
Artificial Intelligence

Albert-Ludwigs-Universität Freiburg

Thorsten Schmidt
Abteilung für Mathematische Stochastik

www.stochastik.uni-freiburg.de
thorsten.schmidt@stochastik.uni-freiburg.de
SS 2017

Our goal today

Support vector machines (continued)
Multiple classes
Virtual Support Vector Machines

Adaptive basis function models
CART
Hierarchical mixtures of experts

SS 2017 Thorsten Schmidt – Artificial Intelligence 89 / 117

Literature (incomplete, but growing):

I. Goodfellow, Y. Bengio und A. Courville (2016). Deep Learning.
http://www.deeplearningbook.org. MIT Press

D. Barber (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press

R. S. Sutton und A. G. Barto (1998). Reinforcement Learning : An Introduction. MIT Press

G. James u. a. (2014). An Introduction to Statistical Learning: With Applications in R.
Springer Publishing Company, Incorporated. isbn: 1461471370, 9781461471370

T. Hastie, R. Tibshirani und J. Friedman (2009). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc. url:
https://statweb.stanford.edu/~tibs/ElemStatLearn/

K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

CRAN Task View: Machine Learning, available at
https://cran.r-project.org/web/views/MachineLearning.html

UCI ML Repository: http://archive.ics.uci.edu/ml/ (371 datasets)

SS 2017 Thorsten Schmidt – Artificial Intelligence 90 / 117

http://www.deeplearningbook.org
https://statweb.stanford.edu/~tibs/ElemStatLearn/
https://cran.r-project.org/web/views/MachineLearning.html
http://archive.ics.uci.edu/ml/

The multi-class problem

Actually, in the previous example we did have 10 classes and not only 1!
The method is actually not designed to cope with more than one classes.
Some heuristic methods have been proposed to overcome this
deficiency: one-vs-one or one-vs-all comparison.

One-versus-one Classification

Think you have K classes and data points (xi,yi)
n
i=1. Then you divide in the

K(K−1)/2 classification problems (xi,zkl
i),

zk
i =

{
1 if yi = k,
−1 if yi = l.

The decision rule is to assign those class which appears most often in the
single SVMs.

SS 2017 Thorsten Schmidt – Artificial Intelligence 91 / 117

One-versus-all Classification

Think you have K classes and data points (xi,yi)
n
i=1. Then you divide in the K

classification problems (xi,zk
i),

zk
i =

{
1 if yi = k,
−1 otherwise.

Denote the estimated vectors in these SVMs by β1, . . . ,betak the result of the
fits. For a test observation x we choose the class k for which βkx is largest.

As is obvious, both methods have their difficulties in multi-class classification.

SS 2017 Thorsten Schmidt – Artificial Intelligence 92 / 117

Both approaches try to find a measure for the quality of the estimation. One
also would like to find something like a probability relating to the fit and a
common approach is to compute

σ(aβ̂x+b)

where σ is the sigmoid function and a and b are estimated by
maximum-likelihood. As commented in ebd., page 504, this has difficulties in
general (there is no reason why β̂x leads to a probability).

SS 2017 Thorsten Schmidt – Artificial Intelligence 93 / 117

Virtual Support Vector Machines

The record-holding SVM on the MNIST database uses a Virtual SVM,
see D. Decoste und B. Schölkopf (2002). „Training invariant support
vector machines“. In: Machine learning 46.1, S. 161–190.
We cite: ”Practical experience has shown that in order to obtain the best
possible performance, prior knowledge about invariances of a
classification problem at hand ought to be incorporated into the training
procedure”
Indeed, currently we did not take this into account at all, but simply
trained the data. So how could this be done ?

SS 2017 Thorsten Schmidt – Artificial Intelligence 94 / 117

One could try to find optimal kernel functions just tailor-made to the
problem.
One could generate virtual examples from the training set by applying
some standard transformations.
A combination of these approaches.

For the MNIST digits one can use for example translation, rotation or
in-/decrease in line thickness.

SS 2017 Thorsten Schmidt – Artificial Intelligence 95 / 117

The consequence is that much more support vectors are found, suggesting
that the methods improves the estimation. The optimal choice with error rate
of 0.56% uses a polynomial kernel of degree 9

K(x,y) =
1

512
(x · y+1)9.

SS 2017 Thorsten Schmidt – Artificial Intelligence 96 / 117

Source: Decoste & Schölkopf (2002)

SS 2017 Thorsten Schmidt – Artificial Intelligence 97 / 117

Source: Decoste & Schölkopf (2002)

SS 2017 Thorsten Schmidt – Artificial Intelligence 98 / 117

SS 2017 Thorsten Schmidt – Artificial Intelligence 99 / 117

Recall that number 9 was misclassified (6 instead of 5)
test=attr(pred,"decision.values")[9,]
sign(test)

5/0 5/4 5/1 5/9 5/2 5/3 5/6 5/7 5/8 (...)
-1 1 1 1 -1 1 -1 1 1 (...)

While 6 gets all ones.

SS 2017 Thorsten Schmidt – Artificial Intelligence 100 / 117

We try an alternative statistic (now for 20.000 data):
testnorm=test/max(test)
labels1=c("5/0","5/1","5/2","5/3","5/4","5/6","5/7","5/8","5/9")
labels2=c("0/6","1/6","2/6","3/6","4/6","5/6","6/7","6/8","9/6")

> testnorm[labels1]
5/0 5/1 5/2 5/3 5/4 5/6 5/7 5/8 5/9

0.04257473 0.21475787 0.01911578 0.77776091 0.03457997 -0.28087561 0.08408199 0.25468632 0.15987355
> factors*testnorm[labels2]

0/6 1/6 2/6 3/6 4/6 5/6 6/7 6/8 9/6
0.08472909 0.26445613 0.37370402 0.19366219 0.16418205 0.28087561 0.15263579 0.29240588 0.06712401

SS 2017 Thorsten Schmidt – Artificial Intelligence 101 / 117

Adaptive basis function models

As we saw in the previous chapter, a common classification approach is
to consider a prediction of the form

f (x) = βφ(x)

where φ is determined via a kernel, such that φ(v) = (κ(v,x1), . . .(κ(v,xn))
with data points x1, . . . ,xn.
The question is how to obtain an optimal kernel and how to estimate the
associated parameters.
An alternative is to learn φ directly from the data ! This is done in the
so-called ABMs (adaptive basis function models): the starting point is to
study

f (x) = w0 +
M

∑
m=1

wmφm(x)

with weights w0, . . . ,wM and basis functions φ1, . . . ,φM .

SS 2017 Thorsten Schmidt – Artificial Intelligence 102 / 117

A typical approach is a parametric specification of the kernel function, i.e.

φm(x) = φ(x,vm)

where v1, . . . ,vM are the parameters of the kernel. The entire parameter
set is denoted by θ := (w0, . . . ,wM ,v1, . . . ,vM).

SS 2017 Thorsten Schmidt – Artificial Intelligence 103 / 117

CART

The first example will be classification and regression trees (CART).
A classification tree has as an output classes and a regression tree
gives real numbers instead.
The idea is to partition the data suitably. Most commonly are half-planes
i.e. we use as classification rules

1{x≤t}

and various combinations of thereof. The classficiation in this case is the
partition given by

{x ∈ R : x≤ t} versus {x ∈ R : x > t}

and leads to a binomial tree.

SS 2017 Thorsten Schmidt – Artificial Intelligence 104 / 117

We study the famous example of Titanic passenger data. In fact this dataset
is included in the R package rpart.plot and contains 1046 datapoints with
observations on the passenger class, survival, sex, age, sibsp (number of
spouses or siblings aboard), parch (number of parents or children aboard).
> data(ptitanic)
> summary(ptitanic)
pclass survived sex age sibsp parch
1st:323 died :809 female:466 Min. : 0.1667 Min. :0.0000 Min. :0.000
2nd:277 survived:500 male :843 1st Qu.:21.0000 1st Qu.:0.0000 1st Qu.:0.000
3rd:709 Median :28.0000 Median :0.0000 Median :0.000

Mean :29.8811 Mean :0.4989 Mean :0.385
3rd Qu.:39.0000 3rd Qu.:1.0000 3rd Qu.:0.000
Max. :80.0000 Max. :8.0000 Max. :9.000
NA’s :263

SS 2017 Thorsten Schmidt – Artificial Intelligence 105 / 117

A classification tree can be obtained as follows:
library(rpart)
library(rpart.plot)
data(ptitanic)

fit = rpart(survived ~ sex + age + sibsp, data=ptitanic, method="class")
cols <- c("darkred", "green4")[fit$frame$yval]
prp(fit,tweak=1.4 , extra=106, under=TRUE, ge=" > ", eq=" ", col=cols)

The plot is inspired by the graphic from Stephen Milborrow1.
The titanic dataset is also part of a Kaggle competition and there is a very
nice blog by Trevor Stephens2 one how to fit this dataset. In particular, it is
interesting how important some simple engineering techniques are (exploiting
what really is in your data)! This is, however, not applicable here because no
names are provided in the ptitantic dataset.

1See https://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png
2http://trevorstephens.com/kaggle-titanic-tutorial/getting-started-with-r/

SS 2017 Thorsten Schmidt – Artificial Intelligence 106 / 117

https://commons.wikimedia.org/wiki/File:CART_tree_titanic_survivors.png
http://trevorstephens.com/kaggle-titanic-tutorial/getting-started-with-r/

sex mal

age > 9.5

sibsp > 2.5

sibsp > 2.5

0.17 61%

0.05 2% 0.89 2%

0.28 2% 0.75 34%

died

died survived

died survived

yes no

This is an astonishing example of ”women and children first”, as clearly
spotted on the data.
SS 2017 Thorsten Schmidt – Artificial Intelligence 107 / 117

Let us get back to theory and study a precise 2d example of an regression
tree, Figures taken from Hastie et.al. (2009).

SS 2017 Thorsten Schmidt – Artificial Intelligence 108 / 117

The associated partition is

SS 2017 Thorsten Schmidt – Artificial Intelligence 109 / 117

Not all rectangular partitions can be reached by such a graph.

SS 2017 Thorsten Schmidt – Artificial Intelligence 110 / 117

Summarizing, we arrive at a model of the form

f (x) =
M

∑
m=1

wm1{x∈Rm}

which fits in the ABM framework with φ(x,vm) = 1{x∈Rm}.
Note that the binary tree is recursive, which leads to easy and fast
implementations. It moreover hast a high degree of interpretability.
If we have data points x1, . . . ,xn it is clear that a possible split will always
be done at a data point (and not in between - why?). Thus the data
automatically implies a maximum of possible regions R1, . . . ,RM . The
main point is how to choose in a clever way a good performing
sub-partition. We denote the possible split points in dimension j by T j,
j = 1, . . . ,d.

SS 2017 Thorsten Schmidt – Artificial Intelligence 111 / 117

E.g. if we have data points 1,3,−1,3 we obtain T1 = {−1,1,3}.
Finding the pest partition is NP-complete, see Hyafil and Rivest (1976)3.
Hence one needs to find efficient heuristics to construct nearly-optimal
trees.
We will study a locally optimal approach, but there are also other
attemps, for example the evolutionary algorithm used in the R-package
’evtree’.
Recall that we have (xi,yi), i = 1, . . . ,N data points at hand with xi being
d-dimensional, say. Suppose we have a partition into regions R1, . . . ,RM
and we model

f (x) =
M

∑
m=1

wm1{x∈Rm}

(as above) and choose to minimize ∑(yi− f (xi))
2. Then clearly, the

optimal ŵm are given by the local averages

ĉm ∝
N

∑
i=1

1{xi∈Rm}.

3L. Hyafil und R. L. Rivest (1976). „Constructing optimal binary decision trees is NP-complete“.
In: Information processing letters 5.1, S. 15–17.
SS 2017 Thorsten Schmidt – Artificial Intelligence 112 / 117

The next step is the splitting. We split one dimension in two pieces, i.e.
consider the partition

R1(j,s) := {x ∈ RD : x j ≤ s}, R2(j,s) := {x ∈ RD : x j > s}

of RD, leading to the minimization problem

min
j,s

[
min

c1
∑

xi∈R1(j,s)
(yi− c1)

2 +min
c2

∑
xi∈R2(j,s)

(yi− c2)
2
]
.

As already remarked, ĉi, i = 1,2 can easily be found by averaging over
the entries in R1 (and R2, respectively). Moreover, s can also be find very
fast by browsing through T j, rendering the determination of (j∗,s∗)
feasible.
It remains to find a good stopping criterion.

SS 2017 Thorsten Schmidt – Artificial Intelligence 113 / 117

On first sight, one could guess that we run the algorithm until a new split
does not increase the fitting quality substantially. However, the problem
with trees is more complicated and a split at one step might only increase
the fit in a small step but later will lead to just the right classification.
Hence, on typically grows a large tree T0 first, which is achieved by
stopping at a certain minimal node size.
Then, the large tree is pruned, and we describe cost-complexity
pruning: denote the nodes of the tree T0 by R1, . . . ,RM and let

Nm = |{xi ∈ Rm}|

ĉm =
1

Nm
∑

xi∈Rm

yi

Qm(T) =
1

Nm
∑

xi∈Rm

(yi− ĉm)
2.

The cost-complexity criterion is given by

Cα (T) =
|T |

∑
m=1

NmQm(T)+α|T |.

SS 2017 Thorsten Schmidt – Artificial Intelligence 114 / 117

The tuning parameter α assesses the tradeoff between tree size and
goodness of fit. It is typically estimated via crossvalidation leading to the
optimal parameter α̂.
For each α, there is a unique smallest subtree Tα minimizing Cα (T). This
tree can be found by succesively collapsing the internal nodes producing
the smalles per-node incresase in the cost-complexity creiterion and
proceeding until we obtain the single-node tree. In this finite sequence of
subtrees Tα is contained (see Hastie et. al. p. 308 for comments and
links to the literature).

SS 2017 Thorsten Schmidt – Artificial Intelligence 115 / 117

Classification trees can be treated similarily, but we would typically use
a different cost function: consider the case of K classes 1, . . . ,K and
denote by

p̂mk =
1

Nm
∑

xi∈Rm

1{yi=k}

the fraction of observations in node Rm which have class k.
The class estimator in node Rm is given by the class which has most
members in this node, i.e.

k̂m = argmax
k

p̂mk.

Typical measures are misclassification error, the Gini index, or even
entropy.

Be reminded that while being easy to interprete, trees do not come without
disadvantages: they are unstable, the solution is typically not globally optimal
and they are not smooth. For further discussions we refer to Hastie e.a.
(2009)

SS 2017 Thorsten Schmidt – Artificial Intelligence 116 / 117

Hierarchical mixtures of experts

An alternative to the hard split is to put probabilities on each nodes. It is
common to call the terminal nodes experts and we therefore arrive at a
mixture of experts. Total probabilities are computed with Bayes’ formula,
compare Section 9.5 in Hastie e.a. (2009)

In the following lecture we will consider random forests, bagging and boosting
of CARTs.

SS 2017 Thorsten Schmidt – Artificial Intelligence 117 / 117

	Support vector machines (continued)
	Multiple classes
	Virtual Support Vector Machines

	Adaptive basis function models
	CART
	Hierarchical mixtures of experts

