Albert-Ludwigs-Universität Freiburg

Thorsten Schmidt

Abteilung für Mathematische Stochastik

www.stochastik.uni-freiburg.de thorsten.schmidt@stochastik.uni-freiburg.de SS 2017

Our goal today

Dynamic Approximate Programming Introduction

Markov decision problems

Approximate dynamic programming

Literature (incomplete, but growing):

- I. Goodfellow, Y. Bengio und A. Courville (2016). Deep Learning. http://www.deeplearningbook.org. MIT Press
- D. Barber (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press
- R. S. Sutton und A. G. Barto (1998). Reinforcement Learning: An Introduction. MIT Press
- G. James u. a. (2014). An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company, Incorporated. ISBN: 1461471370, 9781461471370
- T. Hastie, R. Tibshirani und J. Friedman (2009). The Elements of Statistical Learning. Springer Series in Statistics. Springer New York Inc. url: https://statweb.stanford.edu/~tibs/ElemStatLearn/
- K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press
- CRAN Task View: Machine Learning, available at https://cran.r-project.org/web/views/MachineLearning.html
- UCI ML Repository: http://archive.ics.uci.edu/ml/(371 datasets)
- Warren B Powell (2011). Approximate Dynamic Programming: Solving the curses of dimensionality. Bd. 703. John Wiley & Sons

Dynamic Approximate Programming

- From now on, we study the field of dynamic approximate programming (ADP) following Powell (2011)¹.
- As we already learned, there are many dialects in this field and we treat them here. This includes reinforcment learning, and a classic reference is Sutton & Barto². For further references consider Powell (2011).
- Examples are: moving a robot, investing in stocks, playing chess or go.
- The system contains four main elements: a policy, a reward function, a value function and (optional) a model of the environment.

¹Warren B Powell (2011). Approximate Dynamic Programming: Solving the curses of dimensionality. Bd. 703. John Wiley & Sons.

²R. S. Sutton und A. G. Barto (1998). Reinforcement Learning **■**An Introduction. MIT Press

An Example

Let us start with a simple example.

It is our goal to find the shortest path from Start to End.

- By \mathscr{I} we denote the set of intersections $(S,1,\ldots,E)$,
- \blacksquare if we are at intersection i we can go to $j \in \mathscr{I}_i^+$ at cost c_{ij} ,
- \blacksquare we start at S and end in E. Denote

$$v_i := \mathsf{cost} \mathsf{ from } i \mathsf{ to } E$$

and we could iterate

$$v_i \leftarrow \min \Big\{ v_i, \min_{j \in \mathscr{I}_i} (c_{ij} + v_j) \Big\}, \quad v_i \in \mathscr{I}$$

and stop if the iteration does not change.

Iteration	S	1	2	3	E
1	∞	8	8	8	0
2	∞	∞	10	15	0
3	30	18	10	15	0
4	26	18	10	15	0

What is an efficient algorithm for solving this problem?

■ This is a **shortest-path problem**. Let us introduce some notation for this. At time t, we start from a state S_t and can choose **action** a_t which leads to the transition to state S_{t+1} given by the **transition function** S_t , s.t.

$$S_{t+1} = S(S_t, a_t)$$

Aditionally there is a **reward**, denoted by $C_t(S_t, a_t)$ and we define the value of being in state S_t by

$$V_t(S_t) = \max_{a_t} \{C_t(S_t, a_t) + V_{t+1}(S_{t+1})\}, \qquad S_t \in \mathscr{S}_t,$$

 cS_t denoting the possible states at time t.

Let us visit some further examples.

Gambling

- Consider a gambler who plays T rounds, on an i.i.d. $(W_t)_{t=1,...,T}$ game with probability $p = \mathbb{P}(W_t = 1) > 1 p$ of winning. We want to maximize $\mathbb{E}[\log(S_T)]$. It can be shown that it is optimal to proceed backwards in time using conditional expectations (this is dynamic programming)!
- Here, a_t is the amount he bets at t and we require $a_t \leq S_{t-1}$. Then,

$$S_t = S_{t-1} + a_t W_t - a_t (1 - W_t).$$

■ The value at time t, given his stock is in state S_t is

$$V_t(S_t) = \max_{0 \le a_{t+1} \le S_t} \mathbb{E}[V_{t+1}(S_{t+1})|S_t].$$

Now we proceed backwards. Clearly,

$$\begin{split} V_T(s) &= \log s \\ V_{T-1}(s) &= \max_{0 \le a \le s} \mathbb{E} \big[V_T(s + aW_T - a(1 - W_T)) | S_{T-1} = s \big] \\ &= \max_{0 \le a \le s} \Big(p \log(s + a) + (1 - p) \log(s - a) \Big). \end{split}$$

The maximum is attained for $a^* = (2p-1)s$ and $V_{T-1}(s) = \log(s) + K$, with costant $K = p \log(2p) + (1-p) \log(2(1-p))$. Backward in time we obtain

$$V_t(s) = \log S_t + K_t,$$

with an explicit constant K_t . Our **optimal policy** is

$$a_t = (2p-1)S_{t-1}.$$

The bandit problem

- When the distribution of the game is not known, one has to acquire information, and the classical example is the bandit problem. Consider a gambler who can choose betwee K machines.
- The probability of winning might be different and are **unknown** to us.
- A trade-off arises between playing only the optimal machine or trying other machines with (estimated) lower probability for minimizing the variance which is one-to-one to learning better their true probability.
- For a nite treatment, consider for example Richard Weber (1992). "On the Gittins Index for Multiarmed Bandits". In: Ann. Appl. Probab. 2.4, S. 1024–1033.

Markov decision problems

- We give a short introduction into the field³. Assume that the state space \$\mathcal{S}\$ if finite.
- We have a set $\mathscr{A}_t(s)$ of possible actions at time t when the system is in state s. An action at t is a measurable mapping a_t such that $a_t(s) \in \mathscr{A}_t(s)$ for all $s \in \mathscr{S}$.
- A **policy** is a collection of actions $\pi = (a_0, ..., a_{T-1})$. We assume that the set of policies is non-empty.
- The dynamics of the model is specified via the (conditional) transition matrix

$$(p_t(s_{t+1}|s_t,a_t))_{s_{t+1},s_t\in\mathscr{S}}$$

specifying
$$\mathbb{P}(S_{t+1} = s_{t+1} | S_t = s_t, a_t) = p_t(s_{t+1} | s_t, a_t)$$
.

■ Hence, the dynamics and with it the probability for evaluation depends on π . We denote

$$\mathbb{P}_{t,s}^{\pi}(\cdot) := \mathbb{P}^{\pi}(\cdot|S_t = s)$$

and by $\mathbb{E}_{t,s}^{\pi}$ the associated expectation.

³See N. Bäuerle und U. Rieder (2011). **Markov decision processes with applications to finance**. for details and further information.

- Our aim is to **maximize** the contribution given by the functions $C_T(s,a)$ where $C_T(s,a) = C_T(s)$ does not depend on a. We additionally assume that the contribution is sufficiently integrable.
- Our goal is to aim at

$$\sup_{\pi} \mathbb{E}^{\pi} \left[\sum_{t=1}^{T} C_{t}(S_{t}, a_{t}) \right].$$

For example, we could consider $C_t(s,a) = \gamma^t C(s,a)$ with possible discounting factor $\gamma > 0$.

The Bellman Equation

- The key to dynamic programming is that in our set-up, allowing the policy to depend on the full history does not improve the maximal expected reward, see Theorem 2.2.3. in Bäuerle&Rieder (2011).
- We define the value function by

$$V_t(s) = \sup_{\pi} \mathbb{E}_{t,s}^{\pi} \left[\sum_{s=t}^{T} C_t(S_t, a_t) \right].$$

Remark

In general V_t need not be measurable which causes a number of delicate problems, see D. P. Bertsekas und S. Shreve (2004). Stochastic optimal control: the discrete-time case. for a detailed treatment. The reason can be traced back to the fact that a projection of a Borel set need not be Borel (which leads to the fruitful notion of analytic sets, however).

Define

$$C_t^*(s) := \sup_{a_t \in \mathcal{A}_t} \left(C_t(s, a_t) + \mathbb{E} \Big[V_{t+1}(S_{t+1}) | S_t = s, a_t \Big] \right)$$
 (1)

Recall, that S_{t+1} also depends on $a_t = a_t(s)$ (which we suppress in the notation).

- The optimal policy can be computed backward by **reward iteration**. Let a_t^* be a maximizing policy, that is a_t^* achieves C_t^* in Equation (1).
- One can now show that the **Bellman equation** holds, i.e.

$$V_t(s) = C_t^*(s)$$
 $t = 0, ..., T$.

■ Under an additional (mild) structural assumption, one may verify that there always exist optimal policies π^* which can be obtained by maximizing the value function in each period (Theorem 2.3.8. in Bäuerle Rieder).

Algorithm

Step 0 Initialize by the terminal condition $V_T(S_T)$ and set t = T - 1

Step 1 Compute

$$V_t(s) = \sup_{a_t \in \mathscr{A}_t} \left(C_t(s, a_t) + \mathbb{E}\left[V_{t+1}(S_{t+1}) | S_t = s, a_t \right] \right)$$

for all $s \in \mathcal{S}$

Step 2 Decrement t and repeat Step 1 until t = 0

Infinite-time-horizon

- For this case several algorithms exist, to name value iteration and policy iteration which will not be discussed here, see Powell Section 3.3, ff.
- For more mathematical details (and there are many!) we refer to Powell, Bäuerle&Rieder and the excellent source Bertsekas&Shreve.

Approximate dynamic programming (ADP)

■ While we introduce a nice theory beforehand, the core equation

$$\sup_{\pi} \mathbb{E}^{\pi} \left[\sum_{0=1}^{T} C_{t}(S_{t}, a_{t}) \right]$$

my be intractable even for very small problems.

- ADP now offers a powerful set of strategies to solve these problems approximately.
- We have the problem of curse of dimensionality in state space, outcome space and action space.