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A TRANSFORMATION PROPERTY OF MINIMAL METRICS

In the first part of this paper we prove an invariance property of mini-
mal metrics with respect to measurable transformations. In the second part
this property is used to study the convergence hehaviour of various minimal
metrics which are related to Kantorovich-type metrics.

Let (U, A), (V, %) be measurable spaces and ¢: U — V be a measurable
function. Let p: M1 (V X V)— [0, ool be a probability metric on V as de-
fined in [4] (see also [6]), M* (V) denoting the set of all probability measures
on (V, 33) then by meauns of the function ¢ one can define

We: MY (U X U)—10, o] by pge(Q): = p (Q@®), (1)

where Q- @ is the image of @ under the transformation (g, @) (¢, y) =
= (¢ (z), ¢ (y)). For P &= M* (V X V) with marginals P, P, let (i (P): =
= inf {p (Q); Q = M* (V x V) has marginals P,, P,} denote the minimal
metric corresponding to p.

It is easy to see that p, defines a probability metric on U. In terms of
random variables the above definition can also be written in the following
way:

o (X,Y) = p (¢ (X), ¢ (Y)).
Recall that (U, A) is called a Borel-space, if there exists an element B &
= = B (RY) and a measure isomorphismn : (U, 4) — (B, B, B!).
The main aim of this note is to prove the following theorem:
Theorem. Lei (U, A) be a Borel-space, {v} & B for all v = V, then
o (Py, Py) = B (PY, P§) forall Py, P,= MY (). (2)

For the proof of the Theorem we shall need an auxiliary result on the
construction of random variables. Let (M, &, Q) be a probability space,
let S: M -V, Z: M — [0, 1] be independent random variables such that
Q% = R (0, 1) — the uniform distribution on [0, 1].

Proposition. Let U, V, ¢ be as in the Theorem and let P be a probability

measure on (U, A) such that P® = Q8. Then there exists a random variable
X: M — U such that

QX =P and ¢ - X = S [QL 3

Proof. Consider at first the special case (U, A) = (R?, B'). Let =n:

R! — R! denote the identity, = (z) = z, and define P = P7e=s, s = V;

(P )szv beeing a regular conditional distribution. Let F, be the right con-
tinuous distribution function of P,, s = V. Then

F:V X R -0, 11, F (s, z):= F, (z) is product-measurable. (4)
For the proof of (4) let a =10, 1], then
(s, 2); Fo(x) <a} = U {(s,2); g =z, F(q)<a} =

9=Q
= qgQ({SE Vi Fo(q) < a} X (— o0, q)),

5*
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the first equality following from right continuify of ¥ in x. Measurability
of F, (g) w.r.t. s implies that the above set is an element of B ® B and,

therefore, the product measurability of F.
For s = V let Fi* (z):= inf {y; F, (y) > z}, z = (0, 1) be the genera-
lized inverse of F; and define the random variable

Xi= F* (Z). , (5}
For any A &= .4 = %! holds
0¥ (4) = § 0" (4)d¢% ()
and for the regular conditional distributions we obtain

-1 —1 -1
X|8=s Fg (2)|8= F. (2)|8=s F. (Z
Ql —“—‘QS()l S:Qs()l :Qs()

by the independence of S and Z. Furthermore, QFSI(Z) = P, = p™e=s and,
therefore, QX (A) = | Pmle=s (4)dP% (s) = P (A). This implies the first
relation Q¥ = P.
The second relation ¢ o X = S [Q] is implied by
Q{p-X = S} = [Q¥5={z; ¢ (z) = 5}dQS () =
— [ Priv= (z; ¢ () = s} AP (s) =1 |

since the integrand is equal to one a.s. by the usual properties of regular
conditional distributions. ‘ \

Consider now the general case that (U, .4)is a Borelspace. Lety: (U, A)—
— (B, B®'), B <= %', be a measure isomorphismn and define P’: = PV,
¢':= @oL. By part one of this proof there exists a random variable X': M —
— B such that QX = P’ and ¢ o X' = S [Q). Therefore, with X:=
=P Lo X', holds Q¥ = P and ¢ o X = S [Q].

Remark A similar proof holds true under the alternative assump-
tions:

a) U is a universally measurable separable metric space.

b) Visaseparable metric space and for P;:= P#le=s n: U - U, nt (z)= z,
there exists a productmeasurable process Y,:= M — U, s = A, such that
Qs =P, ,s=V.

Proof of the Theorem. Let M (P, P,) be the set of all pro-
bability measures on U X U with marginals P, P,. Then

{0@w©; Q= M (Py, P,)} C M (PY, PY)
and, therefore,
B (Pys Py) = inf (i (Q); Q & M (P, Py)} = inf {u(Q" ), Q = M (P, P,)) =
= inf (u(Q); Q & M (PY, POy = (P, PY).

Conversely, let P & M (PY, P§) let (M, &, Q) be a measure space with
random variables S, S: M —V such that Q®>5) = P and rich enough
to contain a further random variable Z: M — [0, 1] uniformly distributed
on [0, 1] and independent of S, S’. By the Proposition there exist random
variables X, Y: M — U such that Q€ =P,, Q¥ = P, and ¢ X = S {0},
@ oY = 8" [Q]. Therefore, p(P) =p(po X, ¢oY) = py (X, Y), imp-
lying that

o (F1, Py) = inf e (X, Y); X ~ P, Y ~ Po}
<inf{p(P); P & M (PF, P3)} = p (P71, P).
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Remark. a) The Theorem is known for several special situations
(cf. [1—5, 7). As a typical example for the application of the Theorem
let U=V be a Banach space, dy(z,y)=lz|z{"t—yly ]
z,y= U where s >0 and z |z |1 =0 for z=0. Let p,(X,Y) =
= Ed, (X,7), M(X Y) = (X,Y); then the corresponding minimal
metrics k, (X, Y):=[, (X, Y) are called absolute pseudomoments of order
s (cf. [31). The importance of %, can be explained by the fact that one can
obtain upper bounds for Zolotarev’s ideal metric &, in terms of k, (cf. [3],
Theorem 3) and, therefore, obtain rates of convergence in central limit theo-
rems in terms of k.. By the Theorem (which is trivial in this special case)
k, can be expressed in terms of the more simple metric k,, k, (P,, P,) =
=k, (PY, PJ), where ¢ (z) = z |z |"L.

b) An immediate extension of the Theorem is possible to the situation
@ ¥ U~V and poy (X, Y): = (¢ (X), ¥ (V). |

Some applications are now discussed in more detail in the following sec~
tion.

Applications. Define the Lj-metric in M! (V X V)

Lw:=( § @ @ y(ue dy)” p=1,
VXV

pEML (VX V), assuming that V is a separable metric space with metric d,
Then, by (1) L¢ is a L,-type probability metric in M*! (U X U) and Zq,
is the corresponding minimal metric. In the next corollary we apply the Theo-
rem in order to get a criterion for Zcp—convergence.

Let Q, Py, P,, ... be probability measures on (U, 4). Denote mn: =
= 5 (Py, 0%, = being the Levy — Prohorov metric in M* (V),

Dy =D(P$, Q%: —I(S d? (z, c) Py (dz ))Up——(gdp (x‘,‘c)Q‘p(dx))I/p’
v

{cis a flxed point in V),

¢(@%):=(p @ o)+ 110" (da))",
M Q% N): = (§ a7 (2, ¢) I {d (2, 0) > N} Q° (d))"”",
\2
M(QY): = (Sd*’ (2,¢) Q° (dz)) """

Let U be a Borel space and V be as above, then we have:
~ Corollary 1. Let for all n =N
M (Pr) + M (Q%) < oo. (6)
Then icp (P, Q) = 0 as n— oo if and only if Py, weakly tends to Q% and D} —
— 0 as n— oo, Moreover, the following quantitative estimates are valid:

Ly (P, Q) = max (DY, (n§)"*'7), (7)

Lo (P, Q)< (1 + 4N) 0l -+ 5M (Q%, N) -+ (w)"/? (3¢ (Q%) -+ 27PN + D}
(8)
for each positive N.
Re mar k. The first part of Corollary 1 follows immediately from re-
lations (7), (8) (for the «ifs part put for instance N = (m7)-¢P). Relations
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{7 and (8) establish additionally a quantitative estimate of the convergen-
ce of Ly (Pn, Q) to zero.
Proof of (7), (8). Relations (7), (8) follow from (2) and the following
inequalities:
L (Q1, Qo) = max (a*V7 (Q1, @), D (s, Qo)) 9
L (Q1, Q) < (1 + 2N) u (Qy, @) + M (Q1, N) + M (Q5, N),  (10)
M (Q, 2N) <D (Qy, Qy) + 4M (Qp, N) + ™2 (Qy, Q) (3¢ (@s) +
+ 21rn) (1)

for each positive N and Q,, Q, = M* (V).
The inequalities (9) and (10) are proved in [1] (for possible extensions see
[6]). For the proof of (11) observe that

M (@1, 2N) < D(Q0r Q) +
| @ @ 0 1@ ) <2N) (@ — Q) @) ||+ M (Qu 2Ny (12)
Vv

In order to estimate the second term, say /, in the right-hand side of (12)
we denote [ (z): = min {d® (z, ¢), (2N)¥}, g (z): = min {2Pd? (z, O (¢, N)),
(2N)"}, where O (¢, N): = {z &= U; d (z, c) < N}. Then

\]§ (2) (Q1 — Q3) (da) |

+28|§ 1¢d (z,0) > 2N) (01 — Qs) (dx)/p=: I, + I, say. (13)
v

Using the inequality
if@—1WI<1d (z, ) —d” (y, o) | < p max (& (z, ¢), & (y, )+
dzy), zy&sV

we get for any probability measure w on V2 with marginals Q,, Q, and
p{d (z, y) > v} <<y for some y &= (0, 11

B =|§¢ @ —fwnde dp| < Slf — F )|t (z, y) < V(de, dy)+
VZ
+ § (7@ + 1)) 14 (@ y) = 1w (da, dy) < ye Q) + 2{2N)PY
VZ

Let K: = K (p): = inf {y >0; p(d(z, y) > vy) <<y} denote the Ky
Fan distance in Mt (V X V) then

L <E"P[e(Qo) + 22NP Y2 L K[ (Qy) + 27PN (14)

Furthermore,
ll/p

1, =|§ @V I (2, ¢) > 20} (0, — Qu) (d2)

1

<[Senr e >any 0 an | + M Qs 2M).
)

<

ifd,c

~—

> 2N, then d (z, O (¢, N)) > N, and, therefore,
(

2NV T {d (z, ¢) > 2N} O, (da) | S 2)Q, (dz) "
)

USg(x) 02 dx)’ ‘1/13 ng ) Qx ()P = Iy; + Ipy-
v 4

[ aumennl

N
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We obtain
lo<[{@NP 1> M Gen]" <

< {  2%(2,00,(d0)"" =200, V)

{d(x, >N}
and hence the inequality
g @) —gy <2 ]d" (2, O, Ny) —d" (y, O (e, N)) | <
< 2°p max [d" (z, O (e, N)), d" (y, O (e, N))l d (2, y)
implies

L <| § 10 (@) — g )] 11 (2, y) < vy (A, dy) e +

Vi

+1 S Ge@l+ 1)) 1 @@ y) > p(de, dy) |7 < 2/pe(Qy) + 252Ny,
vz

Alltogether, we get (as for the bounds of I,)
I, << 3M 0y, N)+ 2K'Y%c (Q,) + 2WYPNEKVP (15)

for any K = K (p). By the Strassen theorem s = K and hence K can be
replaced in the bounds by = implying
I < 3M (Qs, N) + a/? (3¢ (Q,) + 2%*V/FN). (16)
This implies relation (11).
We can extend Corollary 1 considering the compound probability distance
#W:=§ H@@y)pda,dy), pnem v xv), (17)
Ve
where H (¢) is a nondecreasing continuous function on [0, co) vanishing at
zero (and only there) and satisfying the Orlicz-condition
f sup {H (2t)/H (¢); ¢ > 0} < oo (see [6]). (18)

Corollary 2. Assume that §Hi(d (x, y) (PS -+ Q%) (dx) < . Then the
convergence dtq (P, Q) — 0 as n-— oo is equivalent to the following relations;
a) Py tends weakly to Q¥ as n— oo and

b) lim Tim §H (d(x, ¢)) I {d (z, ) > N} PY (da) =
N 1 v
Note that the Orlicz-condition (18) implies a power growth of the funec-

tion H. In order to consider functions H in (17) with exponential growth we
introduce the class SB of «subbounded» rv’s E. Define

teeSB&1(E): =inf {a>0; Eexp (ME) expha for all A >0}=
= sup % In Eexp (AE) < oo. (19%
A>0

Obviously all bounded rv’s belong to SB. By the Holder inequality one
gets

RE+n) <T@+ 7@ (20)

and hence if p &= M*(V X V), and (Y, Y,) is a pair of V-valued rv’s with
joint distribution u, then

() = (d (Vs V) @1

determines a compound probability metric on M* (V x V) (see (1, 4, 6]).
The next corollary of the Theorem gives us a criterion for T,-convergence.
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Corollary 3. Let X,,, n=1,2, ..., andY be valued rv’'s with distributions
P, and Q respectively and let v (d (¢ (X,), ¢)) + 7 (d (¢ (), ¢)) < oo. Then
the convergence Ty (P, Q)—0 as n— oo is equivalent to the following relations:

a) PY tends weakly to Q¥ and

b) lim Tim (d (¢ (X)) I {d (¢ (X,). ) > N) = 0.

— 00

Proof. As in Corollary 1 the assertion of Corollary 3 is a consequence
of Theorem 1 and the following inequalities (22) — (24) valid for any V-valued
random variables Y, and Y, with distributions Q, and Q, respectively:

- 2 (Q1, Qo) < T (Qr Qo) (22)
T(d Yy, ) I{d Yy, ¢) > NY < L 2T (Qy, o) + 2t (d (Yo ) I {d (Yy, ) >
> N/2}), (23)

T(Qy Q) <n(Qy Qo) (1 +2N) +1(d(Vy, o) I {d(Yy, ¢) >
>N F+1@ Y, )I{d(Y, ¢) >N}))forallN >0, ce=V. (24)
Proof of{22). By the Strassen theorem it is enough to prove that
t () > K2 (p) for p &= M1 (V X V) with marginals Q,, Q,. Let § = d (Y,
Y,), where (Y, Y,) has the distribution p, and 7 (8§} << €2 <{ 1, then

E__ T(E) _ ez
P(g>8) Ee 1 e 1 \<e 1 .

—1 < e —1 T et —1

Letting &2 — 7 (&) we get (22).

Proof of (23). Note that the inequality & < n with probability one
fmplies 7 (§) << 7 (). Hence

T( @Y, e) I {d(Y,c) >N <
STHA (Y1, Y o) + d (Vs 0)) [1{d (Yo, 0) + A (Y, Vo) >N

£ T1[(d(Y,,Y,y) +d(Y, c))max <I{d (Y, c)>%}, [{d (Yn Yy) > sz‘}ﬂ <

<20 (A (¥, Vo) H{d (Y3, ¥o) > f 4 20 (d (V0 1Hd (Van0) >} <

LAV V) + 20 (A0 ) 1A (Y00 > 5}).

Passing to the minimal metrics we get (23).
Proof of. (24) For each § holds
T(@ (Y, Yo) <t (d Yy, Vo) I{d (Yy, Yy) < 6}) +
+ @Yy, Y))I{d(Y,,7Y,) >06}) =:1,+ I, say.

For I, we get the estimate
I :shup%lnEexp(kd(Yl, Yo)I{d(Y,,Y,) <8} <
>0
<sup—lnEeXp7»6 = 0.

. A0
For I, we get:

I <t(d (Y, o) +d Yy, o L{d Yy, Vo) > 01 <
LT(@ Yy, 0) 1 {d (Y, Yy) > 8)) +
+ 1 (d (Y, o) I{d (Yy, Yy) > 8)) =: Ay + A,
Furthermore,
A<t @Yy )L {d Yy, YVy) >0 {d (Yy, o) < N}) +
AT @ Vo) I {d (Y, Ye) >0} T {d(Yy, ) >N <<
KNP (A(Yy, Yy) >08) +1(@d Yy, o) {d(Yy, ¢) > N}



Transformation property of minimal meirics 137

Hence if K (Y,;, Y,) < 6, then

T(@ (Y, Vo)) KU+ 2N)8 +1(d(Yy, ) I {d(Yy, ¢) > N}) +
+ 1 (d Y ) L {d (Ye, ¢) > N}).

Letting 6 — K (Y, Y,) and passing to the minimal metrics we obtain (24j,
For another possible line of applications of the Theorem cf. [7].
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