

## Wahrscheinlichkeitstheorie

Sommersemester 2023

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

## Übungsblatt 11

Abgabe: Freitag, 14.07.2023, um 18:00 Uhr.

**Aufgabe 1.** Sei  $(\Omega, \mathcal{F}, P)$  ein Wahrscheinlichkeitsraum und  $\mathscr{A} = \{\emptyset, \Omega\}$  die triviale σ-Algebra. Zeigen Sie  $E[X|\mathscr{A}] = E[X]$  für alle  $X \in L^1(\Omega, \mathcal{F}, P)$ .

Aufgabe 2. Zeigen Sie die folgenden Aussagen

- i) Ist  $(X_i)_{i\in I}$  gleichgradig integrierbar und  $(\mathscr{F}_j)_{j\in J}$  eine Famile von Unter- $\sigma$ -Algebren von  $\mathscr{A}$ . Dann ist die Familie  $(E[X_i|\mathscr{F}_j])_{i\in I, j\in J}$  gleichgradig integrierbar.
- ii) Ist  $X \in L^1(\Omega, \mathscr{A}, P)$ , dann ist  $(E[X|\mathscr{F}_j])_{j \in J}$  gleichgradig integrierbar.
- iii) Zeigen Sie, dass die Umkehrung in i) im Allgemeinen falsch ist.

**Aufgabe 3** (4 Punkte). Auf einer Ebene bilden Geraden im horizontalen und vertikalen Abstand 1 ein Schachbrettmuster. Es werden Nadeln der Länge 1 rein zufällig auf die Ebene geworfen. Wie groß ist die Wahrscheinlichkeit, dass eine geworfene Nadel keine der Geraden schneidet? Hinweis: Definieren Sie die Zufallsvariable Z durch

$$Z = \begin{cases} 1, & \text{falls die Nadel eine Gerade schneidet,} \\ 0, & \text{sonst.} \end{cases}$$

Dabei sei der Mittelpunkt der Nadel X von der linken Geraden und Y von der unteren Geraden entfernt und die Verlängerung der Nadel geht einen spitzen Winkel  $\Theta$  mit der linken Gerade ein. Dann sind X und Y uniform auf [0,1] verteilt und  $\Theta$  uniform auf  $[0,\pi/2]$ , wobei  $X,Y,\Theta$  unabhängig sind.

**Aufgabe 4** (4 Punkte). Finden sie ein Beispiel für eine Zufallsvariable X und  $\sigma$ -Algebren  $\mathscr{F}$  und  $\mathscr{G}$ , sodass

$$E[E[X|\mathscr{F}]|\mathscr{G}] \neq E[E[X|\mathscr{G}]|\mathscr{F}].$$