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Stochastic Filtering (SS2016) Exercise Sheet 12

Lecture and Exercises: JProf. Dr. Philipp Harms
Due date: July 20, 2016

Sequential tests

The following exercises are a guided tour of sequential tests—one of the oldest and
most important application of filtering and optimal control theory. For a detailed treat-
ment we refer to [1, Chapter VI.21].

We work on a filtered probability space (Q,.#, (% ):>0,Pz,) satisfying the usual condi-
tions. The hidden state is a Bernoulli random variable X ~ Ber(m) for some m € [0, 1].
The observation process (Y;),>¢ is given by Y, = utX + oB;, where (B,),>0 a standard
(%#;)-Wiener process independent of X and i # 0,0 > 0 are given constants.

A sequential test for the hypothesis X = 0 versus X = 1 consists of an F(Y)-stopping time
T and an .Z)-measurable random variable X. The interpretation is that after stopping
at time T, the random variable X indicates which hypothesis should be accepted under
the test. The objective is to minimize the stopping time and the probabilities of type-I
and type-Il errors. More precisely, for given constants a,b > 0, one looks for minimizers
(T*,X*) of

V(mo) = (iTn)g)E,ro [TJFal{X:LX:o}+b1{x=o,f(=1} : (1)

12.1. Deriving the filtering equation

Let (m),>0 be the (Z))-optional projection of X.
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a) Show that (m);>¢ satisfies

dr, — %nt(l—n,)(dYt—uﬂzdl)a o = . (2)

Note: (m),>0 takes values in [0,1]. Of course, the interval [0, 1] can identified with
the set of probability measures on {0, 1}.

b) Show that f(m) — f(m) — [/ f(m)ds is an (F(Y),P)-martingale for each f €
C?%([0,1]), where
w2 22 f (7).

o flx) = 2w (1 - ap L]

12.2. Reduction to an optimal stopping problem

Show that

V(my) = ir}f Ex, [T + g(7r)], where g(m) = min{ar,b(1 —7)}. (3)

Hint: For any fixed stopping time 7', X* = Liamp>p(1—np)y 1S Optimal in (1).

Dynamic programming formulation

The Hamilton-Jacobi-Bellman equation associated to the stopping problem (3) is
min{&W(7)+1,¢(x) —W(x)} =0, Vr e [0,1].
The relation to the stopping problem will become clear in the following steps.

It can be shown using ODE methods that this equation has a unique’ solution W :
[0,1] — R. The function W is C! and piecewise C>. Moreover, despite the possible

The solution is unique in the viscosity sense.
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singularities of W, 1td’s formula in its standard form can be applied to the process W ().
The function W has the following structure: there exist constants A, B satisfying 0 < A <
B < 1 such that 0 = &/W + 1 holds on the interval (A,B), and 0 = g— W holds on the
interval [0,A]U[B, 1].

12.3. The function W is a lower bound for V

Show that V(my) > W (m) holds for all my € [0, 1].

Hint. Show for any F(Y)-stopping time T that
E[T +g(7r)] = E[T +W(7r)] = W (7). (4)

The first inequality follows directly from the HJB equation. To see the second inequality,
use Itd’s formula to express W (zr) as W (m) + fy /W (m)ds+ My, where M is an (FY)-
martingale. Then use the HJB equation to bound /W () from below.

12.4. The function W is equal to V

a) Show that E[T* + g(mr+)] = W(m), where T* =inf{r > 0: 7w ¢ (A,B)}.
Hint. Show that equality holds in (4) with T = T*.

b) Conclude that V =W holds identically on [0, 1] and that 7* is a minimizer of (1).
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