

Stochastic Filtering (SS2016) Exercise Sheet 12

Lecture and Exercises: JProf. Dr. Philipp Harms Due date: July 20, 2016

Sequential tests

The following exercises are a guided tour of sequential tests—one of the oldest and most important application of filtering and optimal control theory. For a detailed treatment we refer to [1, Chapter VI.21].

We work on a filtered probability space $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t\geq 0}, \mathbb{P}_{\pi_0})$ satisfying the usual conditions. The hidden state is a Bernoulli random variable $X \sim \text{Ber}(\pi_0)$ for some $\pi_0 \in [0, 1]$. The observation process $(Y_t)_{t\geq 0}$ is given by $Y_t = \mu t X + \sigma B_t$, where $(B_t)_{t\geq 0}$ a standard (\mathscr{F}_t) -Wiener process independent of X and $\mu \neq 0, \sigma > 0$ are given constants.

A sequential test for the hypothesis X = 0 versus X = 1 consists of an $\mathbb{F}(Y)$ -stopping time T and an \mathscr{F}_T^Y -measurable random variable \hat{X} . The interpretation is that after stopping at time T, the random variable \hat{X} indicates which hypothesis should be accepted under the test. The objective is to minimize the stopping time and the probabilities of type-I and type-II errors. More precisely, for given constants a, b > 0, one looks for minimizers (T^*, \hat{X}^*) of

$$V(\pi_0) = \inf_{(T,\hat{X})} \mathbb{E}_{\pi_0} \left[T + a \mathbf{1}_{\{X=1,\hat{X}=0\}} + b \mathbf{1}_{\{X=0,\hat{X}=1\}} \right].$$
(1)

12.1. Deriving the filtering equation

Let $(\pi_t)_{t\geq 0}$ be the (\mathscr{F}_t^Y) -optional projection of *X*.

a) Show that $(\pi_t)_{t\geq 0}$ satisfies

$$d\pi_t = \frac{\mu}{\sigma^2} \pi_t (1 - \pi_t) \left(dY_t - \mu \pi_t dt \right), \quad \pi_0 = \pi_0.$$
(2)

Note: $(\pi_t)_{t\geq 0}$ takes values in [0,1]. Of course, the interval [0,1] can identified with the set of probability measures on $\{0,1\}$.

b) Show that $f(\pi_t) - f(\pi_0) - \int_0^t \mathscr{A} f(\pi_s) ds$ is an $(\mathbb{F}(Y), \mathbb{P})$ -martingale for each $f \in C^2([0,1])$, where

$$\mathscr{A}f(\boldsymbol{\pi}) = \frac{\mu^2}{2\sigma^2} \pi^2 (1-\boldsymbol{\pi})^2 \frac{\partial^2 f(\boldsymbol{\pi})}{\partial \pi^2}.$$

12.2. Reduction to an optimal stopping problem

Show that

$$V(\pi_0) = \inf_T \mathbb{E}_{\pi_0}[T + g(\pi_T)], \quad \text{where } g(\pi) = \min\{a\pi, b(1 - \pi)\}.$$
 (3)

Hint: For any fixed stopping time *T*, $\hat{X}^* = \mathbb{1}_{\{a\pi_T \ge b(1-\pi_T)\}}$ is optimal in (1).

Dynamic programming formulation

The Hamilton-Jacobi-Bellman equation associated to the stopping problem (3) is

$$\min\left\{\mathscr{A}W(\pi)+1,g(\pi)-W(\pi)\right\}=0,\qquad\forall\pi\in[0,1].$$

The relation to the stopping problem will become clear in the following steps.

It can be shown using ODE methods that this equation has a unique¹ solution W: $[0,1] \rightarrow \mathbb{R}$. The function W is C^1 and piecewise C^2 . Moreover, despite the possible

¹The solution is unique in the viscosity sense.

University of Freiburg

singularities of *W*, Itō's formula in its standard form can be applied to the process $W(\pi_t)$. The function *W* has the following structure: there exist constants *A*, *B* satisfying 0 < A < B < 1 such that $0 = \mathscr{A}W + 1$ holds on the interval (A, B), and 0 = g - W holds on the interval $[0,A] \cup [B,1]$.

12.3. The function *W* is a lower bound for *V*

Show that $V(\pi_0) \ge W(\pi_0)$ holds for all $\pi_0 \in [0, 1]$.

Hint. Show for any $\mathbb{F}(Y)$ -stopping time *T* that

$$\mathbb{E}[T+g(\pi_T)] \ge \mathbb{E}[T+W(\pi_T)] \ge W(\pi_0).$$
(4)

The first inequality follows directly from the HJB equation. To see the second inequality, use Itō's formula to express $W(\pi_T)$ as $W(\pi_0) + \int_0^T \mathscr{A}W(\pi_s)ds + M_T$, where *M* is an (\mathscr{F}_t^Y) -martingale. Then use the HJB equation to bound $\mathscr{A}W(\pi_s)$ from below.

12.4. The function W is equal to V

a) Show that $\mathbb{E}[T^* + g(\pi_{T^*})] = W(\pi_0)$, where $T^* = \inf\{t \ge 0 : \pi_t \notin (A, B)\}$.

Hint. Show that equality holds in (4) with $T = T^*$.

b) Conclude that V = W holds identically on [0,1] and that T^* is a minimizer of (1).

University of Freiburg

References

[1] Goran Peskir and Albert Shiryaev. *Optimal stopping and free-boundary problems*. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2006.