
An Introduction to R

Thorsten Schmidt∗

April 24, 2017

∗Department of Mathematical Stochastics, University of Freiburg
web: www.stochastik.uni-freiburg.de/schmidt
mail: thorsten.schmidt@stochastik.uni-freiburg.de

I would like to thank the students of the QRM course in Madrid, 2012 for their
interest and suggestions.

1 First steps

We try some first inputs in the command line of R. For the first time, type 17 + 2 and
press enter and you will see the following:

> 17 + 2

[1] 19

The output [1] 19 says that this is the first output, and the output is 19. If you do it
again you will get [2] 19 and so on. In the following the sign > will show you what to
type and the following line(s) is the output.

R takes automatically control of brackets:

> sqrt (pi*x ^2

+ 5)

The + sign shows that R expects you to finish the line. It appears by pressing enter
after 2.

Storing data in variables can be done as follows:

> x <- 119 + 2

There is no output. But now 121 is stored in x and you can bring it up as follows:

> x

[1] 121

In the following we leave aside the outputs from R and just give the commands. Typ-
ically we use a table for assessing R commands as follows:

2

1 First steps

Objects in R

objects() Gives you a list of currently
used storage variables, or ob-
jects. For example
[1] "a" "b" "x"

objects As this is a function, calling it
without brackets give you the
definition of the function. This
is very helpful in accessing what
happens on calling functions, in
particular the ones which you
write yourself.

rm(x, y) Removes these objects from the
workspace.

R has a powerful help. You can invoke it by

> help(mean)

or get a short cut by

> ? mean

One of the most often used function is c. It concatenates objects:

> c(1,2,5,78)

[1] 1 2 5 78

1.1.1 More complicated things

Next we experiment with sequences.

> 1:10

creates a sequence from 1 to 10. There are a number of powerful way to do this.
Compute the mean of the first 100 integers.

> x <- seq(from=-1, to = 8, by = 0.1) #This is a comment

> y <- x^2 #Store in y

3

1 First steps

And bring it to the screen:

> plot(x,y,type = "l",main="The function x^2", xlab="x", ylab="y")

If you want to add a further line to an existing plot, you use lines:

> lines(x,x^3,type = "l",col="blue")

Exercise 1. Now get help on the command plot, try different functions, like square
root and logarithm and so on. Some examples are listed below

The function plot

plot(sin) Functions are objects which
have a direct plotting method.
You can find out about all such
objects with
methods(plot)

plot(sin(seq(-pi,pi,by=0.01)),

type="l",col=8,lwd=4,bty="l")

type="l" gives lines instead of
just circles, col="red" gives the
color, lwd: line width, bty="l"
specifies the frame: ”o” is stan-
dard, ”n” is none. For legends
see below.

4

1 First steps

Interactive Features

x <- 1:10

y <- x^2

plot(x,y)

identify(x,y)

Allows you by clicking on the
point to identify the item.
Right-Mouse click ends the ses-
sion.

locator() Allows you to identify an arbi-
trary point in the plot, for ex-
ample to place a legend at the
right place

plot(x,y,type="b")

points(x,x,col="red")

legend(1,100,legend= c("A","B"),

lty=c(-1,1),pch=c(1,1),ncol= 2,

col=c(1,2))

Add a legend to the above
graph. The place (1,100) is in
the coordinates of the graph!
It can simply be picked by us-
ing locator. lty gives the line
types, -1 is no line, and pch

gives the point type.

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0
20

40
60

80
10

0

x

y

● ● ● ● ● ● ● ● ● ●

● ●A B

1.1.2 Distributions

Typcial distributions are included in the following form:

ddist(x,) = f....(x) : density or probability functions

pdist(x,) = F....(x) : cumulative distribution function: P(X ≤ x) for X ∼ F

qdist(y,) = F−1
.... (y) : quantilefunction

rdist(n,) : generates n random variables

,

5

1 First steps

of the distribution dist. dist can be for example: norm, exp, binom, beta, gamma,
t, norm and many others (see table in the appendix). So dnorm gives the density
of the normal distribution, pexp gives 1 − e−x, the cdf of the Exp(1)-distribution,
qunif is the inverse cdf of the uniform distribution, i.e. the identity on [0, 1] and
rbeta(100,0.5,0.5) simulates 100 i.i.d. Beta(0.5,0.5)-distributed random variables.

Exercise 2. Plot the densities function of the normal, the t and the Γ distributions.
Vary with different parameters and colors in the plot.

For example, you could do the following:

x <- seq(-2,2,by = 0.01)

plot(x,dnorm(x),type="l")

lines (x,dnorm(x,mean=1,sd=1.5),

type="l",col =2)

0 2 4 6 8

0
10

20
30

40
50

60

The functions x^2 and x^3

x
f(

x)

dnorm(x,1,2) gives a normal distribution with standard deviation of 2 and not
variance of 2.

Simulation of random variables in R is very easy. Try for example the following:

Simulations

data <- rnorm(100)

mean(data)

var(data)

sd(data)

summary (data)

quantile(data, probs=c(0, 0.2, 0.9))

This gives you some statistics
on the data.

Exercise 3. You can experiment, plot and so on. Try different distributions like t
and Γ to get a feeling on them. Try help on sd, var, median, max, min, fivenum,

IQR.

6

1 First steps

1.1.3 Further statistics

Compute histograms:1

geom <- rgeom(200,0.3)

hist(geom)

dotchart(geom)

hist (geom,

ylim=c(0,50),

breaks=

seq(min(geom),max(geom)+1,by=2),

col=8)

boxplot(geom)

Simulate the geometric distri-
bution and get a histogram.

Geometric distribution

geom

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40
50

Try also smoothScatter or the following example on nonparametric density estimation:

1You can look at Bret Largets introdution: http://www.stat.wisc.edu/∼larget/R/eda-R.pdf for
further explanations and examples.

7

1 First steps

Kernel estimators

x <- rnorm(100)

y <- 2*x +rnorm(100)

plot(x,y)

lines(ksmooth(x,y,kernel="normal",

bandwidth=1),col="green")

lines(ksmooth(x,y,kernel="normal",

bandwidth=2.5),col="red")

This gives the Nadaraya-
Watson kernel estimator with
different bandwidths chosen.

z <- rgamma(100,shape=2)

density(z)

plot(density(z))

x <- seq(0.01,max(z),by=0.01)

lines(x,dgamma(x,2),col="red")

A nonparametric method of es-
timating a density.

0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Density kernel estimate

N = 100 Bandwidth = 0.4451

D
en

si
ty

Now if you feel well with R, go ahead and try some of your favorite simulations.

Exercise 4. Monte-Carlo experiment. What is E(ξn) with n = 1, 2, 3, 4 when ξ is
normally distributed. Or exponential, Gamma, t. Solve the question by Monte-Carlo:

> x <- rnorm(100)

> y <- x^4 #transformation with n=4

> mean(y) #The Monte Carlo estimate of the 4th moment

The background is of course the strong law of large numbers.

If you feel an expert, then try the following (difficult) financial application:

Exercise 5. Simulate a Brownian motion. Simulate a geometric Brownian motion
(the Black-Scholes Model). Compute the price of a call option via Monte-Carlo, i.e.
simulate 1000 payoffs and compute the mean

8

1 First steps

Hints: if (Wt)t≥0 is a Brownian motion, it has independent and stationary increments.
Moreover the increments are normally distributed:

Wt+∆ −Wt ∼ N (0,∆).

We obtain a Brownian motion by accumulating independent, normally distributed
random variables. Use the command cumsum for this. Simulate paths and plot for a
double check. Finally, simulated W1, the value of the Brownian motion at 1 1000 times
and give a histogram. Is it a normal distribution (try qqplot). Has it mean zero? Has
it variance 1? Yes - then you got it!

1.1.4 Defining our own functions

Of course a very powerful method is defining your own function. We start by giving a
function for plotting a nice graph of a density. Note the substitute used for obtaining
greek letters and inserting the values of variables in the title of the plot.

gnorm <- function(x) {

m=0 # mean

s=1 # sd

y <- dnorm(x,m,s)

plot(x,y,type="l",

main =substitute(paste("Normal Density with ",mu == m,

", ",sigma == s),list(m=mu,s=sigma)))

}

We call this function for example by gnorm(seq(-2,2,by=0.1)). Simply typing gnorm

recalls the definition of this function.

9

2 Copulas and multivariate random
variables

This section will have a focus on simulation, with a small section on estimation at the
end. We start with the simulation of multivariate distributions 1 (.mnorm, .mt, .mghyp
in R) and give important implications for estimating correlations with heavy tails.

2.1 Multivariate models

Now we turn to the multivariate distributions. Define an easy function for the multi-
variate normal as follows2. To address a covariance (or correlation) matrix simply by
the correlations, we use equicorr

equicorr <- function (d, rho)

{

if (rho < (-(d - 1)^(-1)))

stop(paste("rho must be at least", -(d - 1)^(-1)))

J <- matrix(rho, nrow = d, ncol = d)

D <- diag(rep(1 - rho, d))

J + D

}

Taking X = µ+AZ with Z being a vector of independent, standard normal variables
gives a vector of normal variables with mean µ and covariance matrix Σ = AA′, which
we use in the following. Recall that the Cholesky-Decomposition of Σ gives A.

rmnorm <- function (n, Sigma = equicorr(d, rho), mu = rep(0, d),

d = 2, rho = 0.7)

{

d <- dim(Sigma)[1]

1The functions .mnorm .mt are taken from the QRM lib. See the appendix for details and code.
2This and the following functions are taken from the QRMlib. We list them again in the appendix,

for your reference.

10

2 Copulas and multivariate random variables

A <- t(chol(Sigma))

X <- matrix(rnorm(n * d), nrow = n, ncol = d)

mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)

return(t(A %*% t(X)) + mu.matrix)

}

This function gives us an easy way to call a simulation of a multivariate normal distri-
bution.

data <- rmnorm(2000,rho=0.4)

plot(data)

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●●
●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

2−d Normal distribution, ρ =0.4

2.1.1 The probability and quantile transforms

An imporant idea needed here is the so-called probability transform: for a continuous
random variable X with distribution function F the random variable

F (X)

is uniformly distributed.

Exercise 6. Implement a test for this: Simulate a t-distribution and compute the (prob-
ability) transform F (X). Test if this is uniformly distributed (Kolmogorov-Smirnov, or
via a qqplot)

From a uniform random variable U we obtain a random variable with cumulative
distribution function via the quantile transform:

X ∼ F−1(U).

> x <- runif(100)

> y <- qbeta(x)

> hist(y)

11

2 Copulas and multivariate random variables

We can also test this via a nonparametric estimate of the cdf, the empirical distribution
function. This is implemented in the function ecdf from the package stats:

Emprical distribution

require(stats)

F10 <- ecdf(rnorm(10))

summary(F10)

plot(F10)

plot(F10, verticals= TRUE,

do.points = FALSE)

See help(ecdf) for more infor-
mation.

−2 −1 0 1

0.
0

0.
4

0.
8

x

F
n(

x)

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1

0.
0

0.
4

0.
8

x

F
n(

x)
2.2 Copulas

For computing or simulation a copula we take a random vector (X1, X2) and transform
it to (

F1(X1), F2(X2))

The distribution of this vector is a copula. For any copula, there exists a random vector,
such that its cdf is the copula. In this section we aim at simulating some copulas. The
Gauss copula is obtained from the normal distribution:

12

2 Copulas and multivariate random variables

Gauss copula

data <- rmnorm(2000,rho=0.7)

U <- pnorm(data)

plot(U)
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gauss copula with ρ=0.7

U[,1]

U
[,2

]

The t-copula shall be compared to the Gauss copula and we define a function for
simulating multivariate t-random variables.

rmt <- function (n, df = 4, Sigma = equicorr(d, rho),

mu = rep(0, d), d = 2, rho = 0.7)

{

d <- dim(Sigma)[1]

chi <- 2 * rgamma(n, shape = df/2)

m1 <- rmnorm(n, Sigma = Sigma)

m2 <- matrix(rep(sqrt(df)/sqrt(chi), d), ncol = d)

mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)

return(m1 * m2 + mu.matrix)

}

Lets plot the t-random variables and the probability transforms.

data <- rmt(2000,rho=0.4,df=4)

plot(data,main="t")

U <- pt(data,df=4)

plot(U,main="t-copula")

Exercise 7. Simulate 100 Gaussian vectors (Xi, Yi) with correlations ρ = −0.8, 0, 0.8
and transform Xi and Yi to exponential, log-normal and normal variables with mean
and variances of your choice. Plot the resulting data and the associated probability
transforms (copula).

13

2 Copulas and multivariate random variables

2-dimensional Normal and t-random variables

data1 <- rmnorm(1000,d=2,rho=0.5)

data2 <- rmt(1000,d=2,rho=0.5)

var(data1)

var(data2)

cor(data1)

cor(data2)

We use rmnorm and rmt to gen-
erate the 2-dimensional random
variables. Then we check for the
resulting variances. Correlation
is estimated via for.

cor.test(data2[,1],data2[,2]) If we want to have a confidence
interval for the correlation, we
use cor.test

Next, we visualize these data.

xmin=min(c(data1[,1],data2[,1]))

xmax=max(c(data1[,1],data2[,1]))

ymin=min(c(data1[,2],data2[,2]))

ymax=max(c(data1[,2],data2[,2]))

par(mfrow=c(2,1))

plot(data1,xlab="x_i",ylab="y_i",

xlim=c(xmin,xmax),ylim=c(ymin,ymax),

main="Multivariate Normal, rho=0.5")

plot(data2,xlab="x_i",ylab="y_i",

xlim=c(xmin,xmax),ylim=c(ymin,ymax),

main="Multivariate t_3, rho=0.5")

We first compute xmin,. . . to
achieve the same scaling on
both graphs. The output is split
into two parts, using the par-
command. par(op) switches
back to the single output win-
dow3.

●

●

●
●

●
●
●

●

●

●●

●
●

●●
●

●

●

●
●
●

● ●
●

●

●●

●

●

●
● ●

●

●
● ●●●

●

●

●

●●

●

●

●
● ●

●
●

●
●

●
● ●● ●

●
●●

●
●●● ●

●●

● ●
●

● ●

●

●
●

●
●●

●●

●

●

●

●

●

●

●
●

●

●●

●●

●
● ●

●●

● ●●
●

●
● ●●

●
●●

●
●

●
●

●
●●

●

●

●

●
●●

●● ●
●

●● ●
●

●
●

●

●
●

● ●
●

● ●●●
●

● ●
●

●
●

●
●
●●

●

●

●

●

●
●

●●● ●

●

●
●●

●●●
●

●
●

●●
●

●●

●
●

●

●

●
●

●
●

●

● ●

●●
● ●

●●

●

●
● ●

●

●
●

●

●

● ●
●

● ●●
●

●

●

●

●

●● ●

●

● ● ●
●

●

●
●

● ●
● ●

●

●
●

●

●

●
●●

●
●

●

●
● ●●

●

●

●

●

●
●

●
● ●

●

●●
●

●

●●
●●

●
●

●
● ●

●
●●

●

●

●
●

●●
●

●

●

●

●●●●

●

●

● ●
● ●

●
●

●

●

●
●

●

●
●

●
● ●

●
●● ●

●
●

●●

●
●

●
●

●
●

● ●
●

●

●

●

●

●

●

●
●

● ●
●

●

●●
●●

●

●
●

●

●
●

●
●

●
●

●
● ●●

●

●

●
●

●●
●

● ●
●

● ●

●●
●●●

●

●
●

●●
●
●●
●

●●

●
●●

● ●

●
●

● ● ●

● ●

●●
●

●
●

●
●
●

● ●
●

●

●

●

●
●●●

●
●

● ●
●●

●

●
●

●

●

●

●●
●

●
● ●●●

● ●

●

● ●

●●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●● ●●●

● ●
●

●

●
●

●

●
●

●

●

●

●●

●
● ●
●

●
●

● ● ●●

●

●

●● ●

●●
●● ●

● ●

●

●
●●

●●
●

●

●●
●

●

●

●

●
●

●

●
● ●●

●●●
●●

●
●

●

●

●
● ● ●● ●●

●

●

●

●● ●●

●

●
●●

●
●

●●

●●
●

● ●

●

●

●

●

●●

●

●
●

●
●

●

●
● ●

●
●

●
●

●

●

●
●

●
●

● ●
● ●

●●

●

●

●

●
● ●

●

●
●

●

●● ●
●

●
● ●●

●
● ●

●●
●

●

●

●
● ●●

●● ●
●

●

●● ●●●●
●● ●

●●
●● ●
●

●●

●

●

●

●

● ●
●

●

●

● ●● ●
●

● ●
●●

●
● ●●

●
● ●

●

●

●●
●

●

●

●●●

● ●

●
●● ●
●

● ●

●● ●

●

●●

● ●
●

●
●●

●

●
●

●

●●

●
●

●
●●

●

●●
●

●

●●

●●

●
●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

● ●

●

●● ●

● ●

● ●

● ●● ●
●
●

●

●
●

●

●

●
●

● ●●

●

●

●

●

●●●
●

●
●

●

●

●●
●

●

●
●
●

● ●
●●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●
● ●

● ●

●

●●
●

● ● ●

●

●●●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●
●

●

●
●

●●
●

● ●
●

●●

●

●
● ●

●

●●●
●● ●●

●

●

●●
●
●

●

●● ●

●●

●

● ●

●

●
● ●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●● ●● ●●
●●●●● ●

● ●
●

●●
● ●

●

●

●
●

●

●
●

●
●

● ●● ●

●

●●

●
●
●
●●

●
●

●● ●●●

●

●●

●
●

● ●
●

● ●
●

●

●

●

● ●●
●

●● ●
●

●

●

●

●● ●

●●
●

●
●

●

●
●
●

●
●

●

●●
●
●

●
●
●

●

●

●●

● ●
●

● ●
●

●
●

●●
●

−5 0 5

−
5

0
5

Multivariate Normal, ρ=0.5

●
●

●

●
●

●
●

●
●

●

●

●●
●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●●
●●●

●

●

●

●

●

●
●

●●

●

●
●
●

●
●

●
●
●

●
● ●

●
●
●● ●

●
●

●
●

●
● ● ● ●●
●● ●

●●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●●
●

●

●

●
●

●
●

●

●

●●
●

●
●● ●

●●
●

●
●

●
●

● ●

●
●

●

●

●●
●

●●
● ●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●
●

● ●
●

●

●

●

●

●

●●
●
●●

●

●

●

●
●

●

● ● ●

●

●

●

●● ●
●

●

●
●

●

●
●

● ●

●
●

●
●

●●

●
●

●

●

●
●

●

●
●

●
●●

●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●● ●
●

●
●

● ●●● ●

●
●

●

●
●

● ●●

●

●

●●
●

●●

●

●

●
● ●

●

●●
●

●●

●
●
●

●●

●●

●
●

● ●●
●

●

●

● ● ●

●

●

●

●

●

●

●●●

●
●

●

●
●●

●

●
●

●●

●
●

●

●

●●

●

●

●●●
●●

●
●

●

●

●

●

● ●

●●

●
● ●

●
●

●

●●●
● ●●

●

● ●● ●
●

●
●

●

●

● ●
●

● ●●

●

●

●

●

●
●●

●

●

●

●

● ●
●●

●
●
●

●●

● ●

●
●

●●
●

●
●

● ●
●

●●
●

●

●

●●●

●

●
●

●

●

●

●

●

●● ●

●●● ●
●●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●
●

●
●

●

●

●

● ●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●●

●

●

●

●
●●

●●

●

●
●

●

●

●

●

●

●
●

●●
●●

●

●

●

●●

●

●

●
●

●
●

●
● ●●

●
● ●●

●
●

●

●●
●

●
●●

●

●
●

●

●

●
●

●
●

●

●●
●

●
●●

●
●●

●

●●●●

●●

●

●● ●
●

●●
●

●

●●

●●
●

●

●
●

●●

●
●

●

●
●

●
●

●
●

● ●

●●

●
●

● ●● ●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

● ●
●

●
● ●●●

●

●
●

●

●

● ●●

●
●● ●●

●
●

●
●

●

● ●●
●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●
●

●

●

●
●

●

● ● ●

●
● ●

● ●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

● ●
● ●
●

● ●
●

●

●
●●

●
● ●

●

● ●

●
●

●
●

●

●

●
●

●

●

●● ●●
●

●●
●

●
●

●
●

●
●

● ●
●●

●

●

●

●

●● ●● ●
●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

● ● ●
● ●

● ●●
●●

●
●

●
●

●
●

●

●

●

●●
●●

●
●●

● ●●
●

●

●
●● ●●

●

●●

●

●
●

●

●

●
●

●
●

●

●●

●● ●
●● ●

●

●

● ● ●●

●
●

●
●●

●●

●
●

●
●

●

●

●

● ●
● ●

●
●

●
●●

●

● ●

●
●

●

● ●
● ●●

●●●
●

●

●

●

●●

● ●

●

●●
●

●

●

●
●

● ● ●
●●●●

● ●

●
●●

●

●

●
● ●

● ●
●

●●

●
●●

●

●
●

●
●●●

●

●

●
● ●

●

● ●
●

● ●●
●

●

●
●
●

●

●
●● ●

● ●
●

●●
●●

●

●
● ● ●

●●●●
●

●●

●
●

●
●●

●

●●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
● ●

●
●

●

● ●
●

●

●

●
●

● ●
●●

● ●●
●

●● ●

●
● ●●●

●●

●

●

●

●

●

●

−5 0 5

−
5

0
5

Multivariate t_3, ρ=0.5

Clearly, the t-distribution shows much more outliers and heavy tails in comparison to
the normal distribution. The variances, however, are different and after the following
resealing still this difference appears.

14

2 Copulas and multivariate random variables

data2[,1] <- sqrt(var(data1[,1])/var(data2[,1]))*data2[,1]

data2[,2] <- sqrt(var(data1[,2])/var(data2[,2]))*data2[,2]

Correlation as measure of dependence

In financial application it is very sensible to use correlation in the right way as we discuss
in the coures. Here we illustrate this with the following example. We compute normal
random variables with correlation of 0.8 and the transform them via the nonlinear
function exp. The resulting correlation is much smaller! However, spearmans ρS does
not show this effect. It is a dependence measure invariant to monotone transformations,
a very suitable property in financial data. It is also less sensible to outliers.

set.seed(13)

sigma <- 4

rho <- 0.8

Sigma <- matrix(c(1,rho*sigma ,

rho*sigma ,sigma^2),nrow=2)

x <- rmnorm(100,Sigma)

y <- exp(x)

cor(y)

We use set.seed to guaran-
tee we work all on the same
random numbers. The esti-
mated correlation (0.35) differs
largely from the initial correla-
tion (0.8). Why is this the case?
Illustrate this by plotting the
data.

cor(y,method="spearman")

Try also alternatively Kendall’s
tau and Spearman’s rho.

If the data is heavy tailed, sensitive measures like mean or sample correlation may sev-
erly fail to estimate the correct values. We show this using kendalls’tau ρτ in compari-
son to linear correlation ρ on t3 data. Recall the we have ρS(X, Y) = 6

π
arcsin ρ(X,Y)

2
≈

ρ(X, Y) and ρτ (X, Y) = 2
π

arcsin ρ(X, Y).

15

2 Copulas and multivariate random variables

Robust measuring of correlation

r1<-rep(0,1000)

r2<-rep(0,1000)

for (i in 1:1000){

x <- rmt(90,df=3,rho=0.5)

r1[i]<-cor(x)[1,2]

r2[i]<-

sin(cor(x,method="kendall")[1,2]*pi/2)

}

par(mfrow=c(2,1))

plot(r1,main="Correlation")

plot(r2,main="Kendalls tau")

We clearly see that robust mea-
sures like Spearman’s ρ oder
Kendall’s τ are much better es-
timates if the data has heavy
tails.

●

●
●●

●

●●

●

●
●●
●

●●

●

●

●

●
●●
●
●

●

●

●●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●
●●
●●
●●●●
●
●

●●

●
●●

●●
●

●
●

●
●

●

●

●

●

●●●

●

●●
●
●●

●
●

●

●●

●
●

●

●●●●
●●

●

●
●●
●

●

●
●
●●

●●●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●
●

●●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●●
●

●

●

●
●●
●●●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●
●
●
●

●●●

●

●●●

●

●●
●

●

●

●
●●

●●
●
●

●
●

●

●
●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●
●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●
●

●
●

●
●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●
●

●

●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●●●

●

●

●
●

●●

●
●

●
●●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●●
●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●●
●
●
●●

●

●

●

●

●

●●
●
●

●

●
●●

●

●

●

●

●
●

●
●
●

●
●

●●●●●

●

●

●●
●

●

●
●●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●
●
●●

●

●●

●

●●●
●
●
●

●
●
●

●

●
●●●
●●●●
●
●●
●
●
●

●

●

●●

●●
●

●
●●

●
●
●

●

●

●

●
●
●
●

●
●

●

●●●

●

●

●

●

●

●
●
●

●

●

●●

●

●●●

●

●
●●●●●
●●
●

●

●
●
●
●
●

●●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●
●●

●

●

●●
●
●
●

●●
●●

●

●

●
●●

●●
●●

●

●

●●

●

●

●

●

●
●
●
●
●
●

●

●
●●
●
●

●●

●

●
●
●●

●

●●●●

●

●

●

●

●
●●

●

●

●●
●

●
●●●

●

●●●

●
●

●
●●●
●

●
●
●

●
●

●●●
●●
●

●

●●●

●

●

●

●
●

●
●
●

●

●

●●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●
●
●
●●
●
●

●

●

●

●
●
●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●●

●

●●●

●
●

●

●●
●●

●
●

●

●

●
●
●
●●
●
●●

●●
●

●

●
●

●●

●
●●●

●
●

●
●●
●●
●

●

●●

●
●
●
●
●

●

●

●

●

●●

●

●
●

●
●●
●

●

●
●
●●

●
●

●●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●●

●
●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●●
●●

●
●●

●

●

●●

●
●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●●
●
●

●

●●

●

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0

Correlation

●

●

●
●
●

●
●
●
●
●
●
●

●
●

●●●

●

●
●
●●

●

●

●
●●●

●
●●●●
●

●
●
●

●

●

●

●
●

●

●●
●

●

●●

●

●●
●

●

●
●

●

●

●

●●●
●
●

●●

●

●

●●●
●●
●
●●
●

●●

●

●●
●
●

●

●●
●
●●
●
●
●

●
●
●
●

●

●
●
●
●

●

●
●

●
●
●

●●

●
●●

●
●
●
●
●●

●
●

●●
●

●
●●

●

●●
●●

●●

●
●
●

●

●
●●●●
●●
●●

●
●

●

●●●
●
●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●

●
●
●

●●
●
●

●●

●
●●

●
●
●
●

●

●
●●
●
●●
●

●
●
●●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●●●
●

●
●

●●
●

●
●●●

●

●
●●●
●
●

●

●
●●

●●●
●
●
●

●

●

●

●

●

●●
●
●

●
●
●
●

●

●
●

●
●
●●
●

●●
●
●

●●
●

●

●

●
●
●

●
●●●
●●
●

●

●

●

●●

●

●

●

●

●
●

●●
●
●

●

●●
●

●
●
●

●●
●
●

●●●●

●

●

●

●
●
●

●●●
●
●
●
●

●

●

●

●
●

●

●
●●

●
●●

●

●

●●●
●●

●●●
●
●●●●●

●
●

●

●

●
●
●●
●

●

●

●

●●

●
●
●●
●

●

●●

●

●●
●●

●
●●

●●●
●●

●
●●
●
●●●
●

●

●
●
●

●
●●●●
●

●

●
●
●●
●

●
●
●
●
●

●
●
●

●

●
●●●
●
●●
●●
●
●

●
●
●
●

●

●●

●

●●

●

●
●●
●

●●●

●

●
●

●
●●
●

●
●

●

●

●

●●
●●●●●●
●●

●

●
●
●●
●
●
●
●
●

●

●

●●●

●

●
●●
●
●
●

●●
●
●●●●●

●

●
●●●●
●
●

●
●●●

●

●
●●●

●●●

●
●
●●
●
●
●

●

●●

●●

●

●

●●

●
●●●●

●

●●
●

●
●
●

●

●●
●
●
●●
●
●●●●
●

●

●
●
●
●
●
●
●
●

●

●

●●
●
●●●●●●
●

●

●

●

●●
●
●
●
●

●●
●
●

●

●
●●
●●
●

●

●

●
●●

●

●●
●
●
●
●●

●

●●●●●
●

●●

●
●
●
●●
●
●
●

●
●

●

●●●●●
●
●

●

●

●
●●●●●
●●

●

●
●
●●●
●
●
●
●●●

●
●

●
●
●●
●●●
●
●

●

●●●
●
●

●

●
●●●●●
●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●●
●

●

●●
●

●
●
●●

●

●
●

●●●

●
●
●
●
●
●●●
●●●

●●

●
●

●
●
●●
●

●
●
●

●●
●●●

●

●●●

●

●●●
●
●
●●●●

●●●

●
●●●●

●

●

●
●●
●●
●

●●
●
●
●
●

●

●●
●
●
●
●●
●

●

●

●
●

●●
●●

●●●
●

●

●●
●●

●
●●
●

●
●

●●
●●●

●
●
●●●●
●

●
●

●

●●
●●

●
●●●●●
●●
●
●●

●

●
●●●

●
●
●●●
●●
●

●
●
●
●●●
●

●

●●

●

●

●

●

●

●

●●●

●

●●

●
●

●●

●

●
●

●●
●●●●

●

●●●●

●●

●●

●

●

●
●

●
●

●

●
●
●
●

●

●●

●

●●
●

●
●
●

●

●

●
●
●●

●
●

●●●
●

●●

●
●●
●

●

●

●

●
●

●

●

●●●●●●
●
●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●●

●●
●
●

●
●
●
●●
●
●

●●●

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0

Kendall's τ

2.2.1 A first look at copulas

We simulate a number of copulas, starting with normal and t-copulas. The difference
to our previous simulations with rmnorm is that we have to transform the marginals to a
uniform distribution. This can be done by using the empirical cumulative distribution
function (cdf) (which is an approximation, then) or by using the underlying cdf, which
we call probability transform.

16

2 Copulas and multivariate random variables

Gauss and t-copula

par(mfrow=c(2,2))

data <- rmnorm(2000,rho=0.4)

plot(data,main="Normal",lwd=0.3)

U <- pnorm(data)

plot(U,main="Gauss copula",lwd=0.3)

data <- rmt(2000,rho=0.4,df=4)

plot(data,main="t",lwd=0.3)

U <- pt(data,df=4)

plot(U,main="t-copula",lwd=0.3)

In this code we use the prob-
ability transform by norm and
pt which are the cdf’s of the
normal and t distribution. The
parameter lwd=0.3 gives lighter
circles.

●

●
●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●
●● ●●●

●

●

●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●●

●
●● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

● ●●
●●

●

●

●

●
●

●●●
●

●

●

●
●

● ●
●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●●

●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●●

●

●

●

●●
●

●
●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

● ● ●
●

●
●

● ●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●●●

●
●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
● ●

●

●

●

● ●
●

●

●
●●

●

●

● ●

●

●

● ●

●●

●

●

●
●

●
●

●●

●
●

●●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

−5 0 5 10

−
6

−
4

−
2

0
2

4

Normal, ρ=0.4

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gauss copula

uniform

un
ifo

rm

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

● ●●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●● ●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

● ●

●

●

●

●

●

●

● ●●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●
●

●

●
●●●

●

●

●

●
●●

●●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

● ●
●

●
●

●

●

●
●●●

●

●
●●

●

●● ●
●

●

●

● ●

●

●●●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

●

−5 0 5 10

−
6

−
4

−
2

0
2

4

t, ρ=0.4

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t−copula

uniform

un
ifo

rm

Exercise Simulate different mean-variance mixture distributions and their copulas.
Compare the copulas obtained by the probability transform to the ones obtained
by the empirical cdf (use ecdf).

2.3 Estimating copulas

Typically, copulas can be estimated via maximum-likelihood methods. This requires a
more sophisticated implementation, in particular because the density is not so simple.
You find the code from the QRMlib in QRMlibparts.R. Alternatively, you simply install
the QRMlib. If the package is installed you can load it by

library(QRMlib)

17

2 Copulas and multivariate random variables

2.3.1 Estimation via rank correlations

If the number of degrees of freedom is known, it remains only to estimate the correlation
parameter. As indicated above, this can be done via Spearman’s ρ or Kendall’s τ .

Estimation of the correlation coefficient

N <- 100000

n <- 100

r1 <- rep(0,N);r2 <- r1;r3 <- r1

pb <- txtProgressBar(style=3)

for (i in 1:N)

{

data <- rmt(15,rho=0.5)

r1[i] <- cor(data)[1,2]

r2[i] <-

sin(cor(data,method="spearman")[1,2]*pi/6)*2

r3[i] <-

sin(cor(data,method="kendall")[1,2]*pi/2)

setTxtProgressBar(pb, i/N)

}

c(mean(r1), median(r1), var(r1));

...

We use the txtProgressBar to
follow the progress of this longer
simulation. Using a smaller N

speeds it up, leading to similar
results. The output is
[1] 0.489 0.499 0.0284

[1] 0.470 0.477 0.0081

[1] 0.491 0.498 0.0082

Corrleation

F
re

qu
en

cy

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
50

15
0

25
0

Spearman's rho (transformed)

F
re

qu
en

cy

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
30

0

Kendall's tau (transformed)

F
re

qu
en

cy

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
30

0

18

2 Copulas and multivariate random variables

Simulating from a Gumbel copula

data <- rcopula.gumbel(1000,3,4)

pairs(data)
var 1

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

var 2 ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

var 3

mu <- 0.02; sigma <- 0.6

stockdata <- 100*exp(mu+sigma*qnorm(data))

plot(stockdata)

plot(diff(log(stockdata)))

We transform to log-normal
margins, and obtain a Meta
lognormal-Gumbel distribution.
We also plot the logreturns.

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

0 100 200 300 400

0
10

0
20

0
30

0
40

0

log−Normal Gumbel distribution

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Log−Returns

data2 <- rcopula.gumbel(1000,2.7,2)

data3 <- rcopula.gumbel(1000,7,2)

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gumbel 2.7

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Gumbel 7

19

2 Copulas and multivariate random variables

As a next step we want to test the maximum-likelihood estimation of the copulas. We
test some examples. In the QRMlib4 we find the necessary tools.

Estimating a t-copula

data <- rmt(1000,df=5,rho=0.8)

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4

t_5 distribution, ρ=0.8

list(Means=c(mean(data[,1]),mean(data[,2])),

Variances=var(data),

Correlation=cor(data)[1,2])
$Means

[1] -0.017031 0.009217

$Variances

[,1] [,2]

[1,] 1.472639 1.134481

[2,] 1.134481 1.452208

$Correlation

[1] 0.7757727

fit.norm(data) Gives the exact result as above
with log-likelihood
ll.max = -2756.518

fit.mst(data) The result is nu=5.23 degrees
of freedom and a correlation of
0.801 and
ll.max = -2648.338

4This library provides a lot of fitting algorithms: fit.AC, fit.Archcopula2d, fit.gausscopula,

fit.mNH, fit.mst, fit.norm, fit.tcopula, fit.tcopula.rank besides other fitting rou-
tines for univariate distributions or extreme-value methods.

20

2 Copulas and multivariate random variables

The higher likelihood under the t-copula suggest that this gives a better fit. This is
not a test for normal copula agains a t-copula, just a simple fitting argument (Can you
name the difference?).

2.3.2 The generalised hyperbolic distribution

Next, we turn to the important class of generalized hyperbolic distributions. We use
the notation X ∼ GHd(λ, χ, ψ, µ,Σ, γ). The GH-distribution is a mixture:

X = µ+ γW +
√
WAZ

where W has a generalized inverse Gaussian (GIG) distribution, W ∼ GIG(λ, χ, ψ). So
µ is the mean, γ is the skewness parameter and Σ = AA′ the covariance matrix (before
mixing). As is easy to see by the Fourier-transform, the GH distribution is closed under
linear transformations, i.e. BX + b has distribution GHd(λ, χ, ψ,Bµ+ b, BΣB′, Bγ).5

If λ = 1
2
(d + 1), we call the distribution a d-dimensional hyperbolic distribution. We

obtain the tn distribution with λ = −n
2
, χ = n, ψ = 0; if γ = 0 this is the (classical)

unskewed tn-distribution.

5There are many special cases, hyperbolic, NIG, Variance Gamma and so on.

21

2 Copulas and multivariate random variables

Densities and simulation of the generalized hyperbolic distribution

x <- seq(-2,5,by=0.01)

plot(x,dghyp(x,0.5,1,1,0,0))

lines(x,dghyp(x,0.5,7,1,0,0),col=19)

lines(x,dghyp(x,-0.5,5,1,0,0),col=22)

lines(x,dghyp(x,-0.5,5,1,0,-1),col=22)

lines(x,dghyp(x,-0.5,5,1,0,1),col=22)

−2 −1 0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

GH densities

d1 <- rmghyp(1000,-0.5*4,4,0,rho=0.7)

d2 <- rmghyp(1000,-0.5,5,1,rho=0.7)

d3 <- rmghyp(1000,-0.5,5,1,gamma=-1,,rho=0.7)

d4 <- rmghyp(1000,-0.5,5,1,gamma=1,rho=0.7)

Some simulations. The first one is a t4-distribution.
The second line illustrates the skewness effect of γ.

●

●
●●

●
●

●
●

●

●●
●

●●
●

●

●

●

●

●●

●

●

●
●
●
●

●
●●●●

●
●

●●●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●●
●

●
●

● ●

●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●
●
●

●●

●
●

●

●

●

●

●
●

● ●
●
●●
●

●

●

● ●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●●
●

●

● ●●

●

●

●
●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●
●

●

●
●

●

●
●
●

● ●

●● ● ●
●

●
●●

●

●
●

●

●

●

●
● ●

●

●●
●

●

●

●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●
●

●
●

●●
●●

●
●

●● ●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●●

●

● ●
●

●

●

● ●

●●●

●

●
●

●
●●

●

●

●
●

●
●●

●

●●
●

●

●
●

●

●●
●

●

●●●

●

●
●

●

●

●

●●●

●

●

●
●

●
●

●
●

● ●

●

● ●

●

●●

●

●

●

●

●●

●●
●
●●

●●
●

●
●

●

●

●
●

●

●
●● ●●●

●
●

●●
●

●
●●

●

●
●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●
●

● ●

●

●

●

● ●●

●

● ●

●●

●

●

● ●

●

●

●

●
●

● ●●

●
●

●●

●

● ●●
●

●
●●●

●

●

●

●

●

●

●

●●● ●
●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

● ●

●

●
●

●
●

●
●

●

●

●
●

●

●
●●●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●
●●

●

●

●

● ●●

●
●

●

●
●

●

●
● ●
● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●●●

●

●

●
●

●

●

●
●

●
●●

●
●

●

●
●

●●

●
●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●●
●

●● ●

●
●
●

●

● ●

●

●
●

●

●

●
●●●
●

●
●

●
●

●
●

●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●●
●

●

● ●

● ●
●

●
●
●
●

●

● ●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●
●

●

●

●

●●
●

●

●

●●
●

●

●

●●
●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●●●
●

●
●

●

●

●●

●

●

●

●●●

● ●

●
● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●●
●●●
●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

● ●
●

● ●
●

●

●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

−5 0 5

−
10

−
5

0
5

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

● ●●

●

●

●

●●
●

●

●
●

●

●●

●●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●●
●●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

● ●
●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●● ● ●

● ●

●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●

●

● ●

●

●
●●

●

●●●

● ●

●
● ●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●
●
●

●

● ●
●

●

●

●

●●

●

● ●●
●

●

●

●

●

●●
●

● ●

●
●

●

●

● ●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●

●●

●
●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ● ●

●

●
● ●

●

●
●

●

●

● ●●

●●

●

●

●

●

●
●

●

●

●●●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
● ●

●● ●

●

●
●

●

●

●●

●

●●
●
●

● ●
●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

● ●
●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●
●

● ●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●
●●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●●

●
●●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●

● ●

● ● ●

●

●

●
●

●
●

●

●●

●

●

●

●

● ●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●
●●

●
●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●
●

●

●

●

−6 −4 −2 0 2 4 6

−
5

0
5

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

● ●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●
●● ●●

●

●

●

●

●

●

●●● ●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●●

●
●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ●

●
●

●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●
●

●●

●

●
●

●

●

●

●

● ●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●●

●

●

●
●

●●●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●
●●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●●

●

●●

●

●●

●

●

●

●

●
●

●●● ●●

●

●
●
●

● ●●
●

●

●

●
●

●

●
●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●●●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

−15 −10 −5 0

−
15

−
10

−
5

0

●

●

●●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●

● ●
● ●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●
●

●

●

●

●
●

●

●

● ●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●
●● ●●
●●

●

●

●

●
●

●● ●

●

●●●

●

●
●

●

●●

●

●

● ●

● ●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

● ●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●
●●

●

●
●

●
●

●

●●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●●●
● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●●

●
●

● ●●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●

● ●●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

● ●
●
●

●

●
●

●

●

●●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●● ● ●

●

●●

●
●

●●
● ● ●

●

●

●

●

●

●

●

●
●

●

●

● ●●
●●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●
●●● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●
● ●

●

●

●●
●

●

●

●
●

●●

● ●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●●

●●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

0 5 10 15

0
5

10
15

Next, we aim at estimating the parameters of the generalized hyperbolic distribution.
First, in the univariate and then in the 2-dimensional case. Simulations are used to
analyze the performance of the estimation.

22

2 Copulas and multivariate random variables

N<- 100

n<- 500

psi <- rep(0,N)

chi <- rep(0,N)

rho <- rep(0,N)

for (i in 1:N){

fit <- fit.mNH(rmghyp(1000,-0.5,1,1,rho=0.2))

psi[i] <- fit$mix.pars[2]

chi[i] <- fit$mix.pars[3]

rho[i] <- fit$correlation[1,2]

}

we obtain

means variances

0.9926 0.0172

1.0503 0.0396

0.2010 0.0013

A data example

This section aims at analyzing financial data. We first download data conveniently from
the yahoo finance sites with the package fImport. Alternatively, any data in .csv (or
other) format can be easily imported, for example with the comannds read.table,

read.csv. We choose the stock prices from BBVA and Santander (NY), in Dollars.

23

2 Copulas and multivariate random variables

Import data from finance.yahoo

require(fImport)

stocks <- yahooSeries(c("BBVA","STD"),

nDaysBack=5000)

x <- stocks[,c("BBVA.Adj.Close",

"STD.Adj.Close")]

plot(stockdata)

dx <- array(c(x[,1],x[,2]),

dim=c(length(x[,1]),2))

dx <- diff(log(dx))

plot(data)

5
10

15
20

B
B

V
A

.A
dj

.C
lo

se

4
6

8
10

14

1998−05−26 2003−11−15 2009−05−06

S
T

D
.A

dj
.C

lo
se

Time

x

●

●

●

●

●

● ●

●

●●●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4
−

4
−

2
0

2
4

dx[,1]

dx
[,2

]

24

2 Copulas and multivariate random variables

mod.GAUSS <- fit.norm(dx)

mod.NIG <- fit.mNH(dx ,

symmetric=FALSE,case="NIG")

mod.HYP <- fit.mNH(dx ,

symmetric=FALSE,case="hyp")

mod.t <- fit.mst(dx)

mod.NIGs <- fit.mNH(dx ,

symmetric=TRUE,case="NIG")

mod.HYPs <- fit.mNH(dx ,

symmetric=TRUE,case="hyp")

mod.GAUSS$ll.max

and similar

The data analysis gives

log likelihood max

GAUSS 17332.2

t 18177.9

NIG (symm) 18198.5

GH (symm) 18165.9

NIG 18199.8

GH 18167.2

The best fit is in both cases,
symmetric and asymmetric pro-
vided by the NIG distribution.
lambda chi psi

-0.50 0.00 1310.6

gamma

-1.991 -2.671

2.4 Definitions

This functions were used above, taken from QRMlib

Generate a correlation matrix with equal correlations

equicorr <- function (d, rho)

{

if (rho < (-(d - 1)^(-1)))

stop(paste("rho must be at least", -(d - 1)^(-1)))

J <- matrix(rho, nrow = d, ncol = d)

D <- diag(rep(1 - rho, d))

J + D

}

Generate multivariate normal random variables

rmnorm <- function (n, Sigma = equicorr(d, rho),

mu = rep(0, d), d = 2, rho = 0.7)

{

d <- dim(Sigma)[1]

A <- t(chol(Sigma))

X <- matrix(rnorm(n * d), nrow = n, ncol = d)

mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)

25

2 Copulas and multivariate random variables

return(t(A %*% t(X)) + mu.matrix)

}

For the multivariate t-distribution we use the representation t = µ+
√
WAZ where Z

is standardnormal and W has an inverse Gamma distribution.

rmt <- function (n, df = 4, Sigma = equicorr(d, rho),

mu = rep(0, d), d = 2, rho = 0.7)

{

d <- dim(Sigma)[1]

chi <- 2 * rgamma(n, shape = df/2)

m1 <- rmnorm(n, Sigma = Sigma)

m2 <- matrix(rep(sqrt(df)/sqrt(chi), d), ncol = d)

mu.matrix <- matrix(mu, nrow = n, ncol = d, byrow = TRUE)

return(m1 * m2 + mu.matrix)

}

26

3 Risk measures

In this section we take a closer look at the estimation of risk measures, in particular
value-at-risk and expected shortfall. We assume that we have a history of losses and
want to predict or control outcomes of a future loss. Xonsider the i.i.d. case, i.e.
where we observe X1, . . . , Xn random variables which are independent and identically
distributed and have the same distribution like X = Xn+1, the future loss. We want
to estimate the risk regarding the unknown future outcome of X. Denote the cdf of X
by F .

If F is continuous, or at least if P(X = α), then the value at risk of X at confidence
level α (typically 0.95 or 0.99) is

VaRα(X) := F−1(α).

F−1(α) is a particular quantile of X. If X is continuous at α, the quantile to the
level α is unique and we denote it by qα(X). It coincides with F−1(α) in this case. If
X ∼ N (µ, σ2), then

VaRα(X) = µ+ σΦ−1(α),

where Φ is the cdf of the standard normal distribution. In the normal context value-
at-risk is coherent, otherwise it is not, because the subadditivity fails. The second risk
measure what we want to consider is the expected shortfall (average value-at-risk or
conditional value at risk). It is defined by

ESα(X) =
1

1− α

∫ 1

qα(X)

qu(X)du.

Note that for this definition we do not need continuity of X. If X is continuous, we
also have that

ESα(X) = E(X|X > VaRα(X)).

In the Gaussian case, i.e. if X ∼ N (µ, σ2), we obtain

ESα(X) = µ+ σ
φ(Φ−1(α)

1− α
.

We start with an analysis of the IBEX index.

27

3 Risk measures

ibexd <- yahooSeries("^IBEX",nDaysBack=5000)

ibex <- ibexd[,"^IBEX.Adj.Close"]

plot(ibex,type="l")

ibex.d <- diff(ibex[1:length(ibex)])

ibex.loss.d <- -1*ibex.d

plot(density(ibex.loss.d))

mean(ibex.loss.d)

sd(ibex.loss.d)

We take the IBEX index as an
example. Mean and sd compute
to
-0.35 150

IBEX

1998−06−02 2003−11−20 2009−05−10

60
00

10
00

0
16

00
0

−1000 −500 0 500 1000

0.
00

0
0.

00
2

Density of IBEX losses

−1*diff(ibex)

To compute the value-at-risk we first assume that the index loss has a normal distri-
bution with mean −0.35 and sd of 150.

VaR.Gauss <- function (alpha=0.95,mu,sigma)

{

mu + sigma* qnorm(alpha)

}

ES.Gauss <- function(alpha=0.95,mu,sigma)

{

mu + sigma/(1-alpha)*dnorm(qnorm(alpha))

}

The obtained risk measures are

VaR0.95 246.37

ES0.95 309.06

VaR0.99 348.60

ES0.99 399.43

28

3 Risk measures

plot(density(ibex.loss.d)

x <- seq(-1000,1000,by=10)

lines(x,dnorm(x,mean=-0.35,sd=150),col="red")

#We mark the risk measures in the graph

lines(c(246.37,246.37),c(0,0.0015))

text(250,0.0015,"VaR 0.95",adj=c(0,0))

lines(c(309.07,309.07),c(0,0.001))

text(311,0.001,"ES 0.95",adj=c(0,0))

lines(c(348.60,348.60),c(0,0.0006))

text(350,0.0006,"VaR 0.95",adj=c(0,0))

lines(c(399.43,399.43),c(0,0.0004))

text(400,0.0004,"ES 0.95",adj=c(0,0))

−1000 −500 0 500 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

IBEX losses

−1*diff(ibex)

VaR 0.95

ES 0.95

VaR 0.95

ES 0.95

on the graph we plot the 0.99
risk measures in green.

Next, we want to asses the quality of the risk measures. At the moment we employ
two estimating possibilities:

(i) Naive: we substitute the estimated parameters µ̂ =mean(X) and σ̂ =sd(X). This
gives the estimate

VaR.Gauss(alpha,mean(data),sd(data))

(ii) Empirical: this uses the empirical quantile and is simply implemented by

VaR.emp <- function(x,alpha){

quantile(x,alpha)

}

We analyze the quality of this measures by a Monte-Carlo simulation:

29

3 Risk measures

mu <- -0.3525174

sigma <- 150.0785

N<- 1000; n<- 100; alpha <- 0.95

var.est1 <- rep(0,N); var.est2 <- rep(0,N)

for (i in 1:N){

data <- rnorm(n,mu,sigma)

var.est1[i] <- VaR.emp(data,alpha)

var.est2[i] <-

VaR.Gauss(alpha,mean(data),sd(data))

}

plot(density(var.est2))

lines(density(var.est1))

lines(c(246.5,246.5),c(0,0.020)) #True VaR

200 250 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

VaR Estimates

D
en

si
ty

Empirical
Naive

We obtain mean and sd’s (true
VaR=246.5)

$Empirical

[1] 239.76912 31.15811

$Naive

[1] 245.75854 23.45826

3.1 Performance of the risk estimates

This is, however, until now a statistical analysis. In a financial sense we are much more
interested in the question how often is the calculated risk capital sufficient to cover
the occurring losses? This shall be addressed in the following. We perform a method
similar to a backtesting approach and the routines can simply be extended to this.

mu <- -0.3525174

sigma <- 150.0785

N<- 1000

n<- 100 # Learning period

M<- 100 # Backtesting period

alpha <- 0.95

var.true <- VaR.Gauss(alpha,mu,sigma)

var.est1 <- rep(0,N)

var.est2 <- rep(0,N)

var.est3 <- rep(0,N)

counts <- rep(0,4)

30

3 Risk measures

for (i in 1:N){

data <- rnorm(n,mu,sigma)

var.est1[i] <- VaR.emp(data,alpha)

var.est2[i] <- VaR.Gauss(alpha,mean(data),sd(data))

var.est3[i] <- mean(data)+sd(data)*qt(alpha,n-1)

newperiod <- rnorm(M,mu,sigma)

counts[1] <- counts[1]+ sum(newperiod>var.est1[i])

counts[2] <- counts[2]+ sum(newperiod>var.est2[i])

counts[3] <- counts[3]+ sum(newperiod>var.est3[i])

counts[4] <- counts[4]+ sum(newperiod>var.true)

}

The output is as follows (counts/M/N) :

Method Empirical Naive t True VaR

Perc. failure 0.05860 0.05320 0.05166 0.05005

Surprisingly, all the risk measures perform quite bad. This is due to the well-known
effect that the distribution has to be estimated and estimating the parameters changes
the original normal distribution to a t distribution. Still, it is surprising that the
according t-estimate propagated in the literature performs so bad. This is due to the
fact that the estimator is biased in probability. There is a theoretical solution to this,
which we discussed in class. Here we aim at finding an empirical solution to this. We
aim at computing the quantile factor q such that

VaR∗0.95 := mean(data) + sd(data) ∗ q

does produce an average number of 1− α failures.

Estimate the quantile level q empirically

N<- 1000

n<- 100 # Learning period

M<- 100 # Backtesting period

newperiod <- rep(0,N*M)

for (i in 1:N){

data <- rnorm(n,mu,sigma)

newperiod[(1+(i-1)*M):(i*M)] <- (rnorm(M,mu,sigma)-mean(data))/sd(data)

}

31

3 Risk measures

The outcome is surprisingly clear:

> quantile(newperiod,0.95)

95%

1.668395

By simply adding

var.est4[i] <- mean(data)+sd(data)*1.668395

We can incorporate our new VaR-estimator in the above test and obtain

Method Empirical Naive t New VaR True VaR

Perc. failure 0.05860 0.05320 0.05166 0.5051 0.05005

In accordance with our theoretical considerations the new factor is very close to√
n+ 1

n
tn−1.

Accordingly we obtain the modified VaR estimator by

VaR∗α := mean(data) + sd(data) ∗ qt(alpha) ∗ sqrt((n + 1)/(n)). (3.1)

Exercise 8. Translate this considerations to a t-distribution and proceed with the fol-
lowing steps:

• Estimate a t (or a generalised inverse Gaussian) distribution from the IBEX data.

• Propose VaR-estimates: naive estimation, empricial estimation and an estima-
tion with is according to (3.1).

• Study mean, variance and distribution of these estimates with a simulation study.

• Implement a backtesting procedure and analyze as above how this estimations
perform.

Exercise 9. What are appropriate criteria for the expected shortfall? How can this
mechanisms be transported?

32

4 Estimation of diffusions and affine
models

We discuss the implementation of some estimation methods for continuous, affine, one-
dimensional diffusions. A great survey on the estimation methods can be found in [?].
Essentially, we consider models of the class

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dWt,

i.e. continuous Markov processes. Famous examples are the affine models and, in
particular, the Vasicek and the Cox-Ingersoll-Ross models.

4.1 Simulation

The Vasicek model is a special Ornstein-Uhlenbeck process. In classical notation we
state it by

dXt = κ(θ −Xt)dt+ σdWt.

It has the explicit solution1

Xt = θ + (X0 − θ)e−κt + σe−κt
∫ t

0

eκsdWs.

For a simulation we can use this explicit solution, which is however not feasible for more
general diffusions. In these cases we have the possibility to approximate the solution
by discretization. The simplest one is the Euler-Maruyama discretization,

xti = µ(xti−1
)(ti − ti−1) + σ(xti−1

)εi

where ε1, ε2, . . . are independent and εi ∼ N (0, ti − ti−1). Of a faster convergence is
the Milstein scheme, where

xti = xti−1
+ µ(xti−1

)(ti − ti−1) + σ(xti−1
)εi +

σ(xti−1
)

2

∂σ(xti−1
)

∂x
(ε2i − (ti − ti−1))

In the Vasicek model, both methods coincide. For ti− ti−1 small enough, the methods
are very close:

1See Cucchiero, for example

33

4 Estimation of diffusions and affine models

vas.sim <- function (n,theta,sigma,kappa,Delta,vas0,method="exact") {

simul <- rep(0,n); simul[1] <- vas0

for (i in 2:n){

simul[i] <- theta + (simul[i-1]-theta)*exp(-1*kappa *Delta)

+ sigma*rnorm(1,0,sqrt((1-exp(-2*kappa*Delta))/2/kappa))

}

return (simul)

}

For the Euler method we use
simul[i] <- simul[i-1]

+kappa*(theta-simul[i-1])*Delta

+sigma*rnorm(1,0,sqrt(Delta))

instead. For delta smaller than 0.1 the difference is
typically very small. The Milstein method is only
relevant for the CIR process.

0 20 40 60 80 100

−
1

0
1

2

Vasicek Simulations

Exact
Euler

Exercise 10. Implement the simulation of the CIR process with all three methods and
compare their performance.

The simulation of the CIR process is much more difficult, as you will experience. What
to do if the process gets below zero?

4.2 Maximum-Likelihood estimation

For the maximum-likelihood estimation we rely on R’s routine optim. In the Vasicek
model we have the exact density and can simply maximise the log-likelihood. We
assume that we observe xi∆, i = 0, . . . , n − 1, i.e. n data points. The first point x0 is
deterministic. Then

ll(x; θ) = −n− 1

2
ln(2π)− n− 1

2
ln(V)− 1

2V

n−1∑
i=1

(xi∆ − β − (x(i−1)∆ − β)e−α∆)2,

V =
σ2

2α
(1− e−2α∆).

34

4 Estimation of diffusions and affine models

We maximize2 this function with respect to θ = (α, β, σ)′. We will see that estimation
of β and σ is by far simpler than estimating α.

vas.ll <- function (params,Delta,Data) {

alpha <- params[1]

beta <- params[2]

sigma <- params[3]

n <- length(Data)

vassigma2 <- (sigma^2)*(1-exp(-2*alpha*Delta))/2/alpha

summe <- -1/2/vassigma2* sum ((Data[2:n]-beta-

(Data[1:(n-1)]-beta)*exp(-1*alpha*Delta))^2)

return((1-n)/2*log(2*pi) - (n-1)/2*log(vassigma2)+summe)

}

vas.mle<- function (Delta,Data,output=FALSE){

startvalue <- c(0.1,0.1,0.1) # arbitrary

MLE.out <- optim (startvalue,vas.ll,gr = NULL, method = "Nelder-Mead",

lower = -Inf, upper = Inf, control = list(fnscale=-1),

hessian = FALSE, Delta,Data)

return (c(MLE.out[[1]][1],MLE.out[[1]][2],MLE.out[[1]][3]))

}

It should be noted that optim is a numerical procedure which depends on the start
value. The Nelder-Mead method seems to be quite robust. The BFGS method has
a better performance, but choosing α = β = σ = 0.5 and starting with 0.1 leads to
convergence but no sensible result.

We compare our results to the ones from Hurn et. al (2007) in the following exercise.

Exercise 11. Simulate 2000 runs of a MLE estimation of a Vasicek model with pa-
rameters α = 0.2, β = 0.08 and σ = 0.1. Assume that you observe in each run 500
data points with ∆ = 1/12 and x0 = β.

We state the outcome in terms of mean error and root mean square error (N−1
∑N

i=1(θ̂i−
θ) and

√
N−1

∑N
i=1(θ̂i − θ)2. We use the parameters θ1 = (0.2, 0.08, 0.1) and θ2 =

(0.3, 0.4, 0.5) for a simulation study. The start value of the optimization is θ0 =
(0.1, 0.1, 0.1)′.

2Typically it may happen that the maximization does not converge. This should be covered by using
checking if MLE.out returns non-zero convergence.

35

4 Estimation of diffusions and affine models

Mean error in α Mean error in β Mean error in σ

(RMS error in α) (RMS error in β) (RMS error in σ)

MLE θ1 0.110200 0.000246 -0.002569

(0.183036) (0.077009) (0.023177)

MLE θ2 0.100273 -0.031805 0.001530

(0.197201) (0.288133) (0.016250)

MLE. corr θ1 0.108214 -0.000351 0.000142

(0.180004) (0.076279) (0.003229)

It is important that these estimators are biased ! Even if the mean error is very small,
a t.test rejects the hypothesis that the bias is zero immediately. So for MLE.corr
we crudely estimated the bias by simulation and subtracted it. In contrast to typical
bootstrap approaches this did not give an increasing variance, so this seems to be
currently the best way to estimate the parameters. The estimation of α should be
possible to improve, however. The t.test for the bias now does not reject on β̂ and σ̂. Note !

We used the following code:

alpha=0.2; beta=0.08; sigma=0.1; delta=1/12

n=500; N=2000

thetahat = array(rep(0,3*N),dim=c(N,3))

for (i in 1:N){

thetahat[i,]= (vas.mle(delta,vas.sim(n,alpha,beta,sigma,delta,0))

- c(alpha,beta,sigma))

}

cat("\n Mean errors: \n")

print(c(mean(thetahat[,1]),mean(thetahat[,2]),mean(thetahat[,3])))

cat("\n RMS erros: \n")

print(c(sqrt(mean(thetahat[,1]^2)),sqrt(mean(thetahat[,2]^2))

,sqrt(mean(thetahat[,3]^2))))

cat("\n Test for bias: \n")

print(c(t.test(thetahat[,1],alternative="two.sided")$p.value,

t.test(thetahat[,2],alternative="two.sided")$p.value,

t.test(thetahat[,3],alternative="two.sided")$p.value),digits=3)

The density of the (centered) estimators are easily plotted:

36

4 Estimation of diffusions and affine models

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
1

2
3

4
5

Density of the estimators

alpha
beta
sigma

−0.010 −0.005 0.000 0.005 0.010

0
20

40
60

80
10

0
12

0

Density of sigma hat

and for the second sets of parameters:

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

Density of the estimators

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

0
5

10
15

20

Density of sigma hat

In particular, the plots of the estimators for α and β show significant skewness. Also
the bias is illustrated (not always, though). It is important to recall that we have
N = 2000 observations.

4.2.1 GMM

The generalized method of moments (GMM) is a flexible and powerful method for
estimation. We follow Chaussé (2010) and give a short outline and the implementation
for the estimation of affine processes with R. In this regard we will be able to profit
from the gmm-package available.

Assume that we aim at estimating θ0 ∈ Rp and we have q > p moment conditions of
the form

E(g(θ0, Xi)) = 0, i =, . . . , n

X1, . . . , Xn is the observation or a transformation of it, in our case we would see a
discrete observation of a stochastic process. θ0 is the unique solution of the above

37

4 Estimation of diffusions and affine models

equation and element of a compact space. We also need some boundedness of higher
moments (see ...).

As q is typically greater than q we have no solution of

ḡ(θ) :=
1

n

n∑
i=1

g(θ, xi),

(which otherwise would be our estimator). We therefore rely on minimizing a quadratic
distance

ḡ(θ)>Wḡ(θ).

It can be shown that the optimal weigth matrix W is

W ∗ =
(

lim
n→∞

Var(
√
nḡ(θ0))

)−1

.

This matrix, however, must be estimated and there are different schemes available for
this (two-step as in Hansen (1982) or iterative procedures as in Hansen et. al (1996)).
Under weak conditions we have asymptotic normality and consistency.

Example 4.2.1. Suppose we have i.i.d. observations which are N (µ, σ2) distributed.
We could use the following moment conditions:

E


Xi − µ

(Xi − µ)2 − σ2

X3
i − µ(µ2 + 2σ2)

 = 0

to estimate with GMM. Note that we do not use the density, i.e. the method will be
clearly less efficient as maximum-likelihood. On the other side we gain in robustness
agains miss specification of the density. Implementation is done as follows (borrowed
from Chaussé, 2010)

38

4 Estimation of diffusions and affine models

g1 <- function(tet, x) {

m1 <- (tet[1] - x)

m2 <- (tet[2]^2 - (x - tet[1])^2)

m3 <- x^3 - tet[1] * (tet[1]^2

+ 3 * tet[2]^2)

f <- cbind(m1, m2, m3)

return(f) }

Dg <- function(tet, x) {

G <- matrix(c(1, 2 * (-tet[1] + mean(x)),

-3 * tet[1]^2 - 3 * tet[2]^2,

0, 2 * tet[2], -6 * tet[1] * tet[2]),

nrow = 3, ncol = 2)

return(G) }

x <- rnorm(200, mean = 4, sd = 2)

gmm(g1, x, c(mu = 0, sig = 0), grad = Dg))

This runs the hmm function with
moment conditions given in the
function g1 and data in x. The
starting vector is simply (0, 0)
with names given. The gradi-
ent is provided in Dg, which im-
proves the performance.

Many existing methods can be seen as a special case of GMM, as for example the
maximum-likelihood estimation.

4.2.2 GMM for affine models

Considering the Vasicek model, we again use the Euler discretization

xti − xti−1
≈ α(β − xti−1

)(ti − ti−1) + εi;

ε1, . . . are independent and ∼ N (0, σ2(ti − ti−1)). This leads to the following moment
conditions;

E


εi

εiXti−1

ε2i − σ2 ∗ (ti − ti−1)(
ε2i − σ2 ∗ (ti − ti−1)

)
Xti−1

 = 0.

vas.g <- function(theta, x) {

t <- length(x)

et <- diff(x) - theta[1]*(theta[2] - x[-t])*Delta

ht <- et^2 - (theta[3])^2*vas.gmm.Delta

g <- cbind(et, et * x[-t], ht , ht * x[-t])

39

4 Estimation of diffusions and affine models

return(g)

}

We call of the function hmm as follows: we set vas.gmm.Delta as global variable using
<<- The function does not always converge in which case we obtain a warning. Then

the starting values must be improved, eg. by using a linear regression or a moment
estimator. It is remarkable that using the explicit solution of the moments does not
provide an improvement of the method.

vas.gmm<- function (Delta,data,output=FALSE,tet0 = c(0.1,0.1,0.1))

{

vas.gmm.Delta <<- Delta # global

gmm_res <- gmm(vas.g, data, t0 = tet0,

control = list(maxit = 1000, reltol = 1e-10))

coef(gmm_res)

}

Mean error in α Mean error in β Mean error in σ

(RMS error in α) (RMS error in β) (RMS error in σ)

MLE θ1 0.110200 0.000246 -0.002569

(0.183036) (0.077009) (0.023177)

MLE θ2 0.100273 -0.031805 0.001530

(0.197201) (0.288133) (0.016250)

GMM3 θ1 0.111979 -0.002128 0.000158

(0.181764) (0.076595) (0.003086)

GMM θ2 0.101213 0.002594 -0.009704

(0.183155) (0.259188) (0.018861)

The performance of the estimators is best viewed with the density plots of the bias of
our 2000 simulations: for θ1 = (0.2, 0.08, 0.1)′ we obtain a small advantage in the first
coordinate while the estimator of σ has a bias. Note that the precision in σ is by far
higher as in the two other coordinates. For θ2 = (0.3, 0.4, 0.5)′ this pattern becomes
clearer: for β the GMM performs better while for σ there is a clear bias.

40

4 Estimation of diffusions and affine models

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Density alpha hat

MLE
GMM

−0.4 −0.2 0.0 0.2

0
1

2
3

4
5

Density beta hat

MLE
GMM

−0.010 −0.005 0.000 0.005 0.010

0
20

40
60

80
10

0
12

0

Density sigma hat

MLE
GMM

−0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Density alpha hat

MLE
GMM

−1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

Density beta hat

MLE
GMM

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

0
5

10
15

20
25

Density sigma hat

MLE
GMM

Exercise 12. Implement a GMM estimator of a CIR model.

41

A Commands

The distributions (norm, gamma, beta...) are listed in the appendix.

Command Examples Comment

c c(1,2) concatenates things

d... dnorm(0) density of a distribution.

dim dim(X) dimension of a matrix

function rtnew <- function(N,n=2) { rt(N,n) } Define a new function

matrix matrix(1:4,ncol=2) converts to a matrix

par par(mfrow=c(2,1)), par(op) splits graphical output

q... qnorm(0.95) the quantile of a distribution.

r... rnorm(100) random numbers from distributions.

rep rep(2,100) repeat numbers

seq seq(1,10,by=0.1) sequences of numbers

t t(X) transpose of a matrix

%*% A %*% t(X) matrix multiplication

Mathematical functions

sin, cos, sqrt, exp, log

42

A Commands

A.1 Distributions

. . . (-)Distribution S-Name Parameters

Beta beta shape1, shape2, ncp= 0

Binomial binom size, prob

Cauchy cauchy location= 0, scale= 1

χ2 chisq df, ncp= 0

Exponential exp rate= 1

F f df1, df2 (ncp= 0)

Gamma gamma shape, rate= 1

Geometrische geom prob

Hypergeometrische hyper m, n, k

Log-Normal lnorm meanlog= 0, sdlog= 1

Logistische logis location= 0, scale= 1

Multinomial multinom size, prob

Multivariate Normal
(Im package mvtnorm)

mvnorm mean= rep(0,d), sigma=

diag(d) (with d = Dimension)

Multivariate t
(Im package mvtnorm)

mtnorm (complicated; nur p...., q.... und
r....)

Negative Binomial nbinom size, prob

Normal norm mean= 0, sd= 1

Poisson pois lambda

Wilcoxon’s signed-
sum of ranks

signrank n

Students t t df, ncp= 0

Uniforme unif min= 0, max= 1

Weibull weibull shape, scale= 1

Wilcoxon’s sum of ranks wilcox m, n

We will meet further multivariate distributions in the QRMlib

43

