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Monge’s Transport Problem

Gaspard Monge (1781). „Mémoire sur la théorie des déblais et des remblais“. In: Mem.
Math. Phys. Acad. Royale Sci. Pp. 666–704

I Monge’s problem: transport soil from extraction sites to construction sites.
I Goal: minimize total transport cost.
I Cost: product of mass and distance.

Monge’s problem is the search of an optimal coupling; He was looking for a deterministic
optimal coupling.

Figure: Illustration of Monge’s Problem

I The following explanations largely adhere to Villani et al. (2009).
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Coupling

Definition (Coupling)
Let (X , µ) and (Y, ν) be two probability spaces. Coupling µ and ν means constructing two
random variables X and Y on some probability space (Ω, P), such that law(X) = µ,
law(Y ) = ν. The couple (X,Y ) is called a coupling of (µ, ν). The law of (X,Y ) is also
called a coupling of (µ, ν).

Definition (Deterministic Coupling)
A coupling (X,Y ) is said to be deterministic if there exists a measurable function T : X → Y
such that Y = T (X).

Unlike couplings, deterministic couplings do not always exist. To say that (X,Y ) is a
deterministic coupling of µ and ν is strictly equivalent to any one of the four statements
below:
I (X,Y ) is a coupling of µ and ν whose law π is concentrated on the graph of a

measurable function T : X → Y;
I X has law µ and Y = T (X), where T#µ = ν;
I X has law µ and Y = T (X), where T is a change of variables from µ to ν: for all
ν-integrable (resp. nonnegative measurable) functions ϕ,∫

Y

ϕ(y) dν(y) =

∫
X

ϕ
(
T (x)

)
dµ(x); (1)

I π = (Id, T )#µ.

It is common to call T the transport map: Informally, one can say that T transports the mass
represented by the measure µ, to the mass represented by the measure ν.
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Existence of optimal couplings

Definition (Upper Semicontinuous Function)
A function f : X → R is called upper semicontinuous at a point x0 ∈ X if

lim sup
x→x0

f(x) ≤ f(x0).

Theorem (Existence of an optimal coupling)
Let (X , µ) and (Y, ν) be two Polish probability spaces; let a : X → R ∪ {−∞} and
b : Y → R ∪ {−∞} be two upper semicontinuous functions such that a ∈ L1(µ), b ∈ L1(ν).
Let c : X × Y → R ∪ {+∞} be a lower semicontinuous cost function, such that
c(x, y) ≥ a(x) + b(y) for all x, y. Then there is a coupling of (µ, ν) which minimizes the total
cost E[c(X,Y )] among all possible couplings (X,Y ).
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Existence of optimal couplings - Proof

Lemma (Lower semicontinuity of the cost functional)
Let X and Y be two Polish spaces, and c : X × Y → R ∪ {+∞} a lower semicontinuous cost
function. Let h : X × Y → R ∪ {−∞} be an upper semicontinuous function such that c ≥ h.
Let (πk)k∈N be a sequence of probability measures on X × Y, converging weakly to some
π ∈ P(X × Y ), in such a way that h ∈ L1(πk), h ∈ L1(π), and∫

X×Y
h dπk

k→∞−−−−→
∫
X×Y

h dπ.

Then ∫
X×Y

c dπ ≤ lim inf
k→∞

∫
X×Y

c dπk.

In particular, if c is nonnegative, then F : π 7→
∫
c dπ is lower semicontinuous on P(X × Y ),

equipped with the topology of weak convergence.

Lemma (Tightness of transference plans)
Let X and Y be two Polish spaces. Let P ⊂ P(X ) and Q ⊂ P(Y) be tight subsets of P(X )
and P(Y) respectively. Then the set Π(P,Q) of all transference plans whose marginals lie in
P and Q respectively, is itself tight in P(X × Y).
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Existence of optimal couplings - Proof

Since X is Polish, {µ} is tight in P(X ); similarly, {ν} is tight in P(Y). By Lemma (Tightness
of transference plans), Π(µ, ν) is tight in P(X × Y ), and by Prokhorov’s theorem this set has
a compact closure. By passing to the limit in the equation for marginals, we see that Π(µ, ν)
is closed, so it is in fact compact.

Let (πk)k∈N be a sequence of probability measures on X × Y , such that∫
c dπk → inf

π∈Π(µ,ν)

∫
c dπ.

Extracting a subsequence if necessary, we may assume that πk converges to some
π ∈ Π(µ, ν). The function h : (x, y) 7→ a(x) + b(y) lies in L1(πk) and in L1(π), and c ≥ h
by assumption; moreover, ∫

h dπk =

∫
h dπ =

∫
a dµ+

∫
b dν.

So Lemma (Lower semicontinuity of the cost functional) implies∫
c dπ ≤ lim inf

k→∞

∫
c dπk.

Thus π is minimizing. �
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Lower semicontinuity of the cost functional - Proof

Lemma (Lower semicontinuity of the cost functional)
Let X and Y be two Polish spaces, and c : X × Y → R ∪ {+∞} a lower semicontinuous cost
function. Let h : X × Y → R ∪ {−∞} be an upper semicontinuous function such that c ≥ h.
Let (πk)k∈N be a sequence of probability measures on X × Y, converging weakly to some
π ∈ P(X × Y ), in such a way that h ∈ L1(πk), h ∈ L1(π), and∫

X×Y
h dπk

k→∞−−−−→
∫
X×Y

h dπ.

Then ∫
X×Y

c dπ ≤ lim inf
k→∞

∫
X×Y

c dπk.

In particular, if c is nonnegative, then F : π 7→
∫
c dπ is lower semicontinuous on P(X × Y ),

equipped with the topology of weak convergence.

Proof: Replacing c by c− h, we may assume that c is a nonnegative lower semicontinuous
function. Then c can be written as the pointwise limit of a nondecreasing family (c`)`∈N of
continuous real-valued functions. By monotone convergence,∫

c dπ = lim
`→∞

∫
c` dπ = lim

`→∞
lim
k→∞

∫
c` dπk ≤ lim inf

k→∞

∫
c dπk.

�
I Theorem of Baire: Assume X is a metric space. Every lower semicontinuous function
f : X → R is the limit of a monotone increasing sequence of extended real-valued
continuous functions on X; if f does not take the value −∞, the continuous functions
can be taken to be real-valued.
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Tightness of transference plans - Proof

Lemma (Tightness of transference plans)
Let X and Y be two Polish spaces. Let P ⊂ P(X ) and Q ⊂ P(Y) be tight subsets of P(X )
and P(Y) respectively. Then the set Π(P,Q) of all transference plans whose marginals lie in
P and Q respectively, is itself tight in P(X × Y).

Proof: Let µ ∈ P , ν ∈ Q, and π ∈ Π(µ, ν). By assumption, for any ε > 0 there is a compact
set Kε ⊂ X, independent of the choice of µ in P , such that µ[X \Kε] ≤ ε; and similarly,
there is a compact set Lε ⊂ Y , independent of the choice of ν in Q, such that ν[Y \ Lε] ≤ ε.
Then for any coupling (X,Y ) of (µ, ν),

P ((X,Y ) /∈ Kε × Lε) ≤ P[X /∈ Kε] + P[Y /∈ Lε] ≤ 2ε.

The desired result follows since this bound is independent of the coupling, and Kε × Lε is
compact in X × Y .

�
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Remarks on the Theorem

I The lower bound for c ensures that the expected costs E[c(X,Y )] are well-defined in
R ∪ {+∞}. Often, c is non-negative, so one can choose a = 0 and b = 0.

I This existence theorem does not imply that the optimal cost is finite. It might be that all
transport plans lead to an infinite total cost, i.e.,∫

c dπ = +∞ for all π ∈ Π(µ, ν).

A simple condition to rule out this annoying possibility is∫
c(x, y) dµ(x) dν(y) < +∞,

which guarantees that at least the independent coupling has finite total cost. A stronger
assumption is

c(x, y) ≤ cX(x) + cY (y), (cX , cY) ∈ L1
(µ)× L1

(ν),

which implies that any coupling has finite total cost.
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Kantorovich-Rubinstein-Duality

Theorem (Kantorovich-Rubinstein-Duality)
Let c : X × Y → [0,∞] be a lower semicontinuous cost function. Then,

min
π∈Π(µ,ν)

∫
X×Y

c dπ = sup
(ϕ,ψ)∈Ic

(∫
X

ϕ(x) dµ(x) +

∫
Y

ψ(y) dν(y)

)
,

where Ic := {(ϕ,ψ) ∈ Lipb(X)× Lipb(Y ) : ϕ(x) + ψ(y) ≤ c(x, y)}.

Economic Interpretation: Let X be a set of bakeries and Y be a set of cafes. The problem in
the Kantorovich formulation corresponds to minimizing the cost of a consortium between
bakeries and cafes. Now assume that there is a transportation company that buys a unit from
the bakery x ∈ X at the price ϕ(x) and sells it to the cafe y ∈ Y at the price ψ(y). To be
competitive with the direct agreement between bakeries and cafes, it must hold that
ψ(y)− ϕ(x) ≤ c(x, y). Then the profit is∫

Y

ψ dν −
∫
X

ϕdµ,

which corresponds to the dual formulation (except for the sign change of ϕ).
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The Wasserstein distances

Definition (Wasserstein distances)
Let (X , d) be a Polish metric space, and let p ∈ [1,∞). For any two probability measures µ, ν
on X , the Wasserstein distance of order p between µ and ν is defined by the formula

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

d(x, y)
p
dπ(x, y)

)1/p

= inf
{
E[d(X,Y )

p
]
1/p | law(X) = µ, law(Y ) = ν

}
. (2)

I Example: Wp(δx, δy) = d(x, y). In this example, the distance does not depend on p;
but this is not the rule.

I At the present level of generality, Wp is still not a distance in the strict sense, because it
might take the value +∞; but otherwise it does satisfy the axioms of a distance.

Definition (Wasserstein space)
The Wasserstein space of order p is defined as

Pp(X ) :=

{
µ ∈ P(X) |

∫
X

d(x0, x)
p
µ(dx) < +∞

}
,

where x0 ∈ X is arbitrary. This space does not depend on the choice of the point x0. Then
Wp defines a (finite) distance on Pp(X ).
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Convergence in Wasserstein sense

The notation µk
w→ µ means that µk converges weakly to µ, i.e.∫

ϕdµk →
∫
ϕdµ for any bounded continuous ϕ.

Definition (Weak convergence in Pp)
Let (X , d) be a Polish space, and p ∈ [1,∞). Let (µk)k∈N be a sequence of probability
measures in Pp(X ) and let µ be another element of Pp(X ). Then (µk) is said to converge
weakly in Pp(X ) if any one of the following equivalent properties is satisfied for some (and
then any) x0 ∈ X :

(i) µk
w→ µ and

∫
d(x0, x)p dµk(x)→

∫
d(x0, x)p dµ(x);

(ii) µk
w→ µ and lim supk→∞

∫
d(x0, x)p dµk(x) ≤

∫
d(x0, x)p dµ(x);

(iii) µk
w→ µ and limR→∞ lim supk→∞

∫
d(x0,x)≥R d(x0, x)p dµk(x) = 0;

(iv) For all continuous functions ϕ with |ϕ(x)| ≤ C(1 + d(x0, x)p), C ∈ R, one has∫
ϕ(x) dµk(x)→

∫
ϕ(x) dµ(x).
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Convergence in Wasserstein sense

Theorem (Wp metrizes Pp)
Let (X , d) be a Polish space, and p ∈ [1,∞); then the Wasserstein distance Wp metrizes the
weak convergence in Pp(X ). In other words, if (µk)k∈N is a sequence of measures in Pp(X )
and µ is another measure in P(X ), then the statements

µk converges weakly in Pp(X ) to µ

and
Wp(µk, µ)→ 0

are equivalent.

Lemma (Continuity of Wp)
If (X, d) is a Polish space, and p ∈ [1,∞), then Wp is continuous on Pp(X ). More explicitly,
if µk (resp. νk) converges to µ (resp. ν) weakly in Pp(X ) as k →∞, then

Wp(µk, νk)→ Wp(µ, ν).

Lemma (Metrizability of the weak topology)
Let (X, d) be a Polish space. If d̃ is a bounded distance inducing the same topology as d
(such as d̃ = d

1+d ), then the convergence in Wasserstein sense for the distance d̃ is equivalent
to the usual weak convergence of probability measures in P(X).
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