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The main scope of this paper is to give some explicit classes of examples of L1-optimal couplings. Optimal
transportation w.r.t. the Kantorovich metric `1 (resp. the Wasserstein metric W1) between two absolutely continu-
ous measures is known since the basic papers of Kantorovich and Rubinstein (1957) and Sudakov (1979) to occur
on rays induced by a decomposition of the basic space (and more generally to higher dimensional decompositions
in the case of general measures) induced by the corresponding dual potentials. Several papers have given this kind
of structural result and established existence and uniqueness of solutions in varying generality. Since the dual
problems pose typically too strong challenges to be solved in explicit form, these structural results have so far
been applied for the solution of few particular instances.

First, we give a self-contained review of some basic optimal coupling results and we propose and investigate in
particular some basic principles for the construction of L1-optimal couplings given by a reduction principle and
some usable forms of the decomposition method. This reduction principle, together with symmetry properties of
the reduced measures, gives a hint to the decomposition of the space into sectors and via the non crossing property
of optimal transport leads to the choice of transportation rays. The optimality of the induced transports is then a
consequence of the characterization results of optimal couplings.

Then, we apply these principles to determine in explicit form L1-optimal couplings for several classes of
examples of elliptical distributions. In particular, we give for the first time a general construction of L1-optimal
couplings between two bivariate Gaussian distributions. We also discuss optimality of special constructions like
shifts and scalings, and provide an extended class of dual functionals allowing for the closed-form computation of
the `1-metric or of accurate lower bounds of it in a variety of examples.

Keywords: Kantorovich `1-metric; L1-Wasserstein distance; optimal mass transportation; optimal couplings;
Gaussian distributions; Monge-Kantorovich problem; Kantorovich-Rubinstein Theorem

1. Introduction

Let P,Q ∈M1(Rd) be two probability measures on Rd with finite first moments. In this paper we
study the mass transportation problem given by

`1(P,Q) = inf

{∫
‖x− y‖dµ(x, y);µ ∈M(P,Q)

}
, (1.1)

whereM(P,Q) is the set of all probability measures on Rd ×Rd with marginals P and Q, and ‖ · ‖
denotes the Euclidean norm. `1 is the minimal version of the L1-metric L1(X,Y ) = E‖X − Y ‖ for
random vectors X,Y in Rd.
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More generally, for p ∈ [1,∞), the Kantorovich `p-metric `p(P,Q) is defined as

`p(P,Q)p = inf

{∫
‖x− y‖p dµ(x, y);µ ∈M(P,Q)

}
. (1.2)

The mass transportation problem (1.2) was introduced in Kantorovich (1942, 1948) in the general
case where the cost function is a metric and Kantorovich derived a dual representation for it. This led in
1957 to the fundamental representation of the minimal L1-metric `1 by the dual Lipschitz metric, the
Kantorovich–Rubinstein Theorem. This duality result arose a lot of interest and led to extensions over
the years to come in various areas from probability, statistics over analysis and geometry to various
application areas like clustering or image analysis. From some point on, in much of the literature
the term Lp-Wasserstein distance was used for `p(P,Q) instead of the historically correct notion of
Kantorovich `p-metric; see the detailed historical remark given at the end of Chapter 6 in Villani
(2009) and Rüschendorf (1998). To keep the paper in connection with the recent literature, we remark
that `p(P,Q) is also known as the Lp-Wasserstein distance Wp(P,Q).

Notation

A measure µ ∈M(P,Q) is called an Lp-optimal coupling of P and Q or an optimal coupling with
respect to the lp-metric if ∫

‖x− y‖p dµ(x, y) = `p(P,Q)p.

Similarly, a pair ofRd-valued random vectors (X,Y ) on a probability space, X ∼ P , Y ∼Q, is called
an Lp-optimal coupling of P and Q if E‖X − Y ‖p = `p(P,Q)p.

In general, any measure (coupling) µ ∈M(P,Q) describes a transportation plan for the mass dis-
tribution from P to Q or, equivalently, the joint distribution of a pair of random vectors (X,Y ) on Rd

with X ∼ P and Y ∼Q. Using conditional distributions, one obtains∫
‖x− y‖p dµ(x, y) =

∫ (∫
‖x− y‖pµ(dy|x)

)
P (dx).

Any mass at point x is transported to (possibly many locations) y according to the conditional dis-
tribution τ(x, ·) = µ(·|x), which is called a transport kernel of P and Q. Notice that P × µ(·|x) is a
coupling of P andQ and letK(P,Q) be set of all transport kernels τ(x, ·) with P ×τ(x, ·) ∈M(P,Q).

A transport kernel τ(x, ·) is called an Lp-optimal transport kernel if P × τ(x, ·) is an Lp-optimal
coupling. If the optimal transport kernel is deterministic, i.e. τ(x, ·) = εT (x), where T is a measurable
function which transports P to Q, PT = Q, then T is said to be an Lp-optimal transport map from
P to Q. In this case, the mass in x is not split and (X,T (X)) is an Lp-optimal coupling of P,Q.
Throughout the text, εx indicates the Dirac measure at x.

The cases p= 1,2

Problem (1.2) has a closed analytical solution on the line for any p ≥ 1, but is in general difficult to
determine for higher dimensions d > 1. Most of the literature on explicit solutions has focused on
the case p = 2, i.e. on the minimization of the L2-distance, which allows for an easier mathematical
treatment. For quadratic cost functions, a basic and general characterization of optimal couplings, resp.
transports, was given in Rüschendorf and Rachev (1990) and Brenier (1991).
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A pair of random vectors X ∼ P , Y ∼Q on Rd is an L2-optimal coupling, i.e. (E‖X − Y ‖2)
1
2 =

`2(P,Q), if and only if for some lower semi-continuous convex function f one has

Y ∈ ∂f(X) a.s.,

where ∂f denotes the subdifferential of f ; equivalently, if and only if the joint distribution of (X,Y )
has a cyclically monotone support. This characterization was given first under the assumption of finite
second moments but generalized later on to measures P,Q, with `2(P,Q)<∞.

This criterion allows for a fairly general construction of optimal couplings for p = 2. In particular
it implies the construction of optimal couplings of two multivariate normals, a case which had been
solved first by analytical tools in Olkin and Pukelsheim (1982) and Dowson and Landau (1982). The
optimal transport between the centered Gaussian distributions N(0,Σ1) and N(0,Σ2) is a linear map;
see for instance Corollary 3.2.13 in Rachev and Rüschendorf (1998).

The geometry of optimal transport on Rd varies a lot with the choice of p and the solution in the
Gaussian case for p= 2 does not extend to p 6= 2; see Figure 1.1.

Figure 1.1 Optimal transportation curves with respect to the squared Euclidean distance (p= 2, left) and the Euclidean
distance (p= 1, right), between the same Gaussian distributions (corresponding to case B in Table 6.1).

In this paper we focus on the case p = 1 which has received less attention in the literature, prob-
ably because of its more cumbersome nature. In computer vision, the `1-metric (1.1) is also known
as Earth’s mover distance (EMD), and is widely used in content-based image retrieval to compute
distances between the color histograms of two digital images; see for instance Rubner et al. (2000).
Relevant implementations of the EMD also exist in other fields like biology; see Orlova et al. (2016).
However, for such applications, the EMD is typically computed between point clouds via numerical
techniques. Particularly relevant in these problems is the case of Gaussian distributions (Ruttenberg
and Singh, 2011), for which we provide a general method to compute the EMD on the plane.

For the `1-metric the first approach to show the existence and to characterize optimal transports was
proposed in Sudakov (1979). Its main idea was to reduce via the Kantorovich-Rubinstein theorem the
optimal coupling problem for the measures P,Q, by the introduction of a suitable decomposition (Rt)
of the basic space – in our case Rd – by means of the dual potentials. These are one-dimensional rays
in the case of strict norms and absolutely continuous distributions. Then by disintegration one gets
a family of simpler transportation problems for Pt,Qt, which however in general are not Lebesgue
continuous (even when P,Q are) contrary to the absolute continuity statement in Sudakov (1979). If
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they are then one gets optimal maps Tt on Rt which can be pasted together to an optimal map on the
basic space; see Caravenna (2011). With additional regularity properties on the densities of P,Q, this
approach was successfully followed in Trudinger and Wang (2001), Caffarelli et al. (2002), Ambrosio
and Pratelli (2003), and Bianchini and Daneri (2018). Evans and Gangbo (1997) develop a PDE ap-
proach to derive a potential u for the associated duality problem. As a result they obtain the existence
of a potential u describing the direction of the optimal transport and derive an ODE for the “transport
density”, i.e., the length of transport in the corresponding directions. Even if counterexamples were
given to Proposition 78 in Sudakov (1979), it is also true that the strategy outlined by Sudakov to build
optimal transportation maps can indeed be justified for the Euclidean norm, and for general norms in
dimension d= 2; see for instance Ambrosio (2003) and Ambrosio et al. (2004).

If measured by the Euclidean distance ‖x− y‖, the shortest path between two points x, y ∈ Rd is
given by the segment Sxy . Moreover, an L1-optimal transport must satisfy a no-crossing condition;
see Villani (2009, Ch. 8). This suggests that optimal transportations for p = 1 should be given on a
family of non-intersecting rays.

The Sudakov approach to `1-transportation problems as described above is based on a solution of
the dual problem as given in the Kantorovich-Rubinstein Theorem. However, a dual solution is not
available in explicit form in typical examples.

In our paper we introduce a modified approach to this problem. In a first step, a reduction theorem
allows us to restrict to the case of so-called reduced measures with disjoint supports. The symmetry
properties of the reduced measures give a hint to the decomposition of the space into sectors. In a
second step, we make use of the non-crossing property of optimal transports for the choice of trans-
portation directions within the sectors. Finally, in a third step, we verify the optimality of the induced
construction by means of the characterization results of optimal transportation.

We apply this three-step approach to derive explicit optimal coupling results for a series of examples
of distributions as classes of normals or elliptical distributions as a counterpart to the p= 2 case.

Summary

In Section 2 of this paper we remind and review some of the basic notions of optimal c-couplings as
c-cyclical monotonicity, c-convexity, c-transform, and the specialization of these notions to the metric
case, i.e., to `1-convexity, `1-subgradients, and `1-subdifferentials which allows a manageable de-
scription as in the `2-case. Our aim is to establish a variety of simple tools and descriptions of suitable
admissible dual functions which allow to construct optimal couplings between two given probability
measures P,Q.

In Section 3 we state, based on the Kantorovich–Rubinstein Theorem, a reduction principle allowing
to reduce optimal coupling problems to the case of measures with disjoint supports. In fact versions
of this result are given already in early work of Rüschendorf (1991) and in Gangbo and McCann
(1995), but here we give a self-contained proof. This reduction principle is of particular importance
for the construction of L1-optimal couplings and is complemented with the description of the `1-
subdifferential of (admissible) dual Lipschitz functions f .

As applications in Section 4 we describe the quantile optimal coupling technique on the line and,
based on the three-step approach as introduced above, give concrete optimal coupling results for a vari-
ety of examples including shifts, radial transformations, and some classes of elliptical distributions. We
also provide a general dual bound on `1(P,Q) which is shown to be sharp in some specific examples.

In Section 5, we give a general formulation of our three-step decomposition approach leading to the
transport on rays in a suitable decomposition of the space into sectors. The length of the transportation
on the rays is given by the one-dimensional quantile coupling of the conditional distributions on the
rays in the sector. Note that the optimal transport is in general not given by a transport map T but by a
transport plan µ.
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As a main class of examples for this construction method, in Section 6 we give the L1-optimal
coupling between general bivariate Gaussian distributions.

In Section 7 we discuss optimality of simple transportations as the scaling of one or more compo-
nents. The scaling of one component can be shown to be optimal. We strengthen a result in Alfonsi
and Jourdain (2014) showing that even the scaling of just two components is not optimal in general.
We then discuss some related constructions also in higher dimensions.

Related results

While for the `2(resp. W2)-metric several applicable results are available, the main literature concern-
ing the `1-metric is mostly concerned with general existence, uniqueness, and structural characteriza-
tions; see Rüschendorf (1991, 1995), Gangbo and McCann (1996), and Ambrosio and Pratelli (2003).
Numerical methods for the solution are given in Peyré and Cuturi (2018) and Eckstein and Kupper
(2021).

Few exceptions containing concrete examples are available in the literature; see Cuesta-Albertos
et al. (1993), Rüschendorf (1995), Uckelmann (1998), and the present paper. In Cuesta-Albertos et al.
(1993) the authors show `1-optimality of radial transformations. Several criteria for determining L1-
optimal couplings were given in Rüschendorf (1995) but so far were not elaborated to obtain solutions
for classes of concrete probability measures. Uckelmann (1998) in his thesis derived some usable
practical criteria and investigated some examples.

Our paper introduces a usable method for the solution of L1-optimal couplings. It includes or gener-
alizes the concrete examples of L1-optimal couplings given in the literature up to now, and introduces
some novel ones. In particular we derive L1-optimal couplings for some classes of elliptical distri-
butions and we give for the first time a general construction of L1-optimal couplings between two
bivariate Gaussian distributions.

2. Optimal c-couplings and c-convexity

For the general transportation problem

sup{E[c(X,Y )] :X ∼ P,Y ∼Q} (2.1)

of maximizing the expectation of a measurable cost function c :Rd×Rd→R, optimal couplings have
been first characterized in Rüschendorf (1991, Theorem 18). Under weak integrability conditions on c,
it holds that a pair X ∼ P , Y ∼Q is an optimal c-coupling (i.e., a solution of (2.1)) if and only if

Y ∈ ∂cf(X) a.s.,

for some c-convex function f , where ∂cf(x) denotes the c-subdifferential of f , or equivalently if and
only if

f(X) + fc(Y ) = c(X,Y ) a.s.,

where fc(y) = supx{c(x, y)− f(x)} is the c-conjugate of f . Optimality is further equivalent to the
joint distribution of (X,Y ) having a c-cyclically monotone support. For these notions and more details
we refer to Rüschendorf (1991, 1996).

These characterizations hold similarly for the corresponding inf problem by switching the sign of c.
The notion of c-convexity of f is then transformed to c-concavity and hence in the c-cyclicality con-
ditions the sign changes; see Rüschendorf (1995) or Gangbo and McCann (1996). In the case of the
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minimal `1-metric, one takes in (2.1) the function c1(x, y) =−‖x−y‖. Let Lip1 denote the set of Lip-
schitz functions f with constant 1, i.e., such that |f(x)− f(y)| ≤ ‖x− y‖. Recall that a differentiable
function f is in Lip1 if and only if ‖∇f‖ ≤ 1.

The `1-subdifferential of f ∈ Lip1 is the set

∂1f(x) = {y; f(z)− f(y)≥ ‖x− z‖ − ‖z − y‖, ∀z}

= {y; |f(y)− f(x)|= ‖x− y‖}. (2.2)

The elements of ∂1f(x) are called `1-subgradients.
The c1-conjugate of a measurable function f is in Lip1, and the c1-conjugate of a Lip1 function f is

given by fc =−f . From these results, and the fact that a function is c-convex if and only if f = (fc)c

(Dietrich, 1988) the following equivalent optimality conditions immediately follow.

Theorem 2.1. The following conditions are equivalent.

a) f is `1-convex (i.e., c1-convex, with c1(x, y) =−‖x− y‖);
b) f ∈ Lip1;
c) fc =−f ∈ Lip1.

From the above statements and the characterizations in Rüschendorf (1991), the following theorem
directly follows.

Theorem 2.2. The following conditions are equivalent.

a) The pair X ∼ P,Y ∼Q is an L1-optimal coupling;
b) Y ∈ ∂1f(X) a.s. for some f ∈ Lip1;
c) X ∈ ∂1(−f)(Y ) a.s. for some f ∈ Lip1;
d) f(Y )− f(X) = ‖X − Y ‖ a.s. for some f ∈ Lip1.

The `1-convex or, equivalently, the Lip1 functions f allow a representation of the form

f(x) = sup
(y,a)∈A

(−‖x− y‖+ a), (2.3)

for some A⊂Rd+1, and y ∈ ∂1f(x) iff the sup in (2.3) is attained in y, i.e.

f(x) =−‖x− y‖+ a, (2.4)

and in this case a= f(y). In particular, (2.3) and (2.4) imply a method of determining `1-subdifferentials
by considering inequalities as induced by (2.3), (2.4).

Finally, there exists a quite applicable condition to verify the optimality of a transport plan: the
support of a L1-optimal coupling has to be c-cyclically monotone; see for instance Theorem 2.3 and
Corollary 2.4 in Gangbo and McCann (1996) or Theorem 2.2 in Rüschendorf (1996).

If `1(P,Q) <∞, a measure µ ∈M(P,Q) is an L1-optimal coupling of P and Q if and only if µ
has a c-cyclically monotone support, that is for any finite number of points (xi, yi), i= 1, . . . ,m, in the
support of µ, and any possible permutation σ of {1, . . . ,m}, we have

m∑
i=1

‖xi − yi‖ ≤
m∑
i=1

‖xi − yσ(i)‖. (2.5)

Having a c-cyclically monotone support also implies that optimal transportation lines cannot intersect.
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3. Criteria for L1-optimal couplings

The basic result for L1-optimal couplings is the Kantorovich–Rubinstein Theorem, going back in its
basic form to the classical work of Kantorovich and Rubinstein (1957). For its history see Rüschendorf
(1991, around Theorem 11) or Rachev and Rüschendorf (1998). In our framework of Rd it reads as
follows.

Theorem 3.1 (Kantorovich–Rubinstein Theorem). LetP,Q ∈M1(Rd). Then, the `1-metric `1(P,Q)
is identical to the dual Lipschitz metric, i.e.

`1(P,Q) = sup

{∫
fd(P −Q); f ∈ Lip1

}
. (3.1)

Notice that, by the symmetry of `1, i.e. `1(P,Q) = `1(Q,P ), it equivalently holds that

`1(P,Q) = sup

{∫
fd(Q− P ); f ∈ Lip1

}
. (3.2)

Theorems 2.1, 2.2, and Theorem 3.1 give useful tools to determine `1 and the corresponding optimal
couplings/transports. Any Lip1 dual function f in (3.1) provides a general lower bound on `1, that is

`1(P,Q)≥
∫
fd(P −Q).

This bound is sharp (the above ≥ holds with =) if and only if, for X ∼ P,Y ∼Q, one finds that

E‖X − Y ‖=

∫
fd(P −Q).

The dual solutions f in (3.1) are also called Kantorovich potentials in the analysis literature; see for
instance Ambrosio and Pratelli (2003).

Remark 3.2. Two bounds are readily available for the `1-distance between general distributions. For
general random vectors X ∼ P,Y ∼Q, we have∣∣∣E‖Y ‖ −E‖X‖

∣∣∣≤ `1(P,Q)≤ `2(P,Q). (3.3)

The left inequality is implied by (3.1) and (3.2) via the basic Lip1 function f(x) = ‖x‖, the right one
is derived from Jensen inequality.

The proof in Rüschendorf (1991, Theorem 11) derives Theorem 3.1 as consequence of the general
Monge–Kantorovich duality theorem and is based on an interesting reduction principle derived within
the proof, which is valuable for the application to concrete examples. A proof of this principle based
on properties of c-cyclical monotonicity of optimal couplings is also given in Gangbo and McCann
(1995, Proposition 2.9). We give in the following a simple proof of this reduction principle by means
of the Kantorovich–Rubinstein Theorem.

For P,Q ∈M1(Rd) let P ∧Q denote the inf of both measures, i.e., for P = g1ν,Q= g2ν, one has
P ∧Q= (g1 ∧ g2)ν, where g1 ∧ g2(x) = min{g1(x), g2(x)}.
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Theorem 3.3 (Reduction principle). Let 0< `1(P,Q)<∞ and define k =
∫

(g1 − g1 ∧ g2)dν, that
is k = ‖P − P ∧Q‖∞ ≤ 1, where ‖ · ‖∞ denotes the sup-distance. Define the reduced measures

P1 =
1

k
(P − P ∧Q) and Q1 =

1

k
(Q−Q∧ P ). (3.4)

Then:

a) `1(P,Q) = k `1(P1,Q1);

b) If τ(x, ·) ∈K(P1,Q1) is an L1-optimal transport kernel of the reduced measures P1 and Q1, and

A= {g1 > g2}, B = {g2 > g1}, (3.5)

then

µ(·|x) = (g1 ∧ g2(x))εx + 1A(x)(g1(x)− g1 ∧ g2(x)) τ(x, ·) ∈K(P,Q) (3.6)

is an L1-optimal transport kernel of P and Q.

In particular, if T is an L1-optimal transport map from P1 to Q1, then (3.6) with τ(x, ·) = εT (x) is
an L1-optimal transport kernel of P and Q.

Theorem 3.3 allows to reduce the L1-optimal coupling of P,Q, to that of the reduced measures
P1,Q1, which have disjoint supports A and B in the sense that P (Ac) = 0 and Q(Bc) = 0 (not neces-
sarily closed sets); see Figure 3.1.

Equation (3.6) simply means that the mass which is common to P andQ is not moved. Starting from
P , the excess mass (g1 − g2) in A is then moved to B according to the transport kernel τ(x, ·) or (if
available) the transport map T .

Proof of Theorem 3.3. When k = 1, we have P = P1 andQ=Q1. WithR= 1
1−k (P ∧Q) we have the

decomposition P = (P − P ∧Q) + P ∧Q= kP1 + (1− k)R and, similarly, Q= kQ1 + (1− k)R.
This implies, using the Kantorovich-Rubinstein theorem, that

`1(P,Q) = sup

{∫
fd(P −Q);f ∈ Lip1

}
= sup

{∫
fd
[
(kP1 + (1− k)R)− (kQ1 + (1− k)R)

]
; f ∈ Lip1

}
= sup

{
k

∫
fd(P1 −Q1); f ∈ Lip1

}
= k `1(P1,Q1).

The following theorem gives a useful tool for the determination of L1-optimal couplings by stating
that optimal transports are concentrated on rays in the direction of the gradient of a dual solution f .
Even if it is known in the literature that L1-optimal transports have this property (Caffarelli et al., 2002;
Ambrosio and Pratelli, 2003; Caravenna, 2011), we find it useful to formalize this result on Rd by the
following theorem, which is a modification and extension of Proposition 1.14 in Uckelmann (1998).
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P

Q

P1

Q1Q1

P⋀Q

B A B

Figure 3.1 Reduction of measures P,Q to P1,Q1 with disjoint supports. To find an optimal transport w.r.t to the l1-metric,
one does not need to move the white probability mass which is common to P and Q.

Theorem 3.4. Let f ∈ Lip1. Then

a) x ∈ ∂1f(x);
b) If y ∈ ∂1f(x), then

Sx,y = {z;z = x+ α(y− x),0≤ α≤ 1} ⊂ ∂1f(x),

and for z ∈ Sx,y it holds that:

z ∈ ∂1f(x), y ∈ ∂1f(z), and z ∈ ∂1f(y).

c) If f is differentiable in x and ‖∇f(x)‖< 1, then ∂1f(x) = {x}.
If ‖∇f(x)‖= 1, then for some T1(x)≤ 0≤ T2(x)≤∞, we have that

∂1f(x) = {y; y = x+ s∇f(x), T1(x)≤ s≤ T2(x)}.

Proof. a) is immediate from the description of the `1-subdifferential in (2.2).
b) If y ∈ ∂1f(x), f ∈ Lip1, then by (2.2) one has |f(y)− f(x)|= ‖y−x‖. For z ∈ Sx,y this implies

‖y− x‖= |f(y)− f(x)|

= |f(y)− f(z) + (f(z)− f(x))|

≤ |f(y)− f(z)|+ |f(z)− f(x)| ≤ ‖y− z‖+ ‖z − x‖.

On the other hand, since z ∈ Sx,y it follows that

‖y− x‖= ‖y− z‖+ ‖z − x‖,
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which, being f ∈ Lip1, implies that

|f(y)− f(z)|= ‖y− z‖ and |f(z)− f(x)|= ‖x− z‖.

c) Assume there exists y 6= x with y ∈ ∂1f(x). Then, by point b), Sx,y ⊂ ∂1f(x) and thus for
v = y−x

‖y−x‖ and 0≤ t≤ ‖y− x‖, one has that x+ tv ∈ ∂1f(x) and by (2.2) also that

|f(x+ tv)− f(x)|= ‖x+ tv− x‖= ‖tv‖= t‖v‖= t.

Since f is differentiable in x, we can write

Dvf(x) = lim
t=0

f(x+ tv)− f(x)

t
= lim
t=0+

|f(x+ tv)− f(x)|
t

= 1.

On the other hand, we have that

1 = |Dvf(x)|= |〈v,∇f(x)〉| ≤ ‖v‖‖∇f(x)‖= ‖∇f(x)‖. (3.7)

If ‖∇f(x)‖< 1, then (3.7) leads to a contradiction and, therefore, ∂1f(x) = {x}.
If ‖∇f(x)‖ = 1, then again by (3.7) one has that ∇f(x) = v = y−x

‖y−x‖ . As a consequence ∂1f(x)

lies in the ray in x generated by ∇f(x), i.e. ∂1f(x)⊂ x+R1∇f(x) and ∂1f(x) is by b) connected.
This implies c).

Remark 3.5. We have the following remarks on Theorem 3.4.

1) The statement in a) is equivalent to `1(P,P ) = 0 and is a direct consequence of ‖ · ‖ being a norm.
In other words, the identity is an optimal map.

2) Point b) is an analytical statement of the fact that the shortest path between two points under the
Euclidean distance is a straight line. Notice that this is not true for any p > 1. For instance, there is
no shortest path between two points under the squared Euclidean distance (p= 2).

3) Point c) implies that optimal transports are concentrated in each point on lines in the direction of the
gradient of a dual solution f and the gradient of f on this line is constant. In the following sections
we show how this construction principle can be applied.

4. Examples of optimal transports

The following applications of the construction principles given in Section 3 concern some examples
like the one-dimensional case, the optimality of shifts and radial transformations, and optimal coupling
results for some classes of elliptical distributions. Based on them we give in Section 5 some more
general construction results for L1-optimal couplings.

4.1. One-dimensional case

If P,Q ∈M1(R1) with distribution functions F,G, then it is well-known since Dall’Aglio (1956) that
an optimal coupling w.r.t. `1 (and in fact w.r.t. any `p, 1≤ p≤∞) is given by the quantile coupling

(F−1(U),G−1(U)), U ∼U([0,1]),
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which gives

`1(P,Q) = E
∣∣∣F−1(U)−G−1(U)

∣∣∣.
To transport P to Q it is natural to transport mass in F−1(t) to the right, i.e.

f ′(t) = +1 if F−1(t)<G−1(t), (4.1)

and to the left, i.e.

f ′(t) =−1 if F−1(t)>G−1(t), (4.2)

while choosing

f ′(t) = 0 if F−1(t) =G−1(t), (4.3)

i.e. no transport takes place here. By (4.1)–(4.3) the function f(t) =
∫ t

0 f
′(u)du is defined up to possi-

ble countable many sign changes of (F−1 −G−1).
Such f is in Lip1 and for t ∈ [0,1] with F−1(t)>G−1(t), the set{

u≥ t; F−1|[t, u] ≥G
−1|[t, u]

}
lies in the `1-subdifferential of f at F−1(t) and similarly for the other domain. This implies that
G−1(U) ∈ ∂1f(F−1(U)) a.s. and since (F−1(U),G−1(U)) is a coupling of P,Q, it is an L1-optimal
coupling. In the case of finitely many sign changes of (F−1 −G−1) in the points a1, . . . , an, one can
represent f in the form

f(x) = sup
a∈{a1,...,an}

{−|x− a|+ ca},

for constants ca ∈R, which is in Lip1 and hence `1-convex as the supremum of Lip1 functions; see
Figure 4.1.

a1 a2 a3 a4 a5 [...] an

Figure 4.1 An optimal choice of the dual `1-convex function f for the `1-optimal coupling of two distributions intersecting at
a finite number of points a1, . . . , an. The gradient of f shows the direction into which mass should be moved.

In Figure 4.2 we consider the case P = N(0, σ2), Q = U([−a,a]), for a > 0. The corresponding
distributions have three intersection points at a1 =−R,a2 = 0, a3 =R, where R is the positive root of

Φ

(
R

σ

)
=
R+ a

2a
.
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−a −R 0 R a

f

Figure 4.2 Optimal dual function f and optimal transport between a normal N(0, σ2) and a uniform U([−a,a]).

The one-dimensional quantile coupling on the line will play a fundamental role also in the construc-
tion of optimal couplings for multivariate measures as described in Sections 5–6.

4.2. Optimality of shifts

The following result on the optimality of shifts allows that in general one can restrict to the couplings
of distributions P,Q with zero mean.

Proposition 4.1 (Optimality of shifts). Let (X,Y ), with X ∼ P,Y ∼Q, be an L1-optimal coupling
of P and Q. Then, for a, b ∈ Rd, (X + a,Y + b) with X + a ∼ Pa, Y + b ∼ Qb, is an L1-optimal
coupling of Pa and Qb.

Proof. Since `1(Pa,Qb) = `1(Pa−b,Q), we can assume w.l.o.g. that b= 0. Assume that (X,Y ) is an
L1-optimal coupling of P and Q. By Theorem 2.2, b), there exists f ∈ Lip1 such that Y ∈ ∂1f(X)
a.s.. Define the function g(x) = f(x− a) ∈ Lip1. For Z =X + a it holds a.s. that

Y ∈ ∂1f(X) = ∂1f(Z − a) = ∂1g(Z).

Hence (Z =X + a,Y ) is a L1-optimal coupling of Pa and Q.

Remark 4.2. The optimality of shifts for the coupling of measures Pa, P is given already in Cuesta-
Albertos et al. (1993). Their simple direct proof however does not extend to the optimal coupling result
for shifts as in Proposition 4.1, which is needed in the following for the reduction to distributions with
zero mean.
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4.3. Radial transformations

Let R(x) = α(‖x‖) x
‖x‖ , x ∈Rd, with α :R+→R+ increasing, be a radial transformation. Consider

the Lip1 function f(x) = ‖x‖, x ∈Rd. Then for x 6= 0, ∇f(x) = x
‖x‖ and the l1-subdifferential of f

in x is the ray Rt =R1
+t, generated by t= x

‖x‖ . Note that

‖x−R(x)‖=
∥∥(‖x‖ − α(‖x‖))t

∥∥=
∣∣‖x‖ − α(‖x‖)

∣∣= |f(x)− f(R(x))|.

By (2.2) this implies that

R(x) ∈ ∂1f(x). (4.4)

As consequence we obtain that radial transportations are optimal. A general version of this result is
given in Cuesta-Albertos et al. (1993, Theorem 3.2).

Theorem 4.3. Let P,Q ∈M1(Rd); if for X ∼ P,Y ∼Q it holds λ\d-a.s. that

X

‖X‖
=

Y

‖Y ‖
, (4.5)

and ‖X‖,‖Y ‖ are optimally coupled, then (X,Y ) is an L1-optimal coupling.

Under assumption (4.5) one can construct an optimal pair (X,Y ) in the following way. Let X ∼
P,Y ∼Q, and define Z = Y

‖Y ‖ and let V ∼U([0,1]) be independent of Z. Then define X = LZ, with

L= F−1
‖X‖ ◦ τ where τ = F‖Y ‖(‖Y ‖, V )

is the distributional transform of F‖Y ‖. Then (X,Y ) is an L1-optimal coupling of P and Q. Cuesta-
Albertos et al. (1993) prove this result using some simple inequalities, but note that as in (4.4) we
find that Y ∈ ∂1f(x) for f as defined above. Therefore (X,Y ) is an L1−optimal coupling and Theo-
rem (4.3) thus follows also from the mass transportation approach as used above.

The general insight of this example is that an optimal transport can be constructed pathwise on a
infinite family of rays Rt = R1

+t, t ∈ Bd, the unit ball in Rd. In this case the transformation on the
rays are easy to determine and are not parallel.

A particular case of an optimal radial transformation is of interest for the remainder of the paper.
Consider the two Gaussian measures P =N(0, a Id) and Q=N(0, b Id), with 0< a≤ b, where by Id
we denote the d−dimensional identity matrix. Let also X ∼ P and Y ∼Q. For Z ∼N(0, Id), recall
that

E‖Z‖=
√

2
Γ
(
d+1

2

)
Γ
(
d
2

) .

Using the lower bound in (3.3), one obtains

`1(P,Q)≥ E‖Y ‖ −E‖X‖=
√
bE‖Z‖ −

√
aE‖Z‖=

(√
b−
√
a
)
E‖Z‖. (4.6)



14

On the other hand, by choosing the coupling (X∗, Y ∗) where Y ∗i =
√
b/aX∗i , i= 1,2, one finds

`1(P,Q)≤ E‖Y ∗ −X∗‖

=
(√

b/a− 1
)
E‖X‖=

(√
b/a− 1

) √
aE‖Z‖=

(√
b−
√
a
)
E‖Z‖. (4.7)

4.4. Optimal transports between two elliptical distributions

The class of elliptical distributions is an important class of models in the statistical analysis including
many relevant models like multivariate normal, t- and Cauchy distributions. Let E(µ,Σ, φ) denote
the elliptical distribution with location µ, scaling matrix Σ and generator (of its radial part) φ. Any
X ∼ E(µ,Σ, φ) has a representation of the form

X ∼ µ+RAU,

where U is uniformly distributed on the unit sphere Sd−1 = {x ∈ Rd : x′x = 1}, R ≥ 0 is radial
random variable independent of U , and A is a deterministic d× d matrix with AA′ = Σ. The generator
φ of an elliptical distribution determines the distribution of R. In this section we determine L1-optimal
couplings for two subclasses of elliptical distributions.

Same scaling matrix, different generators

Let X ∼ P = E(0,Σ, φ1) and Y ∼ Q = E(0,Σ, φ2) be elliptically distributed having representations
X =R1A1U1, Y =R2A2U2, with the same scaling matrix

Σ =A1A
′
1 =A2A

′
2.

In this case anL1-optimal coupling ofP andQ is obtained from Theorem 4.3 on radial transformations.

Proposition 4.4. LetX ∼ P = E(0,Σ, φ1) and Y ∼Q= E(0,Σ, φ2) withRi ∼ FRi being the radial
parts corresponding to φi, i= 1,2. Then for U ∼U(Sd−1) independent of V ∼U([0,1]), a L1-optimal
coupling of P and Q is given by

(X,Y ) =

(
F−1
R1L

(V )
AU

‖AU‖
, F−1
R2L

(V )
AU

‖AU‖

)
, (4.8)

where L = ‖AU‖ and FRiL(x) =
∫
FRi(x/l)dFL(l), and A is any matrix such that AA′ = Σ. The

`1-distance between P and Q is then given by

`1(P,Q) = E
∣∣∣F−1
R1L

(V )− F−1
R2L

(V )
∣∣∣. (4.9)

Proof. For the proof we note that
(
F−1
R1L

(V ), F−1
R2L

(V )
)

is the optimal coupling of ‖X‖,‖Y ‖, so
that (4.8) is a consequence of Theorem 4.3.

Remark 4.5. We have the following remarks on Proposition 4.4.

1) Note that the optimal coupling in (4.8) is different from the “natural” coupling(
F−1
R1

(V )AU,F−1
R2

(V )AU
)
,

where the radial parts are optimally coupled. This can be seen by calculating some simple examples.
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2) For the calculation of the optimal coupling in (4.8) and distance in (4.9), one needs the distributions
of L= ‖AU‖ and of RiL, i= 1,2. In some examples, these can be given in explicit form.

In the case that X = RAU ∼ N(0, Id), it holds that ‖X‖ = R‖U‖ = R ∼
√
χ2
d, where χ2

d is a
chi-squared distribution with d degrees of freedom. As a consequence L= 1 a.s. and FRL = FR =√
χ2
d. FR has density fR(r) = rd−1e−r

2/2

2d/2−1Γ(d/2)
.

In the case that X =RAU ∼N(0,Σ), with A= Σ1/2, it holds using an eigenvalue decomposition
that ‖X‖ ∼

√
χ2
d,α,where χ2

d,α is a weighted chi-squared, i.e. the distribution of
∑d
i=1αiX

2
i , with

αi being the eigenvalues of Σ and X2
i i.i.d. χ2

1-distributed random variables. As a consequence one
obtains that

L= ‖AU‖ ∼

√
χ2
d,α√
χ2
d

=
√
Fα,d,d

is a quotient of two (weighted) independent
√
χ2 distributions and thus is a non-central

√
Fα,d,d

distribution. As a result, for two elliptical distributions P and Q as in Proposition 4.4, explicit
formulas are given by (4.9) for `1(P,Q) involving the difference of two inverse couplings F−1

RiL
(V )

of a multiplicative mixture of a
√
Fα,d,d distribution with the distribution of the radial part. If

P = td(0,Σ, v) is a t-distribution then the radial part R has the density

fR(r) =
2r

d
fF (r2/d), F ∼ Fd,v,

(see Kotz and Nadarajah, 2004) allowing for a similar explicit result as in the normal case. For
related formulas for several further elliptical distributions we refer to Fang (2017).

Symmetric bivariate elliptical distributions

In this subsection we determine the optimal transport on the plane between two bivariate elliptical
measures P = E(0,Σ1, φ) and Q = E(0,Σ2, φ), with the same generator φ and symmetric scaling
matrices

Σ1 =

(
1 −%
−% 1

)
, Σ2 =

(
1 +%

+% 1

)
,

for 0≤ %≤ 1. By the reduction principle, we can reduce the transportation problem for P and Q to the
transportation problem between the reduced measures P1 and Q1 as in (3.4). Let g1 and g2 denote the
densities of P and Q and

A= {g1 > g2}, B = {g2 > g1}

be the domains of P1 and Q1.
Since Σ2 is obtained from Σ1 by applying a rotation of π/2, we have that the sets A and B can be

characterized as

A= {x= (x1, x2) ∈R2 : x1x2 < 0},

B = {x= (x1, x2) ∈R2 : x1x2 > 0};

see Figure 4.3. Now, define the four sectors
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S2

S3

S4

S1

A1

B1

B2A2

A4B4

B3

A3 A
AB
B

Figure 4.3 Optimal coupling of two symmetric elliptical distributions with the same generator. The probability mass of the
reduced measure P1 in Ai is reflected onto Bi, for 1≤ i≤ 4.

S1 = {x= (x1, x2) ∈R2;x1 > 0,−x1 ≤ x2 ≤ x1},

S2 = {x= (x1, x2) ∈R2;x2 > 0,−x2 ≤ x1 ≤ x2},

S3 = {x= (x1, x2) ∈R2;x1 < 0, x1 ≤ x2 ≤−x1},

S4 = {x= (x1, x2) ∈R2;x2 < 0, x2 ≤ x1 ≤−x2}.

(4.10)

We will see that the L1-optimal transport in this symmetric case consists in moving the probability
mass from A to B on directions parallel to the axis. For Ai =A ∩ Si and Bi =B ∩ Si, for 1≤ i≤ 4,
define the map T as

T (x) =

{
(x1,−x2), for x ∈A1 ∪A3;

(−x1, x2), for x ∈A2 ∪A4,
(4.11)

and the Lip1 function f :R2→R as

f(x) =
|x1 + x2| − |x1 − x2|

2
. (4.12)

We now show that T and f are optimal in this symmetric case.

Theorem 4.6. An L1-optimal transport kernel of P = E(0,Σ1, φ) and Q= E(0,Σ2, φ), with

Σ1 =

(
1 −%
−% 1

)
, Σ2 =

(
1 +%

+% 1

)
, 0≤ %≤ 1, (4.13)
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is given by

τ(x, ·) = (g1 ∧ g2(x))εx + 1A(x)(g1(x)− g1 ∧ g2(x))εT (x),

where T is the map defined in (4.11). Moreover, an optimal dual function is given by f in (4.12), hence

`1(P,Q) = 1/2 (E|Y1 + Y2| −E|Y1 − Y2| −E|X1 +X2|+E|X1 −X2|) . (4.14)

Proof. As a result of the symmetry of P1 and Q1, and since both elliptical distributions have the same
generator, we obtain by construction of T that PT1 = Q1. On sector S1, probability mass is to be
transported from A1 =A∩ S1 to B1 =B ∩ S1. For x= (x1, x2) ∈A1, we have

T
(
x1

x2

)
=
(
x1

−x2

)
= x− 2x2 · k1,

with k1 =
(0

1

)
, i.e. T/A1 is just a shift of length r(x) = −2x2 in the y-direction. Notice that, for

x= (x1, x2) ∈A1, we have that∇f(x) = k1. By Theorem 3.4, c), this implies that

T (x) ∈ ∂1f(x) for r(x) such that x+ r(x)k1 =
( x1

x2 + r(x)

)
∈ S1.

Then T1(x) ∈ B1 = B ∩ S1 and T1 maps any x1-line R1
x1 = {(x1, x2);−x1 ≤ x2 ≤ 0} ∩A1 into

R2
x1 = {(x1, x2); 0≤ x2 ≤ x1} ∩B1. Similarly, one checks that

T (x) =


x− 2x1 · k2 = (−x1, x2), for x ∈A2;

x+ 2x2 · k3 = (x1,−x2), for x ∈A3;

x+ 2x1 · k4 = (−x1, x2), for x ∈A4,

with directions k2 = (1,0), k3 = (0,−1), k4 = (−1,0) satisfies T (x) ∈ ∂1f(x), x ∈ A. As a conse-
quence, we obtain that T ∈ ∂1f(x) is an optimal transport of P1,Q1 and by Theorem 3.3 we get the
optimal transport kernel of P and Q. At this point one easily checks that

`1(P,Q) =

∫
fd(Q− P ) = 1/2(E|Y1 + Y2| −E|Y1 − Y2| −E|X1 +X2|+E|X1 −X2|)

= E (‖X − T (X)‖1A(X)) = k `1(P1,Q1).

Remark 4.7. We have the following remarks on Theorem 4.6.

1) For Gaussian distributions having correlation matrices as in (4.13) the value in (4.14) takes the
simple expression

`1(P,Q) =
2√
π

(√
1 + %−

√
1− %

)
. (4.15)

A similar formula holds for Student’s t distributions. For more general elliptical distributions with
identical radial part corresponding formulas for the `1-distance can be given directly based on the
formulas in Remark 4.5.

2) Up to the rotation described in Proposition 6.3, the construction given in the proof of Theorem 4.6
is optimal in a more general framework. In fact, one only needs that the matrices Σ1 and Σ2 are
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obtained as a negative and, resp., positive rotation of a common matrix Σ. Formally, for an arbitrary
dispersion matrix Σ, one can assume that Σ1 = Σ−ϕ and Σ2 = Σϕ, where

Σ−ϕ =D−ϕΣD′−ϕ, Σϕ =DϕΣD′ϕ,

where, for ϕ ∈ [0, π2 ], Dϕ =
(

cosϕ − sinϕ
sinϕ cosϕ

)
denotes the rotation matrix by ϕ. At this point one

applies the rotation described in Proposition 6.3 to obtain new matrices Σ′−ϕ,Σ
′
ϕ for which the

L1-distance is the same and the construction in Theorem 4.6 is optimal.

By the Kantorovich-Rubinstein theorem, any admissible dual function f yields a lower bound on
`1(P,Q), i.e., for general distributions P and Q on R2 and X = (X1,X2) ∼ P,Y = (Y1, Y2) ∼ Q,
one has

`1(P,Q)≥ 1/2
∣∣∣E|Y1 + Y2| −E|Y1 − Y2| −E|X1 +X2|+E|X1 −X2|

∣∣∣.
By considering an extended family of dual functions, one finds the following general dual bound.

Theorem 4.8 (Dual bound). For general measures P,Q on R2 and X = (X1,X2)′ ∼ P and Y =
(Y1, Y2)′ ∼Q, we have that

`1(P,Q)≥ sup
a2+b2≤1/2

∣∣∣a (E|Y1 + Y2| −E|X1 +X2|)− b (E|Y1 − Y2| −E|X1 −X2|)
∣∣∣. (4.16)

Proof. Define the function fa,b :R2→R as

fa,b(x1, x2) = a|x1 + x2| − b|x1 − x2|.

The bound immediately follows from Theorem 3.1 by checking that ‖∇fa,b(x)‖ = 2(a2 + b2) and,
consequently, fa,b ∈ Lip1 for a2 + b2 ≤ 1/2.

Notice that for the case of two symmetric elliptical distributions we obtain that the bound in (4.16)
coincides (for a= b= 1/2) with the sharp bound in (4.14). Sharpness of (4.16) can indeed only occur
when transportation rays are parallel in each sector Si; see also the case C illustrated in Figure 6.5 and
Table 6.1.

Uniform distributions on ellipsoids in the plane

A particular case of elliptical distributions are uniform distributions on ellipsoids. Consider the case
d= 2 and, for a, b > 0, let

Eab = {x ∈R2; 〈x,Dx〉 ≤ 1}, with D =

(
a 0
0 b

)
,

be an ellipsoid with center in the origin. For an angle ϕ ∈ [0, π2 ], define the rotated ellipsoids

C1 = {y =D−ϕx,x ∈Eab} and C2 = {y =Dϕx,x ∈Eab}.

Let P = U(C1), Q= U(C2) be the uniform distributions on C1 and C2, and define

A=C1 \C2 and B =C2 \C1.
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Then the optimal transport kernel τ in Theorem 4.6 simplifies and is identical to the optimal map

T (x) = x1C(x) + T (x)1A(x),

where C = C1 ∩ C2 and T is given in (4.11). On the intersection C of the ellipsoids the mass is not
moved while on A it is reflected about the corresponding axis; see Figure 4.4.

A1

B1

A4B4

B2A2

B3

A3

S3

S2

S1

S4

P=U(C1)
Q=U(C2)

C

Figure 4.4 Optimal coupling of two uniform distributions on two rotated ellipsoids. The darker probability mass is not moved.

Remark 4.9. In Uckelmann (1998) this case is also dealt with in a different way based on the Lips-
chitz function

f(x) = sup
t∈R

ft(x), ft(x) =−‖x− t · 1‖+ t,

where 1 = (1,1)t. By the reduction method we get an explanation on how to choose the directions for
the optimal transport.

5. General construction method of optimal couplings

In this section, we generalize the reduction and decomposition technique used to construct optimal
transports in the examples given in Section 4.

A situation arising in these examples is the following. By the reduction principle, one considers the
optimal coupling problem for the reduced measures P1 on A and Q1 on B as defined in Theorem 3.3.
Furthermore, for some (possibly infinite) decomposition ofRd into sectors (cones) Si, by Theorem 3.4
the transport is done on rays within these sectors. In Section 7.5 below, we give some insight on how
to find suitable decompositions and transportation directions.
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Now, letRt,i, t ∈ Γi be a (continuous) family of disjoint rays partitioning the sector Si, ∪t∈ΓiRt,i =
Si, and such that

Rt,i = {x= xt + skt,i, s ∈R1
+} ∩ Si.

Each ray Rt,i in sector Si is generated by the point xt ∈ Rd and by the direction kt,i, with ‖kt,i‖ =
1, t ∈ Γi; see Figure 5.1. In Section 6 we discuss how to obtain a conjecture for the sector directions
kt,i.

R1t,i

A

B

Si
kt,i

R2t,i

Figure 5.1 Family of rays Rt,i with direction kt,i partitioning the sector Si.

Assume that

{s ∈R1
+;xt + skt,i ∈ Si}= [s0, s1], with s0 = s0(t, i), s1 = s1(t, i) ∈R∗+, t ∈ Γi.

Let

R1
t,i =Rt,i ∩A and R2

t,i =Rt,i ∩B

denote the intersections of Rt,i with A and B, i.e. Rt,i = R1
t,i + R2

t,i, w.r.t λ\d. For each sector Si,
define Lipschitz functions fi on Rt,i by

fi(xt + skt,i) = s. (5.1)

and merge all fi’s together such that for two neighboring sectors Si, Sj and x ∈ Si∩Sj , fi(x) = fj(x)
are continuous at the boundaries, and satisfy

|fi(x)− fj(y)|=O(‖x− y‖).

Notice that, by (3.7), the gradient of fi is the assigned direction kt,i. In order to have that fi are Lip1
it is sufficient that for any t1, t2 ∈ Γi the vector xt1 − xt2 is orthogonal to the direction kt,i in Si. For
instance, in the example of the radial transformation xt = t, for t ∈ Bd, St = tR1

+ and kt,i = t. Also
for possibly infinitely many sectors, one has to construct fε continuously fitted together. Defining

f(x) = fi(x), for x ∈ Si,
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then f ∈ Lip1.
This way we partition the sector Si with given directions kt,i into disjoint lines Rt,i. To construct

an optimal coupling between the reduced measures on the rays Rt,i =R1
t,i +R2

t,i we define for fixed
i the reduced conditional distributions Ft,i ∼ P1(· |R1

t,i) and Gt,i ∼Q1(· |R2
t,i). In order to construct

an optimal coupling, it is necessary that the choice of the directions in the corresponding sector Si is
such that

P1(R1
t,i |Rt,i) =Q1(R2

t,i |Rt,i), (5.2)

t ∈ Γi. Then, the optimal coupling on Rt,i between the conditional distributions Ft,i,Gt,i is given by
the quantile coupling (see Section 4.1)

(F
−1
t,i (U),G

−1
t,i (U)), (5.3)

where F t,i = (Ft,i(·|Rit))Ht,i , with Ht,i(xt + skt,i) = s, and similarly Gt,i. Denote by γt,i the distri-
bution of the coupling in (5.3). Note that in general this coupling is not given by a map, but by a plan.
As consequence we obtain that the measure induced by fitting these couplings together is an optimal
coupling of P1,Q1.

Defining a random variable Z independent of U ∼ U([0,1]) with P (Z = t) = 2P1(R1
t,i | Rt,i) for

xt ∈ Si we obtain that an optimal coupling of P1,Q1 is given by(
F
−1
Z (U),G

−1
Z (U)

)
, (5.4)

where F t = F t,i,Gt =Gt,i on Si. The induced optimal coupling for P,Q then is given by the corre-
sponding optimal transport kernel as in (3.6).

Theorem 5.1. If the coupling problem `1(P,Q) can be split into rays Rt,i with directions kt,i in
sectors Si such that the function f(x) = fi(x), x ∈ Si, defined as in (5.1), is in Lip1, then an optimal
coupling of the reduced measures P1,Q1 is given by the quantile coupling (F

−1
Z (U),G

−1
Z (U)) as in

(5.4). An optimal transport kernel of P and Q, for x ∈Rt,i, is given by

τ(x, ·) = (g1 ∧ g2(x))εx + 1A(x)(g1(x)− g1 ∧ g2(x))γt,i,

where γt,i is the distribution of the coupling in (5.3).

Theorem 5.1 states that an optimal coupling is obtained by letting as much mass stay as it can and
transporting the remaining mass by quantile transportation on the rays within the sectors. To apply
this technique one needs to know the decomposition into sectors Si and, most importantly, the optimal
directions within each sector. These are non-trivial tasks in general. We give solutions in some partic-
ular instances in Section 4 (see Figures 4.3-4.4). In the next section we provide solutions for general
Gaussian distributions on the plane.

6. Coupling of bivariate Gaussian distributions

In this section we determine an `1-optimal coupling between two bivariate Gaussian distributions P =
N(0,Σ1) and Q=N(0,Σ2). The solution for the corresponding problem for the `2-metric is known
since long time; see Olkin and Pukelsheim (1982) and Dowson and Landau (1982). By our method we
also provide an accurate numerical estimate of the value of `1(P,Q).
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We distinguish two main classes of construction of optimal couplings for Gaussian distributions
depending on the domains A and B of the reduced measures as defined in (3.5). Figure 6.5 gives some
illustrations of the cases a) and b) in the following Proposition (which holds in generality for Gaussian
distributions on Rd).

Proposition 6.1. Let P = N(0,Σ1) and Q = N(0,Σ2) on Rd have invertible covariance matrices
Σ1,Σ2 and densities g1, g2 w.r.t λ\2. Then:

a) Both sets A= {g1 > g2} and B = {g2 > g1} are unbounded if and only if(
Σ−1

2 −Σ−1
1

)
is neither positive nor negative definite. (6.1)

b) One of the sets A or B is bounded if and only if(
Σ−1

2 −Σ−1
1

)
is either positive or negative definite. (6.2)

Proof. Note that x= (x1, x2) ∈A if and only if

exp
(
−1/2x′Σ−1

1 x
)

S1
>

exp
(
−1/2x′Σ−1

2 x
)

S2
,

where S1 = |Σ1|1/2, S2 = |Σ2|1/2 > 0. Taking the logarithms in the above inequality and simplifying,
we have that

A= {g1 > g2}=

{
x ∈R2; x′

(
Σ−1

2 −Σ−1
1

)
x > 2 log

S1

S2

}
.

Noting that C = (Σ−1
2 −Σ−1

1 ) is symmetric, the setA represents a strict superlevel set of the quadratic
form Q(x) = x′Cx. If C is positive definite, then Q is strictly convex and hence A is unbounded.
Similarly, if C is negative definite, then Q is strictly concave and the set B is unbounded. If C is
neither positive or negative definite, then both sets are unbounded.

6.1. Choice of sectors

In order to construct optimal couplings for bivariate Gaussian measures we divide the plane into the
four sectors S1, . . . , S4, already defined in (4.10). In fact, for Gaussian measures it is always possible to
reduce to the case in which the domains A and B of the reduced measures are symmetric with respect
to these sectors.

Proposition 6.2. Let P =N(0,Σ1) and Q=N(0,Σ2) on R2 have invertible covariance matrices

Σ1 =

(
σP11 σ

P
12

σP12 σ
P
22

)
and Σ2 =

(
σQ11 σ

Q
12

σQ12 σ
Q
22

)
,

and densities g1, g2 w.r.t λ\2. Then both sets A = {g1 > g2} and B = {g2 > g1} are symmetric with
respect to the lines {x2 = x1} and {x2 =−x1} if and only if

V (Σ1,Σ2) =
(σP22 − σP11)

|Σ1|
−

(σQ22 − σ
Q
11)

|Σ2|
= 0. (6.3)
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Figure 6.1 The domains of two reduced Gaussian densities can be rotated (without changing their L1-distance) in order to
fulfill the symmetry condition (6.3).

Proof. Let Q(x) = x′Cx be the quadratic form defined by the symmetric matrix C = (Σ−1
2 −Σ−1

1 ).
A and B have the required symmetry iff Q is symmetric. This is achieved iff c11 = c22. Elementary
calculations give condition (6.3).

When (6.3) is not satisfied, one can rotate both measures P and Q so that the symmetry condi-
tion (6.3) is satisfied and the `1-distance between the two distributions is left unchanged; see Figure 6.1.

Recall that Dϕ =
(cosϕ − sinϕ

sinϕ cosϕ

)
denotes the rotation matrix by the angle ϕ ∈ [0,2π]. Cumber-

some but elementary calculations prove the following proposition.

Proposition 6.3. Let P = N(0,Σ1) and Q = N(0,Σ2) on R2 have invertible covariance matrices
Σ1 and Σ2. Let

Σ′1 =DϕΣ1D
′
ϕ and Σ′2 =DϕΣ2D

′
ϕ

be the new covariance matrices obtained after a rotation of angle

ϕ=
1

2
arctan

V (Σ1,Σ2)

2

(
σQ12
|Σ2| −

σP12
|Σ1|

) . (6.4)

Then, we have that:

a) `1(N(0,Σ1),N(0,Σ2)) = `1(N(0,Σ′1),N(0,Σ′2));
b) V (Σ′1,Σ

′
2) = 0.

As a consequence of Proposition 6.3, in the remainder of this section we assume that condition (6.3)
on the covariance matrices of the two Gaussian distributions P,Q is satisfied, so that the sets A and
B, i.e. the domains of the reduced measures P1,Q1, are symmetric with respect to the four sectors
Si,1≤ i≤ 4, defined in (4.10).
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6.2. Coupling of Gaussian measures, unbounded case

We now construct an optimal coupling between two reduced Gaussian measures with unbounded do-
mains, that is for covariance matrices satisfying condition (6.1); see Figure 6.2 for an example. The
other case with one bounded domain is analogous and treated below. Let g1 and g2 denote the densities
w.r.t. λ\2 of P =N(0,Σ1) and Q=N(0,Σ2).

The idea following the general framework given in Section 5 is to move probability mass between
the reduced measures P1 and Q1 within each sector Si along a given family of directions kt,i, t ∈
Γi, and according to the quantile coupling for the conditional distributions as in Theorem 5.1. The
difficulty, as compared for instance to the symmetric case illustrated in Section 4.4, is that, in the
general Gaussian case, the directions are not parallel to the axis nor constant within each sector. We
illustrate a methodology to find optimal directions for sector S1, the procedure being symmetric for
the other sectors. To ease the notation, in what follows we drop the indication of the sector for the rays
and the directions, i.e. we write Rt =Rt,i and k(t) = kt,i.

<latexit sha1_base64="VSKFws7iMpWrkuxVyLRfvBxYvW0=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSLUS0mKqMeCF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1gJOE+xEdKhEKRtFKLdN3K3jRL5XdqjsHWSVeTsqQo9EvffUGMUsjrpBJakzXcxP0M6pRMMmnxV5qeELZmA5511JFI278bH7tlJxbZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDGz8TKkmRK7ZYFKaSYExmr5OB0JyhnFhCmRb2VsJGVFOGNqCiDcFbfnmVtGpV76pau78s12t5HAU4hTOogAfXUIc7aEATGDzCM7zCmxM7L86787FoXXPymRP4A+fzB50zjnQ=</latexit>
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s1(t)

Figure 6.2 Transport of probability mass along ray Rt between the reduced measures in sector S1 when the domains A (in
white) and B (in grey) of the reduced measures P1 and Q1 are both unbounded.

In order to find a candidate for a family of optimal directions, for each point (t, t) in Γ =
{x = (x1, x2) ∈ R2 : x2 = x1, x1 > 0}, we choose a ray Rt with corresponding direction k(t) =
(k1(t), k2(t)) so that Rt splits the sector S1 into two regions each one having the same measure with
respect to both P1 and Q1 (or, equivalently, to both P and Q). This also follows the fact that another
transport ray, going from the side having more initial mass toward the part side having more final mass,
would cross Rt hence violating the c-cyclically monotone condition (2.5) of the transport plan.



L1-optimal couplings 25

Formally, we define

Rt = {(x1, x2) = (t, t) + s (k1(t), k2(t)), s ∈R1
+} ∩ S1.

For a fixed t≥ 0, the direction k(t) = (k1(t), k2(t)) satisfies∫
Rt
g1(x)dx=

∫
Rt
g2(x)dx, (6.5)

where we denote byRt the region of S1 to the left of the ray Rt; see Figure 6.2.
In order to construct an optimal coupling via a quantile coupling on each ray, it is necessary that the

above defined directions k(t) satisfy condition (5.2). For x ∈ S1, by a change of coordinates

x= (t, t) + s (k1(t), k2(t)),

equation (5.2) reads as

g1(t)− g2(t) = 0, t≥ 0, (6.6)

where we define the functionals

g1(t) =

∫ s0(t)

0
(g1 − g2)+(t+ k1(t)v, t+ k2(t)v) ·

∣∣∣det

(
1 + vk′1(t) k1(t)
1 + vk′2(t) k2(t)

)∣∣∣dv,
g2(t) =

∫ s1(t)

s0(t)
(g2 − g1)+(t+ k1(t)v, t+ k2(t)v) ·

∣∣∣det

(
1 + vk′1(t) k1(t)
1 + vk′2(t) k2(t)

)∣∣∣dv, (6.7)

with s1(t) =− 2t
k1(t)+k2(t)

. Recall that Rt =R1
t +R2

t denotes the intersection of Rt with A and, resp.,
B, with

{s ∈R1
+ : (t, t) + s (k1(t), k2(t)) ∈A1}= [0, s0(t)),

{s ∈R1
+ : (t, t) + s (k1(t), k2(t)) ∈B1}= (s0(t), s1(t)].

Moreover, on the set A1 we define the quantile map T so that, on ray Rt, it moves point

xα = (t+ k(t)sα) ∈R1
t to yα = (t+ k(t)sα) ∈R2

t ,

i.e.

T (xα) = yα, (6.8)

where sα and sα satisfy the quantile coupling equation

∫ sα
0 (g1 − g2)+(t+ k1(t)v, t+ k2(t)v) ·

∣∣∣det

(
1 + vk′1(t) k1(t)
1 + vk′2(t) k2(t)

)∣∣∣dv
g1(t)

=

∫ sα
s0(t)(g2 − g1)+(t+ k1(t)v, t+ k2(t)v) ·

∣∣∣det

(
1 + vk′1(t) k1(t)
1 + vk′2(t) k2(t)

)∣∣∣dv
g2(t)

= α, (6.9)
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for all α ∈ [0,1]. Note that by (6.6) one has g1(t) = g2(t) and, for fixed α ∈ [0,1], the cost of trans-
porting xα to yα is (sα − sα).

Having defined the map T (x) for x= (x1, x2) ∈A1, and building on the symmetry condition (6.3),
in all the other sectors Si, the map T can be defined on R2 as

T (x) =


(T2(x2, x1), T1(x2, x1)), for (x1, x2) ∈A2,

(−T1(−x1,−x2),−T2(−x1,−x2)), for (x1, x2) ∈A3,

(−T2(−x2,−x1),−T1(−x2,−x1)), for (x1, x2) ∈A4.

(6.10)

If (6.6) holds, by symmetry with respect to the sectors we have that PT1 = Q1 and, by Theorem 3.4,
also that

T (x) ∈ ∂1f(x), x ∈A,

where, for (x1, x2) = (t, t) + s(k1(t), k2(t)), the function f :R2→R is given by

f(x1, x2) =

(
k1(t) + k2(t)

2

)
|x1 + x2| −

(
k2(t)− k1(t)

2

)
|x1 − x2|.

In fact, it is easy to check that ‖∇f(x)‖= ‖k(t)‖= 1, and therefore mass transportation according to
T occurs on rays in the direction of the gradient of f ∈ Lip1. As a consequence, T is an L1-optimal
transport between P1 and Q1. By Theorem 3.3, the total cost of the (symmetric) transportation in all
the sectors Si is given by

`1(P,Q) = 4

∫ ∞
0

∫ s0(t)

0
(sα − sα) · (g1 − g2)+(t+ k1(t)sα, u+ k2(t)sα)

·
∣∣∣det

(
1 + sαk

′
1(t) k1(t)

1 + sαk
′
2(t) k2(t)

)∣∣∣dsα dt, (6.11)

where sα is determined via (6.9).

Numerical estimate of `1

In practice, it seems cumbersome to work with equation (6.6) as it includes via (6.7) the derivatives
k′i(t) of the directions, which vary with t and are chosen based on equation (6.5). To circumvent this
problem, we discretize the problem and construct an approximate transport on a finite family of rays
splitting the sector S1 in a number of slices each one having the same probability with respect to P1

and Q1; see Figure 6.3.
Thus, we choose a positive number M > 0 and we discretize the interval [0,M ] into N + 1 points

0 ≤ t1, . . . , tN+1 ≤M ∈ Γ with ∆t
N = sup1≤n≤N{tn+1 − tn}. For each n ≥ 1, we compute the

direction k(tn) by solving numerically (6.5) for t= tn. At this point we substitute the two derivatives
k′i(t) in (6.7) and in (6.9) by their discrete variations ∆i =

ki(tn+1)−ki(tn)
tn+1−tn ,1≤ n≤N, and define the

quantile coupling transportation on the rays Rtn ,0≤ n≤N , by means of (6.9).
To compute an approximate estimate of `1(P,Q), for a fixed n ≥ 1 we also discretize the interval

[0, s0(tn)] intoN points 0≤ v1, . . . , vN ≤ s0(tn) with ∆v
N = sup1≤n≤N{vn−vn−1}. For each point

xi,j = ti + k(ti)vj , 1≤ i, j ≤N,

we then compute the cost of moving the mass according to equation (6.9).
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t1

t2

t3

s0(t1)
s0(t2)

s0(t3)

s1(t1)
s1(t2)

s1(t3)

0

0

0

Figure 6.3 Construction of an approximate optimal coupling on a finite family of rays in the unbounded case. Each slice has the
same probability with respect to P1 and Q1

At this point, we perform a trapezoidal integration via MatLab to estimate numerically (6.11). We
expect that, forM sufficiently large and ∆

t,v
N → 0, the difference in (6.6) goes to zero, and thus the dis-

cretization procedure will result into an estimate of the transportation cost `1(P,Q) in the continuous
case.

Numerical estimates obtained in MatLab are given in Table 6.1 and directions of optimal transport
are shown in Figure 6.5 for different choices of covariance matrices. In Table 6.1 we also report the
numerical estimates obtained via the swapping algorithm in Puccetti (2017) and via the lower dual
bounds in (3.3) and (4.16). The swapping algorithm is a relatively simple numerical procedure which
typically produces an accurate upper bound on the Lp-Wasserstein distance between two measures.
The so obtained numerical estimates are consistent with optimality of our construction of transports
between the Gaussian distributions.

6.3. Coupling of Gaussian measures, bounded case

When the covariances of the two Gaussian measures satisfy (6.2) and (6.3), the domain of one of the
two reduced measures is an ellipse symmetric with respect to the sectors Si; see Figure 6.4 for an
example.

The construction of an optimal coupling is similar to the one illustrated above with one fundamental
difference in the geometry of transportation with respect to the unbounded case: the transportation rays
start from the subset ΓM ⊂ Γ where

ΓM = {(x1, x2) ∈R2;x2 = x1,0< x1 <M}.

The value M is the sup of all positive values t for which it is possible to define a ray Rt and corre-
sponding direction k(t) so that (6.5) is satisfied. Thus the value of M here is not chosen arbitrarily but
is univocally determined based on P1,Q1. We have that
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t3

s0(t1)
s0(t2)

s0(t3)t2t1

M

0

Figure 6.4 Construction of an approximate optimal coupling on a finite family of rays in the bounded case. Each slice has the
same probability with respect to P1 and Q1.

`1(P,Q) = 4

∫ M

0

∫ s0(t)

0
(sα − sα) · (g1 − g2)+(t+ k1(t)sα, u+ k2(t)sα)

·
∣∣∣det

(
1 + sαk

′
1(t) k1(t)

1 + sαk
′
2(t) k2(t)

)∣∣∣dsα dt, (6.12)

Estimates of `1(P1,Q1) in this case are obtained similarly as in the unbounded case by splitting the
sector in a finite number of slices each one having the same probability with respect to the reduced
measures (see Figure 6.4). They are reported in Table 6.1.

6.4. Coupling of Gaussian measures, summary of results

The following theorem summarizes our main result about the L1-optimal coupling of two bivariate
Gaussian measures.

Theorem 6.4. Assume that P =N(0,Σ1) and Q=N(0,Σ2) are two bivariate Gaussian measures
with invertible covariance matrices satisfying condition (6.3) (one can reduce to this case by a rotation
as described in Proposition 6.3). Let P1 and Q1 be the corresponding reduced measures as in (3.5).
Then:

(a) An L1-optimal transport map from P1 to Q1 is given by the function T defined in (6.8) and (6.10).

(b) An L1-optimal transport kernel of P and Q is given by

τ(x, ·) = (g1 ∧ g2(x))εx + 1A(x)(g1(x)− g1 ∧ g2(x))εT (x);

(c) If (Σ−1
2 −Σ−1

1 ) is neither positive nor negative definite (unbounded reduced domains), an analyt-
ical formula for `1(P,Q) is given in (6.11);
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(d) If (Σ−1
2 −Σ−1

1 ) is either positive or negative definite (one bounded reduced domain), an analytical
formula for `1(P,Q) is given in (6.12).

The following example shows the typical change of optimal transport maps depending on the geom-
etry of the problem induced by the covariance matrices.

Example 6.5. Consider the class of cases for the covariance matrices as given in Table 6.1. The
corresponding optimal transport directions are given in Figure 6.5, and illustrate the difference in the
geometry of the unbounded and bounded cases.

In Figure 6.5 one can see the transition between the symmetric case A treated in Section 4.4, the
general unbounded case (corresponding to M =∞ and Γ∞ = Γ), the bounded case (0<M <∞) and
the radial case F treated in Section 4.3 (M = 0). The case C corresponds to the situation when one of
the eigenvalues of Σ−1

2 −Σ−1
1 is null.

We notice that in the cases A and C transportation lines are parallel and hence the dual bound given
in (4.16) is sharp; in case F the lower dual bound in (3.3) is sharp. In all these cases, the L1-distance
between Gaussian distributions can be computed analytically.

case Σ1 Σ2 dual bound optimal coupling swapping alg.

A
(

1 0.4

0.4 1

) (
1 −0.4

−0.4 1

)
0.4611 (4.15) 0.4611 (4.15) 0.4625

B
(

1 0.8

0.8 1

) (
1 −0.4

−0.4 1

)
0.7413 (4.16) 0.7482 (6.11) 0.7498

C
(

1 0.4
0.4 1

) (
1.8 −0.4
−0.4 1.8

)
0.5654 (4.16) 0.5654 (6.11) 0.6131

D
(

1 0.4
0.4 1

) (
2 −0.4
−0.4 2

)
0.6215 (4.16) 0.6226 (6.12) 0.6715

E
(

1 0.4
0.4 1

) (
1.3 0.4
0.4 1.3

)
0.1799 (4.6) 0.1844 (6.12) 0.1907

F
(

1 0
0 1

) (
2 0
0 2

)
0.5191 (4.6) 0.5191 (4.7) 0.5192

Table 6.1. Figures for `1(N(0,Σ1),N(0,Σ2)) computed via the dual bounds and the optimal coupling con-
structions given in this paper, and via the swapping algorithm. Estimates for the swapping algorithm are averages
evaluated over 50 identical runs with a discretization of 105 points and fixed accuracy ξ = 10−5. Estimates for
the optimal couplings are analytical for cases A and F, are computed numerically using N = 500 (cases B, C, D,
E) and M = 4 (for cases B, C). For each dual bound and optimal coupling estimate we indicate the corresponding
reference formula.
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A (symmetric case) B (unbounded case)

C (unbounded case) D (bounded case)

E (bounded case) F (radial case)

Figure 6.5 Directions of optimal transport of probability mass between couples of Gaussian measures. Case A reduces to the
symmetric transport as in Section 4.4. Case E reduces to the radial transport as in Section 4.3. The various cases correspond to

the couples of covariance matrices given in Table (6.1).
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7. Coupling by scalings

The geometry of L1-optimal couplings is non-trivial. In Alfonsi and Jourdain (2014) it is shown that
coupling by increasing transformations of the components is in general not `1-optimal, i.e., if X ∼ P
and Y = (Yi), Yi = hi(Xi), hi increasing, then (X,Y ) is not an L1-optimal coupling in general.

In this section, we strengthen the result of Alfonsi and Jourdain by showing that even the special
case of increasing linear scalings does not produce optimal couplings. In particular, we show that, in
general, scaling in one component is optimal whereas scaling in two components is not.

7.1. Scaling of one component

We show that scaling in one component is optimal.

Theorem 7.1. Let X ∼ P and c > 0.

a) For Xc =

cX1
...
Xn

∼Q, the pair (X,Xc) is an L1-optimal coupling of P and Q.

b) For X̃c = c

X1
...
Xn

∼ Q̃, the pair (X,X̃c) is an L1-optimal coupling of P and Q̃.

Proof. We give two proofs of a). For all X ∼ P , Y ∼Q, it holds that

E‖X − Y ‖ ≥E|X1 − Y1| ≥E|X1 − cX1|=E‖X −Xc‖,

where the second inequality is a consequence of one-dimensional optimal coupling. The second proof
is based on `1-convexity. Let f(x) = |x1|, then f ∈ Lip1 and

∇f(x) =

{
(1,0), if x1 > 0;

(−1,0), if x1 > 0.

It follows that

|f(x)− f(y)|= ||x1| − |y1|| ≤ |x1 − y1| ≤ ‖x− y‖

with equality if and only if x2 = y2 and x1, y1 have the same sign. Thus y ∈ ∂1f(x)⇔ y = x+s∇f(x)

for some s≥ 0. This implies by Theorem 3.4, c), that Tc(x) =
(
cx1

x2

)
is an optimal transport. b) follows

from the optimality of radial transformations in Theorem 4.3.

Remark 7.2. The second proof of a) can be generalized to show the optimality of (X,Xm
c ) where

Xm
c = (cX1, . . . , cXm,Xm+1, . . . ,Xn),

for 1<m< n. Also notice that the linear scaling of components h1(x) = cx can be replaced by any
increasing function h1(x). Roughly speaking, applying the same change of scale to any number of
components of a random vector is an L1-optimal transport. Applying just two different scalings is no
more optimal in general, as we show in the remainder.
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7.2. Scaling of two components

The scaling of two components is not optimal in general, i.e., the Alfonsi and Jourdain result even
holds for simple scalings. To show this, one can consider the following (counter)example.

Let P = U([0,1]2) and T1(x) = (2x1,
1
2x2) the scaling of the unit square [0,1]2 to the rectangle

[0,2] × [0, 1
2 ]. Let Q = PT , then Q ∼ U([0,2] × [0, 1

2 ]) is the uniform distribution on the rectangle.
The transportation cost of the scaling map T1 is given by

C1 =

∫ 1

0

∫ 1

0
‖x− T1(x)‖dx=

∫ 1

0

∫ 1

0

∥∥∥(x1

x2

)
−
(2x1

1
2x2

)∥∥∥dx1dx2

=

∫ 1

0

∫ 1

0

√
x2

1 +
x2

2

4
dx1 dx2 ' 0.5932.

We notice that this scaling transport map cannot be optimal since it is not c-cyclically monotone, e.g.
because (1/2,1), (1,1/2) and (1,1/2), (2,1/4) are in the support of the proposed plan but it is strictly
more convenient moving (1/2,1) to (2,1/4) and leaving (1,1/2) fixed.

One then considers the alternative transportation given by T2(x) = (x1 + 1, x2 − 1
2 )′ defined on

[0,1] × [1
2 ,1] −→ [1,2] × [0, 1

2 ]. By the reduction principle we should optimally transport P1 =

U([0,1]× [1
2 ,1]) toQ1 = U([1,2], [0, 1

2 ]), leaving the mass in [0,1]× [0, 1
2 ] unaltered. As transportation

cost for T2 we get

C2 =

∫ 1

0

∫ 1

1/2
‖x− T2(x)‖dx=

∫ 1

0

∫ 1

1/2

∥∥∥(x1

x2

)
−
(x1 + 1

x2 − 1
2

)∥∥∥dx1dx2

=

∫ 1

0

∫ 1

1/2

√
5

4
dx1dx2 =

√
5

4
' 0.5590<C1.

We show that T2 is an optimal transport from P1 to Q1. Note that

T2(x) = x+ s∇f(x) ∈ ∂1f(x),

with s=
√

5
2 and the Lip1 function f defined by

f(x) =

√
5

5
(2x1 − x2).

Moreover, for X ∼ P,Y ∼Q, one computes∫
fd(Q− P ) =

√
5

5
(2E[Y1]−E[Y2]− 2E[X1] + E[X2]) =

√
5

4
=C2,

implying that

T (x) = x1[0,1]×[0,1/2](x) + T2(x)1[0,1]×[1/2,1](x)

is an optimal transport from P to Q.
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−4 0 4

S1

S2S3

S4

Figure 7.1 Optimal transport between rotated rectangles

7.3. General scalings

The scaling example can be extended to different kind of scalings. For instance, letP ∼U([−1,1], [−4,4])
and Q∼ U([−4,4]× [−1,1]); see Figure 7.1. By Theorem 3.3 we have to transport P1 = U(A), with
A= [−1,1]×{[−4,−1]∪ [1,4]} to Q1 = U(B), with B = {[−4,−1]∪ [1,4]}× [−1,−1]. Again, we
divide the plane into the sectors S1, . . . , S4, as in (4.10). On sector S1, we define

T1 :A∩ S1→B ∩ S1, T (x1, x2) = (x2, x1).

T1 is the reflection about the diagonal of S1.
Similarly, we define Ti,2 ≤ i ≤ 4, on the other sectors as the corresponding reflections about the

diagonals. Then by Theorem 3.3, resp. Theorem 5.1, T =
∑4
i=1 1A∩SiTi is an optimal transportation

of P to Q since T is of the form

T (x) =

4∑
i=1

1A∩Si(x+ s(x)ki), (7.1)

with directions k1 = k
(

1
−1

)
, k2 = k

(
1
1

)
, k3 = k

(−1
1

)
, k4 = k

(−1
−1

)
, with k =

√
2/2.

Within sector Si, T (x) = Ti(x) ∈ ∂1fi(x) for `1-convex functions fi, i= 1, . . . ,4. Defining f(x) =∑4
i=1 1Sifi(x), we find that f ∈ Lip1 and T (x) ∈ ∂1f(x).
This principle can be extended to general rectangles [−a,a]× [−b, b] and [−c, c]× [−d, d], and also

leads to the idea of how to couple two normal vectors in the 3- or general d-dimensional case.

7.4. Couplings in higher dimensions

The general form of optimal couplings for scalings as in Section 7.3 also allows the optimal coupling
of various classes of multivariate normal distributions.

Let P =N(0,Σ1), Q=N(0,Σ2) be d-dimensional normal distributions with Σ1,Σ2 being simul-
taneously diagonalizable. A particular case is when Σ1,Σ2 are commutable, i.e. Σ1Σ2 = Σ2Σ1. Let Q
be the orthogonal matrix of eigenvectors such that QΣ1Q

′ =D, QΣ2Q
′ = S with D = diag(di), S =

diag(si) being the d-dimensional diagonal matrices of corresponding eigenvalues. For N ∼ N(0, I),
defineX =Q′D1/2N ∼ P and Y =Q′S1/2N ∼Q. The pair (X,Y ) is a natural scaling type coupling
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of P,Q, and

E‖X − Y ‖= E‖Q′(D1/2 − S1/2)N‖= E
√
χ2
d,α, (7.2)

with αi =
√
di−
√
si,1≤ i≤ d. The coupling in (7.2) will however not be an optimal coupling as one

can see from the scaling example in Section 7.2.
Now, in the new coordinate system induced by the the pairwise orthogonal normed eigenvectors

r1, . . . , rd, we get that the coupling problem of P and Q reduces to a scaling problem similar to the
one treated in Section 7.3 and can be treated analogously with parallel transportation directions in
each one of the sectors. We give a rough sketch of the argument. In the sectors Si induced by the
new coordinate system directions ki allow to transform the reduced distributions P1 = P/A to Q1 =
Q/B by transformations Ti on Si ∩ A of the form Ti(x) = x + s(x)ki. Ti can be identified by the
symmetry of the normal distribution as reflection on the diagonal in the component where between two
neighboring sectors a sign change takes place. Identifying the length of the shift s(x), x ∈ Ai by the
quantile equation leads by Theorem 5.1 to an optimal coupling in this case.

This idea suggests to consider 23 = 8 sectors resp. 2d in the d-dimensional case corresponding to the
various sign combinations. As in the case d= 2 one obtains optimal solutions as in (7.1) with direction
vectors ki in the various sectors.

7.5. Finding sectors and directions of optimal transport

The construction of optimal couplings following our three-step approach as described in Section 5 is
applied in a variety of examples in this paper. This approach requires to have a suitable division of Rd

into sectors and, for each sector, the directions along which the probability mass is to be moved.
An useful hint to the choice of sectors is induced in the first step of our approach by the geometry

and symmetry of the reduced transportation problems, as indicated in the various examples in the paper
and in particular in the Gaussian application. The non crossing property of optimal transports leads in
the second step to a hint for the choice of transportation rays within the sectors. In the third and final
step, this hint is verified by the characterization result for optimal couplings.

A further useful tool to confirm or get a hint for the choice of sectors and transport directions is to
look at the numerical solution of a discretized version of the problem. In particular in more complicated
cases, this helps to support the indications from symmetry and non-crossing property. In some cases it
also may lead to a conjecture for the optimal dual solution, hence rejoining the Sudakov framework.

For discrete measures P = PN and Q = QN supported on N points, the computation of (1.1) is
obtained through the solution of a finite linear program (LP) that can in principle be solved exactly by
a linear solver; see for instance Carlier et al. (2015, Sec. 2.3). Such LP quickly becomes intractable for
linear programming software with increasing values ofN , but a standard laptop can quickly solve it for
relatively small N < 1000 and provide the solution, as well as the (discretized) dual function solving
the corresponding dual (3.1).

In Figure 7.2 we plot optimal transportation lines (left) and the optimal dual function solving prob-
lem (1.1) for a discrete version of two Gaussian measures with correlation matrices

Σ1 =

(
1 0.4

0.4 1

)
, Σ2 =

(
1 −0.4
−0.4 1

)
.

First, by looking at the transportation lines on the left, one can conjecture the subdivision of the
plane into four sectors. Second, by looking at the discretized dual functional, one can conjecture that
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Figure 7.2 Directions of optimal transport (left) and optimal dual function (right) between discrete versions of the two
Gaussian marginals as in case A in Table 6.1. Discrete Gaussian distributions are obtained via N = 500 simulations. On the left
picture we plot the domains of the reduced densities, whereas on the right the exact dual function (7.3) is superimposed on the

discretized dual one.

an optimal dual function f in this case is

f(x) =
|x1 + x2| − |x1 − x2|

2
. (7.3)

The function f also implies (conversely) the subdivision into sectors Si, where it has constant partial
derivatives.

Even if finding the solution in the general case of bivariate Gaussian marginals is much more in-
volved, this tool can in principle be applied to study general problems of optimal transport, also with a
different metric or general cost function.
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