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Sequential tests

The following exercises are a guided tour of sequential tests—one of the oldest and
most important application of filtering and optimal control theory. For a detailed treat-
ment we refer to [1, Chapter VI.21].

We work on a filtered probability space (W,F ,(Ft)t�0

,P
p

0

) satisfying the usual condi-
tions. The hidden state is a Bernoulli random variable X ⇠ Ber(p

0

) for some p

0

2 [0,1].
The observation process (Yt)t�0

is given by Yt = µtX +sBt , where (Bt)t�0

a standard
(Ft)-Wiener process independent of X and µ 6= 0,s > 0 are given constants.

A sequential test for the hypothesis X = 0 versus X = 1 consists of an F(Y )-stopping time
T and an FY

T -measurable random variable ˆX . The interpretation is that after stopping
at time T , the random variable ˆX indicates which hypothesis should be accepted under
the test. The objective is to minimize the stopping time and the probabilities of type-I
and type-II errors. More precisely, for given constants a,b > 0, one looks for minimizers
(T ⇤, ˆX⇤) of

V (p
0

) = inf

(T, ˆX)
E

p

0

h
T +a1{X=1, ˆX=0}+b1{X=0, ˆX=1}

i
. (1)

12.1. Deriving the filtering equation

Let (pt)t�0

be the (FY
t )-optional projection of X .
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a) Show that (pt)t�0

satisfies

dpt =
µ

s

2

pt(1�pt)(dYt �µptdt) , p

0

= p

0

. (2)

Note: (pt)t�0

takes values in [0,1]. Of course, the interval [0,1] can identified with
the set of probability measures on {0,1}.

b) Show that f (pt)� f (p
0

)�
R t

0

A f (ps)ds is an (F(Y ),P)-martingale for each f 2
C2([0,1]), where

A f (p) =
µ

2

2s

2

p

2(1�p)2

∂

2 f (p)
∂p

2

.

12.2. Reduction to an optimal stopping problem

Show that

V (p
0

) = inf

T
E

p

0

[T +g(pT )], where g(p) = min{ap,b(1�p)} . (3)

Hint: For any fixed stopping time T , ˆX⇤ = 1{apT�b(1�pT )} is optimal in (1).

Dynamic programming formulation

The Hamilton-Jacobi-Bellman equation associated to the stopping problem (3) is

min{A W (p)+1,g(p)�W (p)}= 0, 8p 2 [0,1].

The relation to the stopping problem will become clear in the following steps.

It can be shown using ODE methods that this equation has a unique1 solution W :

[0,1] ! R. The function W is C1 and piecewise C2. Moreover, despite the possible
1The solution is unique in the viscosity sense.
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singularities of W , Itō’s formula in its standard form can be applied to the process W (pt).
The function W has the following structure: there exist constants A,B satisfying 0 < A <
B < 1 such that 0 = A W + 1 holds on the interval (A,B), and 0 = g�W holds on the
interval [0,A][ [B,1].

12.3. The function W is a lower bound for V

Show that V (p
0

)�W (p
0

) holds for all p

0

2 [0,1].

Hint. Show for any F(Y )-stopping time T that

E[T +g(pT )]� E[T +W (pT )]�W (p
0

). (4)

The first inequality follows directly from the HJB equation. To see the second inequality,
use Itō’s formula to express W (pT ) as W (p

0

)+
R T

0

A W (ps)ds+MT , where M is an (FY
t )-

martingale. Then use the HJB equation to bound A W (ps) from below.

12.4. The function W is equal to V

a) Show that E[T ⇤+g(pT ⇤)] =W (p
0

), where T ⇤ = inf{t � 0 : pt /2 (A,B)}.

Hint. Show that equality holds in (4) with T = T ⇤.

b) Conclude that V =W holds identically on [0,1] and that T ⇤ is a minimizer of (1).
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