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Abstract

The Wasserstein barycenter is an important notion in the analysis of high dimensional data with a broad

range of applications in applied probability, economics, statistics, and in particular to clustering and image

processing. In this paper, we state a general version of the equivalence of the Wasserstein barycenter problem

to the n-coupling problem. As a consequence, the coupling to the sum principle (characterizing solutions to the

n-coupling problem) provides a novel criterion for the explicit characterization of barycenters. Based on this

criterion, we provide as a main contribution the simple to implement iterative swapping algorithm (ISA) for

computing barycenters. The ISA is a completely non-parametric algorithm which provides a sharp image of the

support of the barycenter and has a quadratic time complexity which is comparable to other well established

algorithms designed to compute barycenters. The algorithm can also be applied to more complex optimization

problems like the k-barycenter problem.

Keywords: Wasserstein barycenter, swapping algorithm, optimal transportation, k-means clustering, image

processing.

1 Wasserstein barycenters and optimal n-couplings

The computation of Wasserstein barycenters has recently raised a lot of interest in the literature due to a

broad range of applications in applied probability, statistics, economics, and in particular image processing. We

refer to Solomon et al. (2015), Bonneel et al. (2015), Anderes et al. (2016), and Peyré and Cuturi (2019) for a

comprehensive list of recent activity.

In this paper, we develop a novel algorithm for computing the barycenter of n probability measures µ1, . . . , µn ∈
P2(Rd) with finite second moments, and using the L2-Wasserstein metric W2 defined as

W 2
2 (µ, ν) := inf

{∫
Rd×Rd

||x− y||2 dP (x, y) : P ∈M(µ, ν)

}
,

for measuring distances. Here, M(µ, ν) denotes the set of probability measures on Rd × Rd with marginals µ, ν ∈
P2(Rd). In what follows, any couple (X,Y ) of random vectors X ∼ µ and Y ∼ ν is called an optimal coupling of µ

and ν if E||X − Y ||2 = W 2
2 (µ, ν). By definition, a (Wasserstein) barycenter µ of (µi) is any solution of

inf

{
n∑
i=1

W 2
2 (µi, µ) : µ ∈ P2(Rd)

}
. (1.1)

A barycenter µ exists in generality and, if one of the µi vanishes on all Borel subsets of Hausdorff dimension d− 1

(e.g., if µi is absolutely continuous), then it is also unique; see Agueh and Carlier (2011), Kim and Pass (2014,

Ex. 3.3), and Álvarez-Esteban et al. (2016).

A main starting point of our paper is the insight that the barycenter problem can be cast as the optimal n-

coupling problem, as in Rüschendorf and Uckelmann (1997, 2002). Optimal n-couplings (Xi) = (X1, . . . , Xn) are
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defined as solutions of

sup

{
E
∣∣∣∣∣∣ n∑
i=1

Xi

∣∣∣∣∣∣2;Xi ∼ µi, 1 ≤ i ≤ n

}
. (1.2)

The existence of a solution of (1.2) follows from classical arguments (Rachev and Rüschendorf, 1998).

The connection between the barycenter problem (1.1) and the n-coupling problem (1.2) was stated in Agueh and

Carlier (2011, Proposition 4.2) under a continuity assumption on µi (smallness on small sets) and also in Anderes

et al. (2016, Proposition 1) for discrete measures. As compared to the above references, the following simple proof

is valid for general measures, in particular it is also valid for discrete distributions as used in the remainder of this

paper.

Proposition 1.1. (Xi) is an optimal n-coupling if and only if the distribution µn of Sn :=
∑n
i=1Xi/n is a

barycenter of (µi).

Proof. The proof is a consequence of the following well known inequality holding for any random vectors X1, . . . , Xn,

Z:
n∑
i=1

||Xi − Z||2 ≥
n∑
i=1

||Xi − Sn||2. (1.3)

If µ ∈ P2(Rd) is a candidate for the barycenter and if (Xi, Z) is an optimal coupling of µi and µ, for all 1 ≤ i ≤ n,

then define µn as the law of Sn =
∑n
i=1Xi/n. By (1.3), we obtain

n∑
i=1

W 2
2 (µi, µ) = E

n∑
i=1

||Xi − Z||2 ≥ E
n∑
i=1

||Xi − Sn||2 ≥
n∑
i=1

W 2
2 (µi, µn).

Thus, µn is an improvement over µ. As a consequence, we obtain

inf

{
n∑
i=1

W 2
2 (µi, µ) : µ ∈ P2(Rd)

}
= inf

{
E

n∑
i=1

∣∣∣∣∣∣Xi − Sn
∣∣∣∣∣∣2;Xi ∼ µi, 1 ≤ i ≤ n

}
. (1.4)

By elementary arguments it is easy to see that (Xi) solves (1.4) if and only if (Xi) is an optimal n-coupling and

hence the distribution µn of Sn is a barycenter of (µi).

Remark 1.1 (Weighted barycenters). If one considers the more general barycenter problem

inf

{
n∑
i=1

λi W
2
2 (µi, µ);µ ∈ P2(Rd)

}
,

where λ1, . . . , λn are positive weights summing to 1, then Proposition 1.1 continues to hold but now with the

arithmetic mean Sn :=
∑n
i=1Xi/n replaced by the weighted mean S̃n :=

∑n
i=1 λiXi. For the ease of notation, in

what follows we describe our algorithm for the case λi = 1/n. In the general case of a weighted barycenter problem,

one applies the algorithm to the variables λiXi; see also our application in Section 4.1.

As a consequence of Proposition 1.1, Wasserstein barycenters result from solutions of the n-coupling prob-

lem and characterizations of optimal n-couplings directly imply corresponding characterizations of barycenters.

In Rüschendorf and Uckelmann (2002) it has been shown that optimal coupling of all Xi to the sum Sn :=
∑n
i=1Xi

as well as to S(i) :=
∑
j 6=iXj is a necessary condition for an optimal n-coupling. Moreover, if PSn is Lebesgue-

continuous, then any of these optimal coupling conditions is also sufficient for an optimal n-coupling. This provides

relevant sufficient conditions for obtaining an optimal n-coupling and a barycenter, respectively. In particular, by

the proof of Theorem 2.4 in Rüschendorf and Uckelmann (2002), this continuity holds if any of the µi is Lebesgue-

continuous.

Agueh and Carlier (2011) state in their formula (4.10) a variational characterization of barycenters which is

a consequence of the dual representation in Gangbo and Świȩch (1998) (see Theorem 4.1 in Agueh and Carlier,

2011). For related results see also Rüschendorf and Uckelmann (1997). This variational characterization, however,

needs for its application the explicit knowledge of the solutions to the dual problem. On the other hand, the
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results in Rüschendorf and Uckelmann (2002) for the characterization of optimal n-couplings and thus also for the

barycenter problem are constructive. They lead in particular to the following general sufficient criterion for the

explicit construction of optimal n-couplings resp. barycenters, which makes it possible to determine the explicit

solution for some classes of distributions.

Proposition 1.2. Let fi : Rd → R, 1 ≤ i ≤ n, be convex, lower semicontinuous real functions such that

n∑
i=1

fi(x) = ||x||2/2 + const

holds almost everywhere (w.r.t. the Lebesgue measure λd). Let µ ∈ P2(Rd) be Lebesgue-continuous, then the image

measure µ∇fi (the push-forward of µ through ∇fi) is well defined. Under the assumption that µi = µ∇fi , 1 ≤ i ≤ n,

it holds by letting S ∼ µ and Xi := ∇fi(S) that (Xi) is an optimal n-coupling of the (µi) and PS/n is a barycenter

of (µi).

Proof. By the classical optimal transportation results in Rüschendorf and Rachev (1990) and Brenier (1991) the

functions∇fi are optimal transport maps of µ to µi. Furthermore, by assumption
∑n
i=1∇fi = Id almost everywhere,

i.e.,
∑n
i=1Xi = S almost surely. Thus, all Xi are optimally coupled to their sum S and, as a consequence of the

characterization in Rüschendorf and Uckelmann (2002), (Xi) is an optimal n-coupling. By Proposition 1.1 above,

this implies that PS/n is a barycenter of (µi).

Remark 1.2 (Construction of optimal n-couplings and barycenters).

a) The condition in Proposition 1.2 that the distribution of the optimal n-coupling sum S = Sn is Lebesgue-

continuous is satisfied if at least one of the µi is Lebesgue-continuous. One can formulate a corresponding

sufficient condition for general non-continuous distributions in terms of subgradients (see the proof of Theo-

rem 2.3 in Rüschendorf and Uckelmann, 2002).

b) The conditions of Proposition 1.2 include for instance the case of multivariate elliptical distributions and in

particular the case of multivariate normal distributions (as dealt with in Section 3). For this case consider

fi(x) = x>Aix, 1 ≤ i ≤ n, with some positive semidefinite matrices Ai. The condition
∑n
i=1∇fi(x) =

2
(∑n

i=1Ai)x = x then yields the crucial equation (3.1) for the involved covariance matrix Σ0 of µ.

The more general case in which fi(x) = Ri(x
>Aix), 1 ≤ i ≤ n, where the Ri are increasing convex, leads to

optimal n-couplings of the form ∇fi(x) = 2ri(x
>Aix)Aix with ri = R′i ≥ 0 and increasing. This case allows

to deal with elliptical distributions with different radial parts. In general the equation
∑n
i=1∇fi = Id leads

to nonlinear equations that need to be solved numerically.

The optimal n-coupling problem (1.2) can also be equivalently rewritten as

sup{E[f(X1, . . . , Xn)];Xi ∼ µi, 1 ≤ i ≤ n}, with

f(x1, . . . , xn) =

n∑
i=1

〈xi,
∑
j 6=i

xj〉.
(1.5)

This formulation suggests to solve the barycenter problem by an iterative sequence of 2-coupling problems, i.e.,

by iteratively calculating the Wasserstein distance of Xi and
∑
j 6=iXj . This can be done by applying an iterative

version of the so-called swapping algorithm, which was investigated in detail in Puccetti (2017). As a result, we

obtain an approximation of the optimal n-coupling and, as a consequence of Proposition 1.1, thus also of the

barycenter of (µi). The swapping algorithm in fact is grounded on the basic characterization of optimal couplings

by cyclically monotone support in Rüschendorf and Rachev (1990) and was motivated in this connection already in

that paper.

The remainder of the paper is organized as follows. In Section 2, we propose the iterative swapping algorithm

(ISA) for computing barycenters of discrete measures. In Section 3, we test its performance against the benchmark

of Gaussian measures (approximated by empirical counterparts) for which analytical results are available. In

Section 4, we provide applications to the visualization of perturbed images and the so-called k-barycenter problem.

We summarize our conclusions and provide possible extensions in Section 5.
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2 The Iterative Swapping Algorithm (ISA)

Apart from the case d = 1 (which allows for a fast solution, see Rabin et al., 2012), there are no analytical

formulas available for the solution of (1.1). By means of Proposition 1.2, however, one can give an explicit solution

for some classes of examples like elliptical measures (as studied in Section 3).

The barycenter of general measures can be approximated by taking consistent empirical versions of the input

measures. In fact, under weak assumptions, the sequence of barycenters of empirical versions converges to the true

barycenter; see Theorem 3, Corollary 5, and Proposition 6 in Le Gouic and Loubes (2017).

For discrete measures, the computation of a Wasserstein barycenter is in principle obtained through the solution

of a finite(high)-dimensional linear program; see (LP) below. However, if each of the n measures is represented by k

points, this LP has kn variables, which quickly becomes intractable for linear programming software and this even

for moderate values of k. This is the main motivation why alternative techniques recently emerged in the literature.

Different algorithms to compute Wasserstein barycenters of discrete measures (point clouds) have been described

amongst others:

• in Carlier et al. (2015), where a simple linear programming reformulation leads to an LP which scales linearly

with the number of marginals. Such reduction (similarly obtained in Anderes et al., 2016), together with a

bound on the support of the unknown barycenter, makes the problem more tractable but still suffers from

heavy computation time and memory consumption. A second algorithm introduced in Carlier et al. (2015)

uses the dual formulation of the problem (1.1).

• in Rabin et al. (2012), where the authors introduce and use the so-called sliced Wasserstein distance between

projections of the input measures on the line, in which case problem (1.1) can be efficiently solved. This

method shows to be effective in lower dimensions d = 2, 3, and has been further developed in Bonneel et al.

(2015).

• in Benamou et al. (2015), where an entropic regularization of the initial linear program is proposed, which

makes it possible to use a simple iteration scheme for computing its solution.

Through various examples and applications, we will compare in the remainder of the paper the performance of our

proposed algorithm with those of the above referenced techniques.

As described in Section 1, an approximate determination of Wasserstein barycenters can be obtained by itera-

tively solving 2-coupling problems. For discrete measures with a finite number of support points the characterization

of optimal couplings by cyclical monotonicity of the support then suggests an iterative use of the swapping algo-

rithm, used in Puccetti (2017) for the calculation of the Wasserstein distance; see also Rüschendorf and Rachev

(1990). An alternative motivation for using iterative swapping consists in formulating the barycenter problem as a

linear programming problem and to approximate it by a multi-index assignment problem.

We denote by n the number of pre-assigned probability measures, k the number of atoms of empirical measures,

and d the dimensionality of the space Rd where they take values. For any x ∈ Rd, δx denotes the Dirac unit mass

on x. From now onwards, we consider n discrete, k-atomic measures of the form

µi =

k∑
j=1

1

k
δxi

j
, 1 ≤ i ≤ n, (2.1)

where xi1, . . . , x
i
k ∈ Rd are the k atoms in Rd of the i-th measure, each one having probability mass 1/k.

Let J = {1, . . . , k}n and J ij = {(u1, . . . , un) ∈ J : ui = j}. Taking as marginals the k-atomic measures in (2.1),

problem (1.5) becomes the finite-dimensional linear program

LP = max
pu≥0

∑
u∈J

fu pu, s.t.∑
u∈J i

j

pu = 1/k, 1 ≤ j ≤ k, 1 ≤ i ≤ n,
(LP)
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where fu = f(x1u1
, . . . , xnun

), for u = (u1, . . . , un) ∈ J . Any solution of (LP) is a discrete probability measure on

Rd×n having marginals (µi). Consequently, the barycenter of (µi) is finitely supported on the set B = {(x1u1
+ · · ·+

xnun
)/n, (u1, . . . , un) ∈ J }.
In principle, the cardinality of B can attain the upper bound kn. However, it has been noted in Theorem 2

in Anderes et al. (2016) that there always exists a barycenter of discrete measures whose support has at most

(nk − n + 1) points. This result encourages the practice of assuming a smaller number of support points in a

barycenter as an approximation to the true solution; see for instance Oberman and Ruan (2015) and Schmitzer

(2016). Motivated by the sparseness of at least one barycenter, we add to (LP) the constraints pu ∈ {0, 1/k}, u ∈ J ,

and obtain the following multi-index assignment problem

AS = max

1

k

k∑
j=1

f(x1σ1(j)
, . . . , xnσn(j)

);σ1, . . . , σn ∈ Σk

 , (AS)

in which Σk denotes the set of all the permutations of {1, . . . , k}.
We obviously have that LP ≥ AS, whereas LP = AS holds in general by Birkhoff’s theorem (Birkhoff, 1946) only

in case n = 2 (when a barycenter is then theoretically guaranteed to be supported on k points). Problem (AS) is

known as an axial n-index assignment problem, which for n = 2 reduces to the classical assignment problem which

can be generally solved by the Hungarian algorithm or more refined techniques in roughly O(k3); see Puccetti (2017)

for more precise computational details. For n ≥ 3, Problem (AS) is NP-hard and, a few special cases apart, only

(meta)heuristic and enumerative methods are known for its exact solution; see Burkard et al. (2009, Ch. 10).

Approximating the Wasserstein barycenter calculation by a multi-index assignment problem, one can iteratively

use the swapping algorithm in Puccetti (2017) as an heuristic to approximate an optimal assignment in (AS) with

a quadratic cost O(nk2).

For the function f in (1.5), the basic idea behind the algorithm consists in assessing, for any index i ∈ {1, . . . , n},
and any positions 1 ≤ k1 < k2 ≤ k, whether

〈xiσi(k1)
,
∑
j 6=i

xjσj(k1)
〉+ 〈xiσi(k2)

,
∑
j 6=i

xjσj(k2)
〉 < 〈xiσi(k2)

,
∑
j 6=i

xjσj(k1)
〉+ 〈xiσi(k1)

,
∑
j 6=i

xjσj(k2)
〉. (2.2)

If condition (2.2) is satisfied, one swaps σi(k1) and σi(k2). As the number of possible permutations is finite, the

swapping procedure terminates after a finite number of swaps and provides a new multi-index assignment, delivering

(at each step) a strictly bigger value of f in (AS).

Iterated Swapping Algorithm (ISA):

1. Fix k-atomic measures as in (2.1) and let σi = Id, 1 ≤ i ≤ n.

2. For all possible pairs (k1, k2) with 1 ≤ k1 < k2 ≤ k, and for all i ∈ {1, . . . , n}, if the swapping condi-

tion (2.2) holds, then swap σi(k1) and σi(k2). A new multi-index assignment {σ′1, . . . , σ′n} is found.

3. Repeat 2. with σ = σ′ until no further swaps are possible. The algorithm terminates after a finite number

of iterations of step 2. and outputs the final assignment {σ̂1, . . . , σ̂n}.

The Iterated Swapping Algorithm (ISA in what follows) thus outputs a pairwise optimal assignment {σ̂1, . . . , σ̂n},
i.e., a set of permutations for which the function f in (AS) cannot be improved by iterative swaps of only two

positions. Denote by (X̂1, . . . , X̂n) ∼ {σ̂1, . . . , σ̂n} a random vector having probability measure (with marginals µi)

uniformly distributed on the k atoms {(x1σ̂1(j)
, . . . , xnσ̂n(j)

), 1 ≤ j ≤ k}. In the following we show that (X̂1, . . . , X̂n)

is an approximate optimal n-coupling and, therefore, the distribution of
∑n
i=1 X̂i/n provides an approximation of

the barycenter of (µi).
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3 The Gaussian case

In this section, we test the accuracy of the ISA against the benchmark of Gaussian measures, where the problem

has a computable solution. In fact, the barycenter of n Gaussian measures N(0,Σi), 1 ≤ i ≤ n, with non-singular

covariance matrices Σi, is equal to µ = N(0,Σ0/n
2), in which Σ0 is the unique positive definite solution of

Σ0 =

n∑
i=1

(
Σ

1/2
0 ΣiΣ

1/2
0

)1/2
. (3.1)

The sufficiency of condition (3.1) to optimality in the Gaussian case was already noted in Knott and Smith

(1994) in the case n = 3. Rüschendorf and Uckelmann (2002) proved the necessity and sufficiency of (3.1) and the

existence of a solution (and hence of a solution to the n-coupling problem for Gaussian measures). Agueh and Carlier

(2011) established the uniqueness of such a solution. As mentioned before, the non-trivial matrix equation (3.1)

follows from Proposition 1.2 by some simple algebra and the fact that in the Gaussian case the optimal coupling of

N(0,Σi) to N(0,Σ0) is linear (Dowson and Landau, 1982). For non-centered Gaussian measures, the mean vector

of the barycenter is simply the average of all the means.

The matrix Σ0 in (3.1) can be computed using the intuitive iterative procedure

K
(t+1)
0 =

(
n∑
i=1

(
K

(t)
0 ΣiK

(t)
0

)1/2)1/2

.

We found limt→∞K
(t+1)
0 = Σ

1/2
0 componentwise in any dimension d when taking as initial condition K

(0)
0 =∑n

i=1 Σi/n. For the uniqueness of a solution of (3.1) and more details on the efficient computation of Σ0, we refer

to Álvarez-Esteban et al. (2016).

Now, let µki be the empirical distribution associated to a set of k independent simulations from N(0,Σi), for

1 ≤ i ≤ n. Let (Xi) be a n-optimal coupling and recall that Sn =
∑n
i=1Xi. We have that

Σ0 = E
[
Sn S

T
n

]
= E

[( n∑
i=1

Xi

)( n∑
i=1

Xi

)T]

=

n∑
i=1

E
[
XiX

T
i

]
+

n∑
i=1

E

Xi

(∑
j 6=i

Xi

)T =

n∑
i=1

Σi +

n∑
i=1

E

Xi

(∑
j 6=i

Xi

)T .
Based on this last equality, when the algorithm terminates, the matrix Σ0 can be estimated by Σ̂ given as

Σ̂ =

n∑
i=1

Σi +

n∑
i=1

E

X̂i

(∑
j 6=i

X̂i

)T , (3.2)

where (X̂1, . . . , X̂n) ∼ {σ̂1, . . . , σ̂n} corresponds to the final assignment {σ̂1, . . . , σ̂n}, as found by the algorithm for

the empirical marginals µk1 , . . . , µ
k
n.

Example 3.1. We compute ISA estimates of the optimal covariance matrix Σ0/n
2 of the barycenter of n = 3

Gaussian distributions having null mean and equicorrelation matrices

Σi =


1 σi . . . σi
σi 1 . . . σi
...

...
. . .

...

σi σi . . . 1

 , (3.3)

with σ1 = 0, σ2 = 0.4, σ3 = −0.15, for dimensions d = 2, 3, 4. For equicorrelation matrices (3.3), also the covariance

matrix of the barycenter has equal correlations. Figure 1 illustrates the accuracy of the empirical barycenters found,
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the number of iterations of the algorithm and the computation times. As compared to the similar benchmark study

carried out in Carlier et al. (2015), where the authors test an optimization algorithm based on the dual formulation

of (1.1), the ISA can handle a larger number k of sample points and a larger number n of measures resulting in a

higher accuracy; see Table 1.
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Figure 1: (Left) Log-Wasserstein distance between the empirical barycenter computed by ISA and the true barycen-
ter of n = 3 Gaussian distributions as described in Example 3.1, for different values of k and d. (Right, 1) Number
of iterations of Step 2. of the algorithm, i.e., the number of times the swapping condition (2.2) is checked for all
i ∈ {1, . . . , n} and indexes 1 ≤ k1 < k2 ≤ k, before a pairwise optimal allocation is attained. (Right, 2-3) Log-
computation times, per iteration and total. All estimates are averages evaluated over 50 different initial random
samples. In all the applications described in this paper the ISA is compiled in C++ and has run on an Apple Mac
mini (3.2 GHz Intel Core i7, 16 GB RAM).

d = 2 d = 3 d = 4

σ̂ii − σii 1.11e-04 (0.01%) 1.15e-03 (0.12%) 4.72e-03 (0.49%)

σ̂ij − σij 1.49e-05 (0.02%) 3.25e-05 (0.04%) 2.78e-05 (0.04%)

Table 1: Absolute (relative) difference between the empirical estimates Σ̂/n2 (see (3.2)) and the true covariance matrix
Σ0/n

2 of the barycenter of n = 3 Gaussian distributions as described in Example 3.1. Empirical estimates are computed
via ISA for dimensions d = 2, 3, 4 and k = 105 sample points. Error estimates are averages evaluated over 50 different initial
random samples.

In Figure 2, we compare the ISA barycenter of the same three Gaussian measures with the so-called sliced

Wasserstein barycenter (SWB in the following) as described in Bonneel et al. (2015). Built on the notion of

sliced Wasserstein distance (Rabin et al., 2012), this approach approximates barycenters of measures using easily

computable 1-d Wasserstein distances along radial projections of the input measures. The sliced Wasserstein

barycenter turns out to be the solution of an optimization problem which integrates the distances of all projections.

While the SWB is more accurate for lower numbers of discretization points k ≤ 103, we experienced non-

convergence of the underlying iterative algorithm (reaching the fixed maximum number of possible iterations) for

higher number of points. On the other hand, the ISA is always more accurate for higher levels of k but at the cost

of an higher computation time.

For increasing dimensions, requiring the ISA to attain an exactly pairwise optimal assignment might be onerous

or might not deliver a worthwhile extra accuracy. This effect was studied in detail in the case of calculating

Wasserstein distances in Puccetti (2017). Figure 3 shows how most of the increase of the objective function (1.5) is

gained trough the first iterations of the algorithm, where the large majority of swaps is performed. In particular we

notice that the first round of swaps accounts for more than 99% of the relative increase if one starts from a random

initial configuration. Based on this observation, it might be convenient to introduce a stopping rule based on an
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Figure 2: (Left) Log-Wasserstein distances between the empirical barycenter produced by ISA resp. SWB, and
the true barycenter of n = 3 Gaussian distributions as described in Example 3.1, for d = 2 (top) and d = 3
(bottom). (Right) Corresponding total Log-computation times. The SWB is produced via a maximum num-
ber of 100 possible iterations and 10 projections. Doubling the number of iterations and/or projections in this
example do not yield an extra accuracy. All estimates are averages evaluated over 50 different initial random
samples. In all the applications described in this paper the SWB is coded in MATLAB via the script available
at https://github.com/gpeyre/2014-JMIV-SlicedTransport.
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Figure 3: (Left) Relative increase of the objective function (1.5) at each iteration of the ISA for the measures
described in Example 3.1, for d = 2 and k = 104 discretization points. (Right) Number of swaps (in thousands)
performed at each iteration. Even if broadly overlapping, each plot shows the lines for 50 different initial random
samples.
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accuracy condition or, equivalently, on a maximum number of iteration of step 2. to be performed. In the following

example, we require that the algorithm stops when the objective function computed at two consecutive iterations

of step 2. does not vary above a fixed level of accuracy ξ > 0, that is when

1

k

∣∣∣∣∣∣
k∑
j=1

f(x1σ1(i)
, . . . , xnσn(i)

)− f(x1σ′
1(i)

, . . . , xnσ′
n(i)

)

∣∣∣∣∣∣ < ξ. (3.4)

As an alternative or additional stopping condition, one can (super)impose a maximum number of iterations to be

performed.

Example 3.2. We compute ISA estimates of the optimal covariance matrix Σ0/n
2 of the barycenter of n = 3, 5, 10

Gaussian distributions having zero mean and equicorrelation matrices (3.3) with the randomly drawn correlation

shown in Table 2. We use the stopping condition (3.4) with ξ = 0.001 and a maximum number of allowed iterations

equal to 20. Accuracy of the empirical barycenters, number of iterations of the algorithm and computation times

are illustrated in Figure 4.

1 2 3 4 5 6 7 8 9 10

σi -0.990608 0.845346 -0.273613 -0.619842 0.320685 -0.248976 -0.546461 -0.36234 0.155687 0.631475

Table 2: Randomly drawn correlation parameters used in Example 3.2.
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Figure 4: The same as Figure 1 for n = 3, 5, 10 bivariate (d = 2) Gaussian distributions as described in Example 3.2,
for different values of k. All estimates are averages evaluated over 50 different initial random samples (20 for n = 10
in the cases k = 5× 104, 105).

Figures 1 and 4 show convergence of the ISA algorithm and an experimental run time of O(nk2) per iteration,

which is coherent with the fact that the algorithm checks condition (2.2) nk(k − 1)/2 times. The number of total

iterations of the algorithm turns out to be bounded in n for dimensions d relevant to applications or in general can

be bounded (by a terminating condition (3.4) based on accuracy). This quadratic time complexity is comparable

to other widely used algorithms; see Section 4. Figure 1 also shows that accuracy decreases when the dimension d

is increasing, and similarly to the other algorithms designed to compute barycenters, the ISA is most effective in

lower dimensions d = 2, 3, 4.
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4 Applications

Wasserstein barycenters and general optimal transportation problems have several applications in image process-

ing and computer graphics, for which we refer for instance to Li and Wang (2008), Bonneel et al. (2015) and Rabin

et al. (2012). Motivations for using Wasserstein barycenters are summarized in Ye et al. (2017) and references

therein. A clear and exhaustive overview of computational optimal transport is given in Peyré and Cuturi (2019).

4.1 Visualization of perturbed images

Similarly to what is done in Figure 1 in Cuturi and Doucet (2014), in Figure 5 we compute the Wasserstein

barycenter of n = 36 couples of ellipses via three different methods. Each image is rendered as a discrete measure

of k = 400 atoms on a grid of 65× 65 pixels. If the pixel’s color is black, then the probability mass at that point is

1/k. If it is white, it is set to be equal to 0.

The barycenter computed by the ISA is compared to the one produced over the same set of input measures by

the algorithm described in Benamou et al. (2015) and then to the solution of the LP described in Carlier et al.

(2015, eq. 2.15).

The algorithm in Benamou et al. (2015) operates by adding an entropic regularization penalty to the original

transportation problem depending on a regularization parameter γ > 0, and then uses Iterative Bregman Projections

(IBP for simplicity in the following) to solve it. This scheme translates into iterations that are simple matrix-vector

products which, in the case of the squared Euclidean distance, only require iterative convolutions of vectors against

a discrete diffusion kernel. Entropic regularized optimal transports find its pedigree in Cuturi (2013) and Cuturi

and Doucet (2014), who solve the regularized barycenter problem using a gradient descent scheme. Benamou

et al. (2015) state that the IBP converges orders of magnitude faster than gradient descent, and it has been further

exploited to shape data in 2-D and 3-D; see Solomon et al. (2015). The IBP algorithm is also freely available with

guideline and examples at http://www.numerical-tours.com/matlab/optimaltransp 5 entropic/#56.

The LP described in Carlier et al. (2015) provides an exact representation of the barycenter at the cost of solving

a linear problem with n× k × res2 variables and n(k × res2 + res2 + k) constraints, where res is the resolution of

the obtained barycenter (the number of pixels used to represent it on a square grid). Notice that in this example

(n = 36, k = 400, res = 65) one would have roughly 60 million variables and 60 million constraints. By pre-localizing

the support of the barycenter, we were able to reduce the LP to res = 45 (29 million variables/constraints). Using

CVX with the powerful LP solver Gurobi, it takes almost 11 hours to compute the barycenter. Even considering

that the solution of the LP is exact (once provided the pre-localization of the barycenter) this computation time

appears huge if compared to the 0.52 and, respectively, 1.75 seconds that ISA and IBP take to approximate the

barycenter for the same set of marginals. Most importantly, solving the LP for n = 36 marginals almost exploited

the total memory of our computer, thus imposing serious limitations on the number of marginals that can be dealt

with.

The ISA, IBP and LP algorithms are profoundly different and provide different approximations of Wasserstein

barycenters. Entropic regularization enables scalable computations, but the regularization parameter γ adds a

slight amount of smoothing in the computed approximation of the barycenter. The ISA does not modify the

original transportation cost, but treats discrete measures uniformly distributed on the same number of points and

only attains pairwise optimal assignments. The LP gives an exact solution, but its applicability is limited to low

dimensions/resolutions.

These differences are evident in the three different outcomes of the algorithms: the ISA produces a visually sharp

image of the support of the barycenter, the IBP outcomes a slightly blurred image as a result of the regularization

of the original problem, whereas the LP barycenter properly allows for exact gradients of gray (probability).

When one aims at higher dimensions, computing the barycenter via an LP is out of reach. In Figure 6 we

compare ISA and IBP barycenters for n = 1296 couples of ellipses. Again, each couple still consists of k = 400

atoms on a grid of 65 × 65 pixels. Also in this case, the barycenter computed by IBP shows some probability

mass between two circles which the ISA renders as sparse points. By superimposing the two different barycenters

(Figure 6, bottom-right), it is evident that the two different methodologies are producing different approximations

of the same optimal measure.
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Figure 5: (Top) 36 artificial images of couples of ellipses. (Bottom, left) Barycenter as computed by the ISA.
In this example it takes 12 iterations to reach a pairwise-optimal assignment. Each iteration takes approximately
0.0437 sec in C++ (total comp. time of 0.52 sec.). (Bottom, center) Barycenter as computed by the IBP
with 97 iterations. For the IBP we took a stopping condition based on the Frobenius norm to produce almost
indistinguishable subsequent barycenters. Each IBP iteration takes on average 0.0181 sec in MatLab (total comp.
time of 1.75 sec.). (Bottom, right) Barycenter as computed by the LP in Carlier et al. (2015) with prelocalization
of the barycenter. The LP has been solved by CVX using Gurobi solver in about 11 hours. For the application of
the ISA, since the k sample points of each image are chosen deterministically, the initial assignment in step 1. is
chosen according to Remark 2 in Section 5.

Weighted barycenters of sample images. The ISA can also be applied on sample images when one generally

needs a different number of Dirac masses for each measure. One can then apply the ISA by sampling the same

(high) number of points for each measure, in a similar way as done for the Gaussian application in Section 3. In

Figure 7 we show the barycenters computed via ISA, IBP, and SWB, for varying weights corresponding to a bilinear

interpolation inside a square.

At this point we stress that while our procedure is completely non-parametric (the end-user does not have to

calibrate it to the specific measures under study nor to choose any parameter), the IBP algorithm is sensitive to the

choice of the regularization parameter γ used to introduce the entropy penalization, and also to the sharpness of the

kernel discretization (Solomon et al., 2015). While theoretically for γ → 0 one retrieves the solution for the non-

penalized original cost function, in practice, the IBP algorithm is competitive in a range where the regularization

term is not too small to prohibit computational tractability nor too large to make the iteration scheme converge

to a maximum entropy solution (which is the limiting case for γ → ∞ ). For increasing levels of γ the barycenter

becomes less and less sparse, an effect that is well illustrated in Peyré and Cuturi (2019).

The convergence of the IBP algorithm is fast if the regularization parameter and the width of the convolution

kernel are chosen appropriately to the measures under study, but might deviate from the correct solution if the

parameters are misspecified, as illustrated in Figure 7. In contrast, the ISA algorithm is completely non-parametric

and is always more accurate (at the cost of a higher computation time) if one allows for an increasing number of

iterations and/or number of initial sampling points. The sliced Wasserstein barycenters, analogously to Figure 6

and 7 in Bonneel et al. (2015), show artifacts.
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Figure 6: (Top) 1296 artificial images of couples of ellipses. (Bottom, left) Barycenter as computed by the ISA.
In this example it takes 11 iterations to reach a pairwise-optimal assignment. Each iteration takes approximately
2.6 sec. in C++ (total comp. time of 28.6 sec.). (Bottom, center) Barycenter as computed by the IBP with
89 iterations. Each IBP iteration takes on average 0.28 sec in MatLab (total comp. time of 24.9 sec.). (Bottom,
right) Superposition of the ISA and IBP barycenters. Applications of ISA and IBP are the same as in Figure 5.
We thank Marco Cuturi for providing the code to produce the starting images of ellipses.
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Figure 7: Barycenters of 4 sample images computed for varying weights corresponding to a bilinear interpolation
inside a square. (Top) IBP barycenters computed with a fixed number of 30 iterations and two different widths
of the convolution kernel. Each barycenter is immediately computed. A different discretization of the diffusion
kernel might affect the overall convergence of the algorithm, as one can observe from the right picture, where the
central barycenter computed for equal weights is not symmetric as it should be. Similarly, symmetry properties for
the other barycenters are also affected. (Center) ISA barycenters computed with k = 10000 (left) and k = 30000
(right). On average, the computation of each barycenter takes 12 sec. resp. 118 sec. Despite the higher computation
time, one obtains a sharp image of the barycenter by allowing for a higher number of sampling points. (Bottom)
Sliced Wasserstein barycenters computed with a number of 100 iterations, 100 projections, and two different initial
conditions. The computation of each barycenter takes approximately 0.15 sec. Doubling the number of iterations
or taking 1000 projections yields a similar picture.
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4.2 Clustering and the k-barycenter problem

The problem of determining the barycenter of n distributions with respect to the Wasserstein distance has a

natural extension in clustering applications to the so-called k-barycenter problem. The k-barycenter problem has

become popular in computer science since the paper Li and Wang (2008). In this literature barycenters are usually

referred to as centroids and we borrow this taxonomy in what follows.

Given n probability measures µ1, . . . , µn ∈ P2(Rd), the problem is to find k probability measures ν1, . . . , νk that

are solutions of

inf


k∑
i=1

∑
j∈Si

W 2
2 (µj , νi); ν1, . . . , νk ∈ P2(Rd)

 , (4.1)

where, for 1 ≤ i ≤ k, we set

Si =

{
µj : W 2

2 (µj , νi) = min
1≤r≤k

W 2
2 (µj , νr)

}
. (4.2)

The optimal set of centroids (νi) minimizes the sum of distances between probability measures and their closest

centroid and determines the optimal clusters (Si) for the corresponding clustering problem.

For the k-barycenter problem one commonly proceeds similarly as Lloyd’s k-means clustering for vectors under

the Euclidean distance. Given an initial set of centroids ν
(1)
1 , . . . , ν

(1)
k , one iterates, for t ≥ 1, the following two

steps:

k-means algorithm

1. Assignment. Given ν
(t)
1 , . . . , ν

(t)
k , determine via (4.2) the corresponding clustering St1, . . . , S

t
k.

2. Update. Calculate the barycenters of St1, . . . , S
t
k to be the set of new centroids ν

(t+1)
1 , . . . , ν

(t+1)
k .

The above algorithm converges when the clustering in the assignment step no longer changes. In the case

of discrete measures, this problem was originally studied in Li and Wang (2008), under the name D2-clustering.

Recently, a series of approximate algorithms for solving (4.1) have been proposed in the literature; a good summary

is given in the introductory part of Ye et al. (2017).

In general, the most onerous step in the k-means algorithm is the computation of the optimal centroid for

each cluster at each iteration. For example, Ho et al. (2017) use for this step the algorithm of Cuturi and Doucet

(2014), whereas Ye et al. (2017) develop a sophisticated modification of the Bregman alternating direction method of

multipliers (B-ADMM) approach for computing the approximate discrete Wasserstein barycenter of large clusters.

Generally speaking, the time complexity per iteration of these methods is O(nk2) for the computation of a

barycenter of a set of n distributions; see Ye et al. (2017) for more detailed computational details. However, each

method based on the k-means algorithm relies on a good starting point for the support of the true centroids; see

also Ye and Li (2014) and Irpino et al. (2014).

Thus, we propose to apply the ISA introduced in Section 2 to the k-means algorithm, keeping a quadratic time

complexity. We mention that similar extensions can also be given to several related clustering problems like k-means

clustering with fixed size, i.e., looking for centroids of the form ν =
∑k
i=1 piδxi , either with pi fixed (e.g., pi = 1/k)

or with free choice of pi (variable size clusters).

As a first example of the k-barycenter problem, we consider n = 30 Gaussian point clouds; see Figure 8. Each

cloud consists of k = 400 points simulated from a bivariate Gaussian distribution with random correlation and

mean chosen with probability 1/2 as either (0, 0)
′

(zero mean) or as (ξ, ξ)
′

(shifted mean). At this point we apply

the k-means algorithm illustrated above using the ISA for the assignment and update steps to cluster the point

clouds into two clusters (zero and shifted mean). As a starting set of centroids the algorithm selects the two clouds

with the furthest sample mean in Euclidean distance. Table 3 shows, for values of the shift ξ between 0 and 1, the

number of errors committed by the algorithm in reconstructing the benchmark clustering.

We observe that the ISA allows for a fast construction of clustering also in the case of large clusters. Empirical

runs show that the algorithm reaches a stable configuration within 10 iterations. Especially for ξ < 0.5, the final
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clustering might have more errors with respect to the benchmark if compared to the initial assignment. Of course,

the accuracy of the algorithm is increasing in ξ, always leading to the correct clustering for ξ ≥ 0.8.

number of iterations

shift 0 1 2 3 4 4 6 7 8 9 10

ξ = 0.1 10.20 11.08 11.30 11.38 11.48 11.44 11.42 11.52 11.52 11.52 11.52
ξ = 0.2 8.00 9.52 10.06 10.54 10.82 10.96 11.02 11.08 11.14 11.14 11.14
ξ = 0.3 5.94 7.04 8.14 8.88 9.26 9.42 9.62 9.68 9.72 9.76 9.76
ξ = 0.4 3.82 4.28 5.06 5.18 5.38 5.50 5.56 5.58 5.60 5.60 5.60
ξ = 0.5 2.40 2.24 2.26 2.24 2.18 2.16 2.16 2.16 2.16 2.16 2.16
ξ = 0.6 1.56 1.46 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42
ξ = 0.7 0.92 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72
ξ = 0.8 0.52 0.22 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ξ = 0.9 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ξ = 1.0 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: Average number of errors committed by the ISA in reconstructing the benchmark clustering of 30 Gaussian
point clouds with null or shifted mean. Averages are computed over 50 identical runs of the algorithm over a
randomized set of point clouds similar to Figure 8. The computation of each number in the table takes on average
9 sec.
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Figure 8: A set of n = 30 Gaussian point clouds with random correlation and random shift ξ = 1, and the
corresponding centroids of the two groups as computed by the ISA. Starting centroids are framed.
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As a last example, we explore the use of Wasserstein clusters for clustering of geometrical shapes. We consider

the clustering of n = 300 shapes, divided into a random number of random ellipses and rectangles; see Figure 9.

Each figure is rendered with k = 400 points similarly to the ellipses described in Section 4. We apply the ISA with

random selection of the initial clusters (centroids). In the recognition of the shapes, the ISA has an average success

rate of 79.6% after a fixed number of 10 iterations. The rate is similar if a totally unsupervised initial condition is

replaced by taking two different sample shapes as initial centroids (success rate=80.0%), or if the number iterations

is halved or doubled (generally after 5 iterations the algorithm converges to a final assignment); see Table 4.

The obtained success rates indicate that the Wasserstein barycenter w.r.t. squared euclidean distance may not

be for all geometric structures the best tool for clustering. This is due to the intrinsic structure of the metric

used. Depending on the class of shapes/images considered, the Wasserstein distance might deliver better results if

each shape/image is first rendered using statistical models based on a set of multivariate feature vectors, as done

for instance in Li and Wang (2003, 2008), amongst others. It is difficult to compare these methods with ours as

accuracy rates vary a lot depending on the examples considered; see Li and Wang (2003, 2008); Ye et al. (2017) for

a comparison. For the kind of geometric problems considered here, we conclude that the ISA is able to very well

visually render and distinguish between the different barycenters; see Figure 9.

n. iterations (comp. time in sec.)

starting condition 3 (20) 5 (30) 10 (111) 20 (112)

totally random 76.9% 78.9% 79.6% 79.5%
sample shapes 77.7% 79.0% 80.0% 80.1%

Table 4: Average success rate (and computation times) of the ISA in discriminating ellipses from rectangles from
a set of 300 random shapes. Averages are computed over 50 identical runs of the algorithm over a randomized set
of shapes similar to Figure 9.

Figure 9: A set of n = 300 shapes divided into a random number of random ellipses and rectangles along with the
centroids computed by the ISA starting from a random initial configuration. In this example the ISA has a success
rate of about 80% of shapes correctly assigned. The time needed for computing the two centroids after 10 iterations
is 111 seconds.
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5 Final remarks and extensions

In this paper, we introduce and investigate the iterative swapping algorithm (ISA) for computing the Wasser-

stein barycenter of sums of Dirac masses. The algorithm builds on the equivalence of the barycenter problem

to the n-coupling problem (Rüschendorf and Uckelmann, 2002), which we state under general assumptions. For

discrete measures, the computation of a Wasserstein barycenter is in principle obtained through the solution of a

finite(high)-dimensional linear program. The idea of this paper is to approximate such linear program by a multi-

index assignment problem and to use in an iterative manner the swapping algorithm to compute a close-to-optimal

solution. The barycenter of general measures can be then approximated by taking sufficiently large finite samples

of the measures.

The ISA is based on the easy to evaluate and necessary condition (2.2) providing an appealing quadratic

complexity and a sharp image of the support of the barycenter. Remarkably, the ISA is also a completely non-

parametric methodology which does not need to be tailored to the specific case study, and always provides more

accuracy for increasing resolutions of the marginal inputs. We compare the quality of the barycenter obtained by

ISA with the quality obtained using other methods designed to compute Wasserstein barycenters, namely with the

sliced Wasserstein barycenters, with the barycenters produced by an entropic regularization of the problem, and

with barycenters resulting form linear programming algorithms.

The reduction of complexity of optimization problems by restricting to pairwise swapping steps appears to be

applicable to a wider range of problems, such as to clustering and k-barycenter problems in Section 4.2. For 2-

coupling problems the quality of this reduction was investigated in Puccetti (2017). We believe that the results in

this paper are in general quite promising.

We conclude the paper by pointing out the following remarks.

1. Different swapping conditions. One could use different yet equivalent representations of the n-coupling problem

to produce different swapping conditions in (2.2). Using the function

f(x1, . . . , xd) =
∣∣∣∣∣∣ n∑
i=1

xi

∣∣∣∣∣∣2.
in (1.5), as in the original formulation of the problem, is not computationally efficient due to the presence of

the quadratic terms ||xi||2 which are fixed and do not enter the maximization problem.

An equivalent alternative is to maximize the function

f(x1, . . . , xd) = 2

n∑
i=1

〈xi,
∑
j>i

xj〉.

Notice that this function induces a swapping condition different than (2.2). Substituting (2.2) with

〈xiσi(k1)
,
∑
j>i

xjσj(k1)
〉+ 〈xiσi(k2)

,
∑
j>i

xjσj(k2)
〉 < 〈xiσi(k2)

,
∑
j>i

xjσj(k1)
〉+ 〈xiσi(k1)

,
∑
j>i

xjσj(k2)
〉.

halves the number of iterations of step 2. delivering slightly less accurate results to the ones presented in the

paper.

Alternatively, one could simultaneously compare, for all possible pairs (k1, k2) with 1 ≤ k1 < k2 ≤ k, all

2n−1 possible ways of swapping the 2 positions of each of the n permutations involved in (2.2) and choose the

one delivering the largest function value. This alternative brings slightly more accurate estimates, and less

iterations of step 2., but at the cost of a computation time exponentially increasing in n.

In summary, we found that a swapping condition based on the cost function in (1.5) delivers the best trade-off

between computation time (to be kept polynomial on n) and accuracy.

2. Different initial configurations. In order to decrease the number of iterations of Step 2. of the algorithm,

one could start from a given assignment, based on the order of a univariate statistics g(xij), or a random
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assignment. For the ellipses applications as illustrated in Section 4, ordering all the k points of each image

based on the product of their coordinates nearly halves the number of iterations if compared to a random initial

assignment. However, this initial assignment does not deliver any advantage for example in the Gaussian case

of Section 3 and we did not find a general rule.

3. Discrete measures with general probabilities. In this paper we consider marginal distributions uniformly

distributed on a number of points, but the algorithm could also deal with general discrete measures by taking

repetitions of points with equal probability. However, this would require an higher number of points for each

marginal hence resulting in a considerably higher computation time.

4. Barycenter of copulas. It is not always obvious what the barycenter of a set of point clouds looks like; see for

instance the illustration given in Figure 10.

Figure 10: ISA approximation of the Wasserstein barycenter of the lower Fréchet bound M (top-left figure), the
independence copula Π (top-middle) and the upper Fréchet bound W (top-right figure), as computed by the ISA.
Each image consists of k = 2500 points.
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Dowson, D. C. and B. V. Landau (1982). The Fréchet distance between multivariate normal distributions. J.

Multivariate Anal. 12 (3), 450–455.
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Rüschendorf, L. and L. Uckelmann (1997). On optimal multivariate couplings. In V. Benes and I. Stepan (Eds.),

Distributions with given Marginals and Moment Problems, pp. 261–273. Springer.
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