since this bound is independent of the coupling, and K. X L. is
compact in X X Y.



Remarks on the Theorem

> The lower bound for ¢ ensures that the expected costs E[c(X, Y')] are well-defined in
R U {+00}. Often, ¢ is non-negative, so one can choose a = 0 and b = 0.

» This existence theorem does not imply that the optimal cost is finite. It might be that all
transport plans lead to an infinite total cost, i.e.,

/cdw = +oo forall m € II(u,v).
A simple condition to rule out this annoying possibility is
[ cte v dnt@) dviw) <+,

which guarantees that at least the independent coupling has finite total cost. A stronger
assumption is

c(z,y) < ex(z) + ey (y), (cx,ey) € L' (n) x L' (v),

which implies that any coupling has finite total cost.



Kantorovich-Rubinstein-Duality

Theorem (Kantorovich-Rubinstein-Duality)

Letc: X XY — [0, 0] be a lower semicontinuous cost function. Then,

"erﬁ’(iﬂ,m/“y(:d” =W (/X o(z) dp(z) +/Y1/J(y) dV(y)>,
where I. := {(¢, 1) € Lip,(X) X Lip,(Y) : ¢(z) + 1 (y) < c(z,y)}-

Economic Interpretation: Let X be a set of bakeries and ) be a set of cafes. The problem in
the Kantorovich formulation corresponds to minimizing the cost of a consortium between
bakeries and cafes. Now assume that there is a transportation company that buys a unit from
the bakery z € X at the price p(z) and sells it to the cafe y € Y at the price 9 (y). To be
competitive with the direct agreement between bakeries and cafes, it must hold that

P(y) — p(z) < c(z,y). Then the profit is

/wdv—/ pdpu,
JY JX

which corresponds to the dual formulation (except for the sign change of ).



The Wasserstein distances

Definition (Wasserstein distances)

Let (X, d) be a Polish metric space, and let p € [1, c0). For any two probability measures p, v
on X, the Wasserstein distance of order p between p and v is defined by the formula

1/p
Wow) = ( int [ dee,y)” dne,v)
TE(p,v) Jxxx

= inf {]E[d(X, Y)PIP | law(X) = p, law(Y) = u} . )

> Example: W, (0,,dy) = d(x,y). In this example, the distance does not depend on p;
but this is not the rule.

> At the present level of generality, W), is still not a distance in the strict sense, because it
might take the value +o00; but otherwise it does satisfy the axioms of a distance.

Definition (Wasserstein space)
The Wasserstein space of order p is defined as
Po) = {ue PO | [ dteo,a)” uiao) < +oo}.
X

where xg € X is arbitrary. This space does not depend on the choice of the point zy. Then
W), defines a (finite) distance on P, (X).



Convergence in Wasserstein sense

The notation pj — u means that pj converges weakly to p, i.e.

/@duk — /godp, for any bounded continuous ¢.

Definition (Weak convergence in P),)

Let (X, d) be a Polish space, and p € [1,00). Let (ux)ren be a sequence of probability
measures in P, (X) and let i be another element of P, (X). Then (uy) is said to converge
weakly in P, (X) if any one of the following equivalent properties is satisfied for some (and
then any) zg € X:

(i) pr = pand J d(zo, z)? duk(z) — [ d(zo, z)? du(z);
(i) e 3 o and limsup,_, o [ (@0, 2)? dun(w) < [ d(zo, 2)” du(a);
(iii) pr =3 pand limp—s oo limsupy,_, oo fd(zo,:)ZRd(zo*x)p dpk (z) = 0;

(iv) For all continuous functions ¢ with |p(z)| < C(1 + d(zo, z)?), C € R, one has
[ o (@) dun(@) > [ (@) du(a).



Convergence in Wasserstein sense

Theorem (W, metrizes P,)

Let (X, d) be a Polish space, and p € [1,c0); then the Wasserstein distance W, metrizes the
weak convergence in P, (X). In other words, if (pui)ren is a sequence of measures in Pp(X)
and p is another measure in P(X), then the statements

i converges weakly in Pp(X) to p

and
W (k, 1) = 0
are equivalent.

Lemma (Continuity of 1,,)

If (X, d) is a Polish space, and p € [1,c0), then W, is continuous on P,(X). More explicitly,
if pi, (resp. vi) converges to p (resp. v) weakly in Pp(X) as k — oo, then

W (b, vi) = Wp(p, v).

Lemma (Metrizability of the weak topology)

Let (X, d) be a Polish space. If d is a bounded distance inducing the same topology as d
(such as d = 1_%1 ), then the convergence in Wasserstein sense for the distance d is equivalent
to the usual weak convergence of probability measures in P(X).
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