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Our goal today

Bayesian Optimization
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Literature (incomplete, but growing):

L. Goodfellow, Y. Bengio und A. Courville (2016). Deep Learning.
http://wuw.deeplearningbook.org. MIT Press

D. Barber (2012). Bayesian Reasoning and Machine Learning. Cambridge University Press
R. S. Sutton und A. G. Barto (1998). Reinforcement Learning : An Introduction. MIT Press

G. James u.a. (2014). An Introduction to Statistical Learning: With Applications in R.
Springer Publishing Company, Incorporated. 1sBn: 1461471370, 9781461471370

T. Hastie, R. Tibshirani und J. Friedman (2009). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc. urL:
https://statweb.stanford.edu/~tibs/ElemStatLearn/

K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective. MIT Press

CRAN Task View: Machine Learning, available at
https://cran.r-project.org/web/views/MachineLearning.html

UCI ML Repository: http://archive.ics.uci.edu/ml/ (371 datasets)

Warren B Powell (2011). Approximate Dynamic Programming: Solving the curses of
dimensionality. Bd. 703. John Wiley & Sons

A nice resourse is https://github.com/aikorea/awesome-rl
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Bayesian Optimization (BO)

Typically we are interested in a problem

X" = arg min f(x)

with some "well behaved” function f: 2" — R.

However, in many cases f is not explicitly known and it also might be
multimodal.

Also the evaluations of f might contain errors or might be very
expensive.

A nowadays famous application is (hyper-) parameter tuning in Machine
Learning. Such parameters are: the number of layers / units per layers,
penalties, learning rates, etc.

A classical example is the optimal design of experiments, or the case
when statistics is needed but the likelihood is intractable.
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Currently feasiable are: grid search. This will need many function
evaluations, which is not good if evaluations are expensive.

Random search is a well-known alternative. The usage of
pseudo-random numbers even improves performance.

S§8 2017 Thorsten Schmidt — Artificial Intelligence 200/214



The problem

Let us illustrate the problem with a few pictures!
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Where to choose the next point x where we evaluate f(x)??

'Source: Javier Gonzalez, Introduction to Bayesian Optimization. Masterclass, 2017 at
Lancaster University.
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Let us consider some possible curves. Here is one:
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Clearly, we would choose to evaluate at the minimun and are finished. But
this is not the only possible curve !
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Three curves
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Many curves
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If we think of a continuum of course, we arrive at the Bayesian representation
of the problem.
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We consider a density over the possible curves, which is called prior.

x
=
0.0 0.2 0.4 0.6 0.8 1.0
X
£
£
o
0.0 0.2 0.4 0.6 0.8 1.0

Where should we optimally place our next evaluation x"??
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The approach is clear: we have a prior distribution p.
Given some data 2 we update through Bayes’ rule

P(Z1p(x)

pl7) = P

Clearly, this is only possible if P(2) #= 0. If this is the case, we will use a
conditionaly density given by

where f(x,y) is the joint density of x and y and f(y) is the marginal
density.
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Historical overview

Bayesian optimization dates back at least to works by Kushner? in 1964
and Mockus? in 1978.

Since about 10 years there is a considerable interest of these methods
in the machine learning community.

2Harold J Kushner (1964). ,A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise”. In: Journal of Basic Engineering 86.1, S. 97-106.

3J Mockus (1975). ,On Bayesian methods for seeking the extremum®. In: Optimization
Techniques IFIP Technical Conference. Springer, S. 400~404.
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Mathematical formulation

In most cases the prior is chosen to be Gaussian - this is the case we
will also focus here. There are other variants (Student processes) and
interesting research questions in this direction

A Gaussian process is a family (X (x)).c 2~ of random variables, where
for any (finite) x1,...,x, the joint distribution of

X(x1)y.. -, X (xn)

is Gaussian.
The Gaussian process can be characterized by its mean function

m(x) :=E[X(x)]
and its covariance function
c(x,) = Cov(X (x).X (y))-

We are able to observe (at a certain cost) X (x) for a fixed sample
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Typically we specify some kind of regression for our setup, like
X(x) =Bx+¢&

where the g(x;), i=1,...,n are i.i.d.

However, if x| is close to x, we would expect close outcomes rather than
independent outcomes.

This motivatives covariance functions of the form
o(x,y) oc e =K )

with a kernel function K. Often, K(x,y) =||x—y ||*
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Example
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At the core is the following result. Consider the case where (X,Y) is a
matrix

two-dimensional normal random variable with mean (a,A) and covariance

>  pbB
pbB  B* |’
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Beweis.
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Acquisition

The next step is to acquire new data through an acquisition cirterium.
Recall we have the observation X (x) where we are now interested in
choosing x optimally.

The predictive variance is

Kushner suggest to study the probability of improvement

opr (x) = P(y(x)).

Mockus suggest the expected improvement and a further alternative
(Srinivas e.a. 2010) is the lower confidence bound

aren(x) = p(x) - ko ().
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