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Abstract

This paper provides comparison results for general factor models with respect to the supermodular and directionally
convex order. These results extend and strengthen previous ordering results from the literature concerning certain
classes of mixture models as mixtures of multivariate normals, multivariate elliptic and exchangeable models to gen-
eral factor models. For the main results, we first strengthen some known orthant ordering results for the multivariate
∗-product of the specifications, which represents the copula of the factor model, to the stronger notion of the su-
permodular ordering. The stronger comparison results are based on classical rearrangement results and in particular
are rendered possible by some involved constructions of transfers as arising from mass transfer theory. The ordering
results for ∗-products are then extended to factor models with general conditional dependencies. As a consequence
of the ordering results, we derive worst case scenarios in relevant classes of factor models allowing, in particular,
interesting applications to deriving sharp bounds in financial and insurance risk models. The results and methods of
this paper are a further indication of the particular effectiveness of Sklar‘s copula notion.

Keywords: conditional independence, factor model, positive dependence, product of copulas, rearrangements, Schur
order, supermodular order
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1. Introduction

Factor models are an important device for modeling multivariate distributions in nearly all fields of science, such
as statistics, psychology, social sciences, finance, econometrics, operations research, and risk management; see, e.g.,
[9, 12, 19, 21, 25, 26, 36, 53, 56]. The basic idea of a factor model is to reduce the complexity of a multivariate model
by means of low-dimensional factor variables explaining and describing in a simple functional way the randomness
and dependence of the model. In general, factor models appear in statistics in the form of regression models and in
the form of mixture models where the mixing variable can be seen as a common factor. For instance, normal mean-
variance mixture models generate many well-known distributions such as the generalized hyperbolic, the variance
Gamma, and the normal inverse Gaussian distribution; see [5].

In the general setting of a factor model, it is assumed that the underlying random vector X = (X1, . . . , Xd) defined
on a probability space (Ω,A, P) takes a functional form

Xi = fi(Z, εi) , i ∈ {1, . . . , d} ,

with a common random factor Z and some random vector ε = (ε1, . . . , εd) of idiosyncratic (individual) random in-
fluences. In the standard factor model, the random variables Z, ε1, . . . , εd are assumed to be mutually independent
while, in the more general frame of a conditionally independent factor model, it is assumed that X1, . . . , Xd are con-
ditionally independent given Z . Typically, the variables X1, . . . , Xd and the common factor Z are observable and their
distributions can be estimated. In many applications, the copula of (Xi,Z) can also be specified or partially specified.
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Fig. 1 The setting for the factor model comparison results: The left-hand graph illustrates a factor model X = (X1, . . . , Xd) ,
Xi = gi(Z, εi) , with bivariate copula specifications Di = CXi ,Z for i ∈ {1, . . . , d} , with univariate factor distribution function
G = FZ , and with d-variate conditional copula specifications B = (Bt)t∈[0,1] such that BG

t = CX|Z=G−1(t) for almost all t ∈ [0, 1] ; see
(A.5) for the definition of BG

t . The right-hand graph illustrates a factor model Y = (Y1, . . . ,Yd) , Yi = hi(Z′, ε′i ) , i ∈ {1, . . . , d} , with
the corresponding specifications E1, . . . , Ed , G′ , and C = (Ct)t∈[0,1] .

However, the copula of X conditionally on Z = z can be estimated only partially if at all. This situation implies that
ordering results in general factor models may be useful to solve optimization problems or identify worst/best cases
in classes of models of this type. The aim of our paper is to derive ordering results in general factor models that are
strong enough to be useful for the solution of a general class of optimization problems as described above.

We establish various general conditions on the specifications D1, . . . ,Dd,B,G and E1, . . . , Ed,C,G′ (see Fig. 1)
of factor models X = (gi(Z, εi))1≤i≤d and Y = (hi(Z′, ε′i))1≤i≤d which allow for large classes of functions f : Rd → R a
pointwise or an averaged comparison of the conditional expectations such that

E f (X) =
∫

E
[
f (X) | Z

]
dP ≤

∫
E
[
f (Y) | Z′

]
dP = E f (Y) , (1)

considering general conditional dependencies. In particular, we develop such integral inequalities for classes of su-
permodular and directionally convex functions, extending particular known ordering results for copula products in
factor models (see [4]) to the substantially larger class of supermodular functions. The proofs are based on various
combinatorial arguments for mass transfers which characterize several integral stochastic orderings by duality; see
[43] and [41].

An important consequence of the supermodular and directionally convex ordering is its applicability to an inter-
esting range of functions. In particular, each of them implies the convex ordering of the component sums, i.e.,

X ≤sm Y or X ≤dcx Y =⇒

d∑
i=1

Xi ≤cx

d∑
i=1

Yi =⇒ Ψ
( d∑

i=1

Xi

)
≤ Ψ

( d∑
i=1

Yi

)
(2)

where ≤cx denotes the univariate convex order and where Ψ is any convex, law-invariant risk measure on a proper
probability space such as the space of integrable or the space of bounded random variables; see [23, Chapter 4] and
[7, 11, 28]. Hence, the supermodular and the directionally convex comparison of random vectors yield a comparison
of the risk of the component sums which may stand for a portfolio risk in finance or for the risk of total damages in
the insurance framework.

As a consequence, we determine for relevant subclasses of factor models least and greatest elements corresponding
to best- and worst-case distributions with respect to various stochastic orderings. In particular, we study the condi-
tionally independent factor model in detail. Since the supermodular and directionally convex ordering imply by (2)
the convex ordering of the component sums, important applications can be given in finance and risk management in
the context of price and risk bounds where the underlying random variables often exhibit positive dependencies; see
[46] and [51]. Further, see [6] for applications of the supermodular ordering to other stochastic models.

Modeling multi-dimensional dependence structures is a challenging issue; see, e.g., [17, 27, 47]. Since the univari-
ate marginal distributions are often inferred from data and thus can be assumed to be given, it is by Sklar’s theorem
sufficient to analyze copulas for modeling dependencies. Promising approaches have been investigated in form of
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vine copula models which leverage from bivariate copulas, satisfy a high flexibility, and enable extensions to arbitrary
dimension; see [8, 14, 34] for an overview. General comparison results in vine copula models with respect to integral
stochastic orderings are possible for C-vine structures, which correspond to the setting of a factor model; see [3].

The most widely-used factor model is the standard factor model; see, e.g., [25, 26, 39, 40]. Single and multi-
factor copula models have been investigated in [33, 35] under the conditional independence assumption; see also [39,
Chapter 12.2] for several applications. The ∗-product of two bivariate copulas introduced in [15], corresponding to a
Markov structure, has been generalized in [16] in the bivariate case allowing for arbitrary conditional dependencies.
An extension to arbitrary dimension is given in [4]. The main property of this product is that it describes the copula
of a general factor model; see Theorem 2.7 in [4].

The structure of conditionally independent factor models has been used in a relevant part of the literature on order-
ing of stochastic models and, in particular, on the construction of positive dependence models and related probability
inequalities as given in [38] and [61] as well as in [18, 24, 29, 30]. Tong [60] gives general majorization ordering
conditions to imply ordering properties in the sense of positive dependence ordering in conditionally independent
factor models under some structural assumptions. The model examples for these type of comparison results are the
exchangeable or positive dependence by mixture models; see [54, 59, 60] which are particular cases of the condi-
tionally independent factor models. In our paper, we state, in particular, related comparison results for conditionally
independent random variables without further distributional assumptions.

Since the conditional independence assumption is often not grounded in data, see, e.g., [13], partially specified
factor models have been introduced in [9] where only the distributions of (Xi,Z)–the specifcations– are assumed to
be known for all i ∈ {1, . . . , d} and, thus, the conditional dependence structure of X given Z = z is not specified.
In the context of risk bounds, these classes of factor models yield a considerable improvement of the dependence
uncertainty spread compared to the pure marginal model. Further, the upper risk bound is described by a conditionally
comonotonic random vector whose copula corresponds to the upper product of the copula specifications; see [1].
However, conditional comonotonicity may be an unrealistic scenario, and also flexibility in the specifications of
(Xi,Z) may be desirable. This motivates to investigate various ordering results for general factor models with respect
to all of its specifications.

In Section 2, we recall the necessary notation, the relevant integral stochastic orderings, and the ∗-product of cop-
ulas which describes the copula of the factor model with given specifications. Section 3 considers various important
supermodular ordering results for ∗-products using a new general supermodular criterion for ∗-products which we
give in Appendix B and which is based on a lower orthant comparison of approximating sequences of ∗-products on
finite grids. The proof of the general supermodular ordering criterion is given in Appendix C and makes use of the
dual characterization of integral stochastic orders by mass transfers.

Combining the supermodular ordering results for ∗-products with the ordering of marginal distributions, we
present in Section 4 the main comparison results for factor models with easy to handle and interpretable ordering
conditions on the specifications of the models. Due to its particular meaning, we discuss the conditionally indepen-
dent factor model in detail. In Section 5, we give applications to upper bounds in several classes of conditionally
independent factor models. The main results of our paper are substantial extensions of [1] and [4] concerning model
assumptions and sharpenings to the stronger supermodular order respectively.

Our paper builds on several results from [4] concerning the representation of a conditional distribution function as
generalized copula derivative as well as approximation and continuity properties of ∗-products, the Schur-order for
copula derivatives, and rearranged copulas.

2. Preliminaries

In this section, we introduce the notation and provide the necessary tools for the factor model comparison results in
Section 4. First, we state for the stochastic orderings considered in this paper some of their most important properties
and relations. Then, we define the ∗-product of copulas which describes the copula of a factor model.

2.1. Stochastic orderings

Denote by △εi f (x) := f (x + εei) − f (x) the difference operator of length ε > 0 , where ei is the ith unit vector
with respect to the canonical base in Rd . Then f is said to be supermodular and directionally convex, respectively, if
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△
εi
i △
ε j

j f (x) ≥ 0 for all x ∈ Rd , for all εi, ε j > 0 as well as for all 1 ≤ i < j ≤ d and 1 ≤ i ≤ j ≤ d , respectively.
Further, f is said to be ∆-monotone and ∆-antitone, respectively, if △ε1

i1
· · · △

εk
ik

f (x) ≥ 0 and (−1)k△
ε1
i1
· · · △

εk
ik

f (x) ≥ 0 ,
respectively, for all x ∈ Rd , for all k ∈ {1, . . . , d} , for all ε1, . . . , εk > 0 , and for all {i1, . . . , ik} ⊆ {1, . . . , d} . Denote by
F↑ , Fsm , Fdcx , F

∆ , and F ∆− the class of increasing, supermodular, directionally convex, ∆-monotone, and ∆-antitone
functions, respectively. Denote by FX and FX the distribution function and survival function, respectively, associated
with the random vector X .

Let X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) be random vectors. Then the supermodular order and directionally
convex order are defined by

X ≤sm Y if E f (X) ≤ E f (Y) for all f ∈ Fsm ,

X ≤dcx Y if E f (X) ≤ E f (Y) for all f ∈ Fdcx ,

respectively, whenever the expectations exist. The lower orthant order and the upper orthant order are defined by the
pointwise comparison of the distribution and survival functions, respectively, i.e., X ≤lo Y if FX(x) ≤ FY (x) for all
x ∈ Rd , and X ≤uo Y if FX(x) ≤ FY (x) for all x ∈ Rd . The concordance order X ≤c Y is defined by X ≤lo Y and
X ≤uo Y . The stochastic order X ≤st Y is defined by E f (X) ≤ E f (Y) for all f ∈ F↑ ,

All these orderings are integral stochastic orderings comparing by (1) for respective classes F of functions f the
expectations of random vectors X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) defined on the probability space (Ω,A, P) ,
which we generally assume to be non-atomic. Note that the lower orthant order and the upper orthant order are
generated by the classes F ∆− and F ∆ of ∆-antitone and ∆-monotone functions, respectively; see [49].

The basic relations between the above considered orderings are

X ≤sm Y =⇒ X ≤c Y ⇐⇒ Xi
d
= Yi for all i, X ≤lo Y, X ≤uo Y . (3)

If d = 2 and Xi
d
= Yi for i ∈ {1, 2} , then the orderings ≤lo , ≤uo , ≤c , ≤sm , and ≤dcx are equivalent.

Due to (3), the supermodular order and the concordance order are pure dependence orderings. Both orderings
have the important property that they are invariant under increasing transformations of the components, i.e., for all
increasing functions k1, . . . , kd : R→ R , one has

(X1, . . . , Xd) ≤sm (Y1, . . . ,Yd) =⇒ (k1(X1), . . . , kd(Xd)) ≤sm (k1(Y1), . . . , kd(Yd)) , (4)

similarly for the concordance order. Since, for d ≥ 3 , X ≤c Y does not imply
∑

i Xi ≤cx
∑

i Yi , see [44, Theorem 2.6],
we focus on comparison results with respect to the stronger notion of the supermodular order.

For an overview of stochastic orderings, see [46, 51, 55].

2.2. Copulas and positive dependence concepts
A d-copula is a distribution function C : [0, 1]d → [0, 1] with uniform univariate marginals. Due to Sklar’s

Theorem, every d-variate distribution function F can be decomposed into its univariate marginal distribution functions
F1, . . . , Fd and a d-copula C such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) , (x1, . . . , xd) ∈ Rd , (5)

where C is uniquely determined on Ran(F1) × · · · × Ran(Fd) , where Ran( f ) denotes the range of a function f .
Conversely, for all univariate distribution functions F1, . . . , Fd and for all d-copulas, the right-hand side in (5) defines
a d-variate distribution function. Denote by Cd the class of d-copulas and by F d (F d

c ) the class of d-dimensional
(continuous) distribution functions. For an overview of copula theory, see, e.g., [17, 47].

Some important copulas are the lower Fréchet bound W2 , the independence copula Πd , and the upper Fréchet
bound Md , where

Wd(u) := max

 d∑
i=1

ui − d + 1 , 0

 , Πd(u) :=
d∏

i=1

ui , Md(u) := min
1≤i≤d
{ui} (6)
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for u = (u1, . . . , ud) ∈ [0, 1]d . Note that Wd is not a copula for d ≥ 3 . The independence copula models indepen-
dence, i.e., for a random vector U = (U1, . . . ,Ud) , it holds that FU = Π

d if and only if U1, . . . ,Ud ∼ U(0, 1) are
independent, where U(0, 1) denotes the uniform distribution on [0, 1] . The upper Fréchet copula corresponds to a
comonotonic random vector, i.e., FU1,...,Ud = Md if and only if there exists V ∼ U(0, 1) such that Ui = V P-almost
surely for all i ∈ {1, . . . , d} . Further, the lower Fréchet copula corresponds to a countermonotonic random vector, i.e.,
FU1,U2 = W2 if and only if there exists V ∼ U(0, 1) such that U1 = V and U2 = 1 − V P-almost surely. Note that the
conditional independence product, the upper product, and the lower product in (11) are defined with respect to these
copulas.

For modeling positive dependencies, we make use of the several positive dependence concepts on the class Cd .
A copula C ∈ Cd is said to be positive supermodular dependent (PSMD) if Πd ≤sm C . Further, C is conditionally

increasing (CI) if there exists a random vector (U1, . . . ,Ud) with distribution function C such that

Ui ↑st (U j , j ∈ J) (7)

for all i ∈ {1, . . . , d} and J ⊆ {1, . . . , d} \ {i} , where (7) means that the conditional distribution Ui | (U j = u j, j ∈ J) , is
stochastically increasing in u j for all j ∈ J . C is conditionally increasing in sequence (CIS) if there exists a random
vector (U1, . . . ,Ud) with distribution function C such that (7) holds for all J = {i + 1, . . . , d} and i ∈ {1, . . . , d − 1} .
Lastly, C is totally positive of order 2 (MTP2) if C has a log-supermodular density, i.e., if

log
(

∂d

∂x1 · · · ∂xd
C(x1, . . . , xd)

)
is supermodular. Due to their invariance under increasing transformations, these concepts also apply to the class F d .

Note that a bivariate copula D ∈ C2 is CIS (CI) if and only if, for all u ∈ [0, 1], ∂2D(u, t) is decreasing in t outside
a Lebesgue null set (and if, for all v ∈ [0, 1], ∂1D(t, v) is deceasing in t outside a Lebesgue null set). The above defined
positive dependence concepts are related as follows,

MTP2 =⇒ CI =⇒ CIS =⇒ PSMD , (8)

where each implication is strict for d ≥ 2 ; see, e.g., [46, page 146] for an overview of these concepts.

2.3. Products of copulas for factor models
For deriving supermodular ordering results for random vectors following a factor model structure, we need to

analyse their dependence structure. Since the supermodular order is a pure dependence ordering and invariant under
increasing transformations, we consider without loss of generality the case of uniform univariate marginal distribu-
tions, which leads to the well-known concept of copula.

For analyzing dependence structures in factor models, the copula C of X = (gi(Z, εi))i is given by the ∗-product
of the copula specifications. This copula product has been introduced in [4] and extends the ∗-products considered
in [15, 16] to the multivariate case, to general conditional copulas, and to a general factor distribution function G ∈
F 1 . For a general factor distribution function G , the definition of the ∗-product requires the use of a generalized
differential operator. We refer to Appendix A for the technically involved definition which is in particular needed for
the proofs of our main supermodular comparison results in Section 3.

For a continuous distribution function G of the factor variable Z , the definition of the∗-product of D1, . . . ,Dd ∈ C2
with respect to B := (Bt)t∈[0,1] , Bt ∈ Cd for all t ∈ [0, 1] , simplifies to

∗B,GDi (u) = ∗d
i=1,B,GDi (u) =

∫ 1

0
Bt

(
∂2D1(u1, t), . . . , ∂2Dd(ud, t)

)
dt (9)

for u = (u1, . . . , ud) ∈ [0, 1]d , where ∂i denotes the operator that takes the partial derivative with respect to the i-th
component of a function of several arguments. The number d of bivariate copulas is typically clear from the context
and therefore the simplified notation in (9) is used. By definition of the integral in (9), it is implicitly assumed that
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the family B = (Bt)t∈[0,1] of d-copulas is measurable, i.e., that the mapping (t, u) 7→ Bt(u) , (t, u) ∈ [0, 1] × [0, 1]d , is
Borel-measurable.

By Sklar’s Theorem for factor models (see [4, Theorem 2.7]), the distribution function of a factor model X =
(X1, . . . , Xd) , Xi = gi(Z, εi) , i ∈ {1, . . . , d} , can be decomposed into the composition of its univariate marginal dis-
tribution functions Fi := FXi , i ∈ {1, . . . , d} , and the ∗-product of the copula specifications of the factor model
by

FX1,...,Xd (x) = ∗B,GDi (F1(x1), . . . , Fd(xd)) , x = (x1, . . . , xd) ∈ Rd , (10)

where Di := CXi,Z is a copula of (Xi,Z) , where B = (Bt)t∈[0,1] is a measurable family of d-copulas such that
C(X1,...,Xd)|Z=G−1(t) = BG

t for Lebesgue-almost all t ∈ [0, 1] , and where G is the distribution function of the real-valued
random variable Z which is the common factor variable. Note that, by (A.5), BG

t = Bt if G is continuous. In con-
sequence, the ∗-product is a copula of the factor model. Vice versa, for all bivariate copulas D1, . . . ,Dd , for all
measurable families B of d-copulas, and for all univariate distribution functions F1, . . . , Fd,G , the right-hand side
of (10) defines the distribution of a factor model with these specifications. It particular, one has that ∗B,GDi is a
d-copula.

Some specific∗-products are defined in the case where the conditional copula is given by the independence copula
Πd , the upper Fréchet copula Md , and lower Fréchet bound Wd , respectively. Denote by

ΠGDi := D1
ΠG · · · ΠGDd := ∗Πd ,GDi ,

∨
G

Di := ∗Md ,GDi ,
∧

G
Di := ∗Wd ,GDi (11)

the conditional independence product, the upper product, and the lower product of the bivariate copulas D1, . . . ,Dd

with respect to G ∈ F 1 . Since Wd is a copula only if d ≤ 2 , we clarify that for d ≥ 3 , the lower product is defined in
the sense of (9) and (A.4), respectively. For d = 2 , we write D1 ∧G D2 for the lower product of D1 and D2 .

As a consequence of (10), the conditional independence product, the upper product, and the lower product is
characterized by conditional independence, conditional comonotonicity, and conditional countermonotonicity, re-
spectively, i.e., for a (d + 1)-dimensional random vector (X1, . . . , Xd,Z) with Xi ∼ Fi , CXi,Z = Di , i ∈ {1, . . . , d} , and
Z ∼ G , one has for a G-null set N ⊂ R that

FX1,...,Xd = ΠGDi (F1, . . . , Fd) ⇐⇒ X1, . . . , Xd | Z = z are independent for all z ∈ Nc, (12)

FX1,...,Xd ∼
∨

G
Di (F1, . . . , Fd) ⇐⇒ X1, . . . , Xd | Z = z are comonotonic for all z ∈ Nc, (13)

FX1,X2 = D1 ∧G D2 (F1, F2) ⇐⇒ X1, X2 | Z = z are countermonotonic for all z ∈ Nc. (14)

Note that the conditional independence product ΠGDi describes the dependence structure of a conditionally indepen-
dent factor model. Several properties of the ∗-product ∗B,GDi are given in [4].

3. Main comparison results for ∗-products of copulas

In this section, we derive various supermodular ordering results for ∗B,GDi with respect to the specifications B and
D1, . . . ,Dd . By the Sklar-type representation in (10), these results imply meaningful supermodular and directionally
convex ordering results for factor models, which we provide in Section 4.

Proving supermodular ordering results for ∗-products is much more difficult than proving lower and upper orthant
ordering results which are based on the application of well-known integral inequalities. As a new general supermod-
ular comparison result, we provide through Theorem 5 in Appendix B a sufficient lower orthant ordering criterion on
the specifciations D1, . . . ,Dd for the supermodular ordering of ∗B,GDi with respect to D1, . . . ,Dd . This criterion is
based on a discrete approximation of ∗-products by grid copulas defined on a finite grid. For its proof, which we give
in Appendix C, we make use of several results from mass transfer theory characterizating various integral stochastic
orderings for distributions with finite support by mass transfers; see [41, 43]. Making use of the general comparison
result, we establish in Sections 3.1 and 3.2 several relevant and easily interpretable criteria on the specifications of
∗-products implying important supermodular ordering results for ∗-products.
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In contrast to the ordering of ∗B,GDi with respect to Di, an ordering with respect to the copula family B is a
simple task and given in the following proposition which extends [16, Proposition 3] and [4, Proposition 3.2] to the
supermodular order.

Proposition 1 (Ordering with respect to conditional copulas).
Let B = (Bt)0≤t≤1,C = (Ct)0≤t≤1 be measurable families of d-copulas. If Bt ≺ Ct for almost all t , where ≺ is one of the
orderings ≤lo , ≤uo , ≤c , and ≤sm , then it follows that

∗B,GDi ≺ ∗C,GDi

for all G ∈ F 1 and for all copulas Di ∈ C2 with i ∈ {1, . . . , d} .

Proof: The statement follows from the closure of these orderings under mixtures (see [55, Theorems 6.G.3.(e) and
9.A.9(d)]).

In the sequel, we prove several supermodular ordering results for ∗B,GDi with respect to the specifications
D1, . . . ,Dd applying the grid approximation criterion in Theorem 5.

3.1. Lower orthant ordering criterion

Denote by Cccx
d the class of componentwise convex d-copulas. Further, we call a family (Φt)t∈[0,1] of functions

Φt : Θ→ R , Θ = Rd or Θ = [0, 1]d , continuous, if the mapping (t, x) 7→ Φt(x) is continuous for all (t, x) ∈ [0, 1]×Θ .
We make use of the following submodularity condition.

Assumption 1 (Submodularity). A continuous family B = (Bt)t∈[0,1] of d-copulas satisfies for all u = (u1, . . . , d) ∈
[0, 1]d , for all t ∈ [0, 1] , for all ε ∈ (0, 1 − t] , for all i ∈ {1, . . . , d} , and for all h ∈ (0, 1 − ui] the inequality

Bt+ε(u + hei) + Bt(u) − Bt(u + hei) − Bt+ε(u) ≤ 0 ,

where ei denotes the i-th unit vector.

An important subclass of copulas modeling positive dependencies are CIS copulas (see Section 2.2 for a defini-
tion). The following main result provides an important characterization of the supermodular ordering of ∗-products in
the case where the bivariate specifications are CIS copulas. Several examples of well-known bivariate copula families
that are CIS and increasing with respect to the lower orthant order are given in [4, Examples 3.18 and 3.19] regarding
elliptical and Archimedean copulas. Note also that, due to [4, Theorem 3.17], the uniquely determined increasing
rearranged copula associated with a bivariate copula is CIS.

Theorem 1 (≤sm-ordering of componentwise convex ∗-products).
Let B = (Bt)t∈[0,1] be a continuous family of d-copulas. Then the following statements are equivalent:

(i) For all G ∈ F 1 and for all CIS copulas Di, Ei ∈ C2 with Di ≤lo Ei for all i ∈ {1, . . . , d} , one has

∗B,GDi ≤sm ∗B,GEi . (15)

(ii) B satisfies the submodularity Assumption 1 and Bt ∈ C
ccx
d for all t ∈ [0, 1] .

The technical proof deferred to Appendix D is based on Theorem 5 and on the classical Ky Fan-Lorentz integral
inequality; see [22]. Note that the condition Di ≤lo Ei in the above theorem is equivalent to Di ≤sm Ei because Di and
Ei are bivariate copulas.

Denote by C the survival function of a copula C ∈ Cd . Then the survival copula Ĉ of C is defined by Ĉ(u1, . . . , ud) :=
C(1 − u1, . . . , 1 − ud) for (u1, . . . , ud) ∈ [0, 1]d .

As an interesting byproduct of Theorem 1, we obtain that a copula is componentwise convex if and only if its
survival copula is componentwise convex. This statement is only in the bivariate case trivial where Ĉ(u, v) = 1 − u −
v +C(1 − u, 1 − v) for all u, v ∈ [0, 1] .
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Corollary 1. For C ∈ Cd , one has C ∈ Cccx
d if and only if Ĉ ∈ Cccx

d .

Proof: From Theorem 1, we obtain that componentwise convexity of C ∈ Cd is equivalent to∗C,GDi ≤sm ∗C,GEi for
all G ∈ F 1 and for all CIS copulas Di, Ei ∈ C2 such that Di ≤lo Ei for all i ∈ {1, . . . , d} . Since the supermodular order
implies the upper orthant order, it follows that∗C,GDi ≤uo ∗C,GEi for all G ∈ F 1 and for all CIS copulas Di, Ei ∈ C2
such that Di ≤lo Ei, i ∈ {1, . . . , d} . Due to the characterization of the upper orthant ordering of ∗-products in [4,
Theorem 3.8], this implies that the survival copula Ĉ is componentwise convex.

The reverse direction follows in the same way using that the survival copula associated with Ĉ is C .

Remark 1. In the literature, componentwise convex copulas are discussed in the context of constructing copula; see
[31, 32] and [52], where Corollary 1 is given in the bivariate case. Since copulas are supermodular functions, a com-
ponentwise convex copula is directionally convex, which is also referred to as ultramodularity or Wright-convexity.

3.2. Schur-ordering criterion

For an extension of the lower orthant ordering criterion for the supermodular ordering of ∗-products with compo-
nentwise convex conditional copulas given by Theorem 1, we make use of the following dependence ordering on the
class of bivariate copulas.

Denote by ≺S the Schur-order for integrable functions on [0, 1] , i.e., for f , g : [0, 1] → R integrable, the Schur-
order f ≺S g is defined by

∫ x
0 f ∗(t) dt ≤

∫ x
0 g∗(t) dt for all x ∈ (0, 1) and

∫ 1
0 f (t) dt =

∫ 1
0 g(t) dt where h∗ denotes the

decreasing rearrangement of an integrable function h , i.e., the (essentially with respect to the Lebesgue measure λ)
uniquely determined decreasing function h∗ such that λ(h∗ ≤ t) = λ(h ≤ t) for all t ∈ R .

Definition 1 (≤∂2S -order, [4], cf. [57]).
For D, E ∈ C2 and for G ∈ F 1 , the Schur-order D ≤∂2S ,G E for copula derivatives is defined by

∂G
2 D(v, ·) ≺S ∂

G
2 E(v, ·), v ∈ [0, 1] . (16)

If G is continuous, we abbreviate ≤∂2S ,G by ≤∂2S . In this case the generalized differential operator ∂G
2 defined by (A.2)

reduces to ∂2 .

The ≤∂2S ,G-order compares bivariate copulas with respect to their strength of dependence. The independence cop-
ula Π2 is the least element with respect to ≤∂2S , whereas the lower and upper Fréchet copula W2 and M2 , respectively,
as well as all of their shuffles are maximal elements. Further, (a version of) the asymmetric dependence measure ζ1 ,
introduced in [63], is increasing with respect to the ≤∂2S -order; see [4, Proposition 2.14]. Denote by E∗ the reflected
copula of E ∈ C2 defined by

E∗(u, v) = u − E(u, 1 − v), (17)

for (u, v) ∈ [0, 1]2 . For CIS copulas, the ≤∂2S -order and the ≤lo-order coincide; see [4, Lemma 3.16 (ii)].

The following main result provides a general supermodular comparison of ∗-products based on a Schur-ordering
criterion for the bivariate copula specifications.

Theorem 2 (Schur-ordering criterion).
Let G ∈ F 1 and let Di, Ei ∈ C2 be bivariate copulas with Ei CIS and Di ≤∂2S ,G Ei for all i ∈ {1, . . . , d} . Assume that
B = (Bt)t∈[0,1] is continuous, satisfies the submodularity Assumption 1, and Bt ∈ C

ccx
d for all t . Then

∗B,GDi ≤sm ∗B,GEi . (18)

The technical proof given in Appendix D is based on Theorem 5 and the classical rearrangement inequalities of
Lorentz [37].
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Remark 2.

(a) Theorems 1 and 2 are based on classical rearrangement inequalities due to [22, 37] and strengthen [4, Theorems
3.8/3.10 and 3.20] from the lower and upper orthant order to the supermodular order. Further, Theorem 2 implies
the supermodular ordering of the ∗-products in Theorem 1 because Di ≤∂2S ,G Ei is equivalent to Di(u, t) ≤ Ei(u, t)
for all (u, t) ∈ [0, 1] × Ran(G) whenever Di and Ei are CIS; cf. [4, Lemma 3.16 (ii)].

(b) Theorems 1 and 2 do not intersect with the upper product ordering results in [1, 2] because the upper product is
defined via the conditional copulas Bt = Md for all t , see (11), and the upper Fréchet copula Md is componentwise
concave and not componentwise convex.

If Bt = Π
d for all t ∈ [0, 1] , then it follows trivially that Bt ∈ C

ccx
d for all t and that B = (Bt)t∈[0,1] satisfies Assump-

tion 1 on submodularity. Hence, Theorem 1 provides general ordering conditions for the conditional independence
product as follows.

Corollary 2 (Ordering conditionally independent products).
Let D1, . . . ,Dd, E1, . . . , Ed ∈ C2 . If Ei is CIS and if Di ≤∂2S ,G Ei for all i ∈ {1, . . . , d} , then

ΠGDi ≤sm ΠGEi . (19)

Since the lower Fréchet bound Wd is componentwise convex, Theorem 1 also provides general ordering conditions
for the lower product as follows.

Corollary 3 (Ordering lower products).
If Ei is CIS and if Di ≤∂2S ,G Ei, i ∈ {1, . . . , d} , then∧

G
Di ≤sm

∧
G

Ei , (20)

whenever both products induce signed measures.

Remark 3.

(a) If Di = Π2 for all i , then the supermodular comparison in (19) is given in [46, Corollary 8.3.18]; see also [33,
Proposition 1] for a continuous factor distribution function G and d = 2 .

(b) If d = 2 , then the lower products in (20) are copulas and thus measure inducing. If d = 3 and D1 = E1 = M2 ,
then the lower products in (20) are 3-copulas if and only if G is continuous; see [4, Proposition 2.25]. Note that,
for d ≥ 3 , the lower product

∧
G Di is in general not a copula because the lower Fréchet bound Wd is a proper

quasi-copula and does not induce a signed measure; see, e.g., [48, Theorem 2.4].

4. Comparison results for factor models

In this section, we combine the comparison results on ∗-products of copulas established in Chapter 3 with the
ordering of the univariate marginal distributions in order to derive various comparison results for random vectors
X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) having a factor model structure, where

Xi = gi(Z, εi) , Yi = hi(Z′, ε′i) , i ∈ {1, . . . , d} , (21)

for some measurable functions gi, hi : R2 → R , i ∈ {1, . . . , d} , for random variables Z,Z′ , and for random vectors
(ε1, . . . , εd) and (ε′1, . . . , ε

′
d) . Note that Z, ε1, . . . , εd as well as Z′, ε′1, . . . , ε

′
d are not assumed to be independent and

thus the setting in (21) does not restrict generality.
For the representation (21), denote by G and G′ the distribution function of the common factor variable Z and Z′ ,

respectively. We generally assume that Ran(G) = Ran(G′) . Then, due to Sklar’s theorem for factor models (see (10)),
the copula of X and Y is given by the ∗-products

CX = ∗B,GDi and CY = ∗C,GEi ,
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respectively, where Di = CXi,Z and Ei = CYi,Z are the copulas of (Xi,Z) and (Yi,Z) , respectively, for i ∈ {1, . . . , d} ,
and where B = (Bt)t∈[0,1] and C = (Ct)t∈[0,1] are measurable families of d-copulas such that BG

t = CX|Z=G−1(t) and
CG′

t = CY |Z′=G′−1(t) for Lebesgue-almost all t ∈ [0, 1] ; see Fig. 1. The corresponding distribution functions of X and Y
are given by

FX = ∗B,GDi(FX1 , . . . , FXd ) , FY = ∗C,GEi(FY1 , . . . , FYd ) .

As a main contribution of our paper, we obtain as a consequence of Proposition 1 and Theorem 2 general condi-
tions for the supermodular and directionally convex ordering of factor models with respect to the bivariate dependence
specifications, the marginal distributions, and the conditional copula families as follows. This strengthens correspond-
ing lower and upper orthant ordering results in [4, Theorem 4.2]. Note that for bivariate CIS copulas D and E , D ≤lo E
implies D ≤∂2S ,G E for all factor distribution functions G ; cf. [4, Lemma 3.16 (ii)].

Theorem 3 (Comparison results for general factor models).
Let B′ = (B′t)t∈[0,1] , B′t ∈ C

ccx
d , t ∈ [0, 1] , be a continuous family of copulas that satisfies the submodularity Assumption

1. Assume that Ei is CIS and that Di ≤∂2S ,G Ei , i ∈ {1, . . . , d} .

(i) If B ≤sm B′ ≤sm C and Xi
d
= Yi for all i ∈ {1, . . . , d} , then X ≤sm Y .

(ii) If B ≤sm B′ ≤sm C , Xi ≤cx Yi for all i ∈ {1, . . . , d} , and if one of the products ∗B,GDi , ∗B′,GDi , ∗C,GDi ,

∗B,GEi ,∗B′,GEi , or∗C,GEi , is CI, then X ≤dcx Y .

Proof: Statement (i) follow from Proposition 1, Theorem 2, and the invariance of the supermodular order under
increasing transformations in (4). Statement (ii) is a consequence of (i) and [45, Theorem 4.5].

Examples of several well-known families of bivariate copulas that exhibit positive dependencies and are ordered
with respect to ≤lo-order and thus also with respect to the ≤∂2S -order are given in [4, Examples 3.18 and 3.19]. These
families are highly relevant for applications of Theorem 3; see also Remark 5(a).

Remark 4 (Upper/lower bounds in classes of partially specified factor models).
In a partially specified factor model, Xi = fi(Z, εi), i ∈ {1, . . . , d}, the joint distributions of (Xi,Z) are specified for all i ,
but the conditional distribution of (X1, . . . , Xd) | Z = z is unspecified for any z ; see [9]. The copula of a worst/best case
distribution is given by the upper/lower product of the bivariate dependence specifications. Several ordering criteria
for the upper product

∨
G Di and the lower product

∧
G Di of bivariate copulas D1, . . . ,Dd are given in [1, Theorem

3.10], [2, Theorem 1], and [4, Theorems 3.27 and 3.28]. It can be shown by an application of Theorem 5 that these
results are still valid for a general factor distribution function G and in particular also with respect to the stronger
notion of the supermodular order. As a consequence of these upper/lower product ordering results, the worst/best case
bounds in classes of partially specified factor models as given in [4, Theorems 4.5 - 4.8] are still valid for a general
factor model distribution function G and also hold true with respect to the stronger supermodular order.

The most commonly used one-factor model in practical applications is the standard factor model. The copula
of (X1, . . . , Xd) is then given by the conditional independence product ΠGDi , where Di = CXi,Z , i ∈ {1, . . . , d}, and
where FZ = G . Often, the variables X1, . . . , Xd exhibit positive dependencies which motivates to consider positive
dependence properties for the conditional independence product; see Section 2.2 for the concepts PSMD, CIS, CI,
and MTP2 .

The following result establishes several positive dependence properties of the conditional independence product
based on positive dependence conditions on the bivariate copula specifications.

Proposition 2 (Positive dependence concepts for conditional independence product).
Let E1, . . . , Ed ∈ C2 be bivariate copulas and G ∈ F 1 .

(i) If E1, . . . , Ed are CIS, then ΠGEi is PSMD.

(ii) If E1 and E2 are CI, then E1
ΠGE2 is CI.

(iii) If E1, . . . , Ed are MTP2 , then ΠGEi is MTP2 .
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Proof: For all i , since Ei is CIS, it follows that Ei ≥lo Π
2 ; see, e.g., [45]. Hence, Theorem 1 implies

Πd = Πd
i=1,GΠ

2 ≤sm ΠGEi ,

which proves statement (i). For continuous G , statement (ii) is given by [33, Proposition 2(b)] by an application of
the integration by parts formula. The general case follows similarly with an argument as in (C.24). Statement (iii) is
a consequence of [20, Proposition 7.1] using the closure of the MTP2-property under marginalization.

As a direct consequence of Theorem 3 (and Proposition 2), we obtain for the conditionally independent factor
model, which includes the widely-used standard factor model, the following comparison result.

Corollary 4 (Ordering results for conditionally independent factor models).
Assume that B = C = Πd = (Πd) and assume that Di ≤∂2S ,G Ei, i ∈ {1, . . . , d} .

(i) If Ei is CIS and Xi
d
= Yi for all i ∈ {1, . . . , d} , then X ≤sm Y .

(ii) If Ei is MTP2 and Xi ≤cx Yi for all i ∈ {1, . . . , d} , then X ≤dcx Y .

Remark 5.

(a) If both Di and Ei are CIS, then the dependence condition Di ≤∂2S ,G Ei in Theorem 3 and Corollary 4 is satisfied
whenever Di ≤lo Ei , compare [4, Lemma 3.16(ii)]. Hence, Corollary 4 provides in particular simple conditions
for a supermodular or directionally convex comparison of positively dependent distributions. Further, Corollary
4 includes the cases of independence and comonotonicity: If D1 = · · · = Dd = Π2 , then ΠGDi = Πd and thus
X1, . . . , Xd are independent. If E1 = · · · = Ed = M2 and if G is continuous, then Πd

i=1Ei = Md and Y1, . . . ,Yd are
comonotonic.

(b) Our comparison results for factor models in Theorem 3 and Corollary 4 are based on the general supermodular
comparison criterion for ∗-products in Theorem 5 (in Appendix B) extending comparison results for factor mod-
els known from the literature in several respects. For conditionally independent factor models, a supermodular
comparison result is given in [6, Theorem 3.1] which follows from Corollary 4 (i) by a mixing argument and
choosing Di = Π2 for all i ; see also [46, Section 8.3.2].
Integral inequalities for conditionally independent factor models have also been studied in the literature under
some structural assumptions. For exchangeable and for conditionally i.i.d. random variables, integral inequal-
ities are given in [54] and [59], respectively. Ordering results for positively dependent random variables with
common marginals are derived in [60] applying a conditional independence argument. In Corollary 4, the setting
is more general because we compare conditionally independent random variables without further distributional
assumptions. Note that Corollary 4 also allows to consider negatively depend distributions, for example, choosing
D1 = W2 and D2 = E1 = E2 = M2 yields W2 = Π2

i=1Di ≤sm Π
2
i=1Ei = M2 applying Corollary 4 (i).

5. Improved risk bounds in classes of conditionally independent factor models

In this section, we determine for various classes of conditionally independent factor models improved upper
bounds with respect to the supermodular order. This yields by (2) improved portfolio risk bounds for applications in
finance and insurance. The improvement refers to a comonotonic random vector denoted by

Xc := (Xc
1, . . . , X

c
d) := (F−1

X1
(U), . . . , F−1

Xd
(U)) , U ∼ U(0, 1) , (22)

which is the greatest element with respect to ≤sm in the pure marginal model, where the univariate marginal distri-
butions are specified, but the dependence structure is not specified; see [58] and [46, Theorem 3.9.8]. Note that the
supermodular order is invariant under increasing transformations, see (4), and thus all the examples with respect to
the supermodular order apply for any choice of marginal distributions.

For E1, . . . , Ed ∈ C2 , for F1, . . . , Fd,G ∈ F 1 , and for a random variable Z with FZ = G , consider the class of
conditionally independent factor models

Mci :=
{
X = (X1, . . . , Xd) | FXi = Fi , CXi,Z ≤∂2S ,G Ei , i ∈ {1, . . . , d} , CX|Z=z = Π

d for PZ-almost all z
}

(23)
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with upper bounds on the copula specifications in the Schur-order and with fixed marginal distributions.
Allowing also for flexibility with respect to the marginal distribution, consider similarly the class of conditionally

independent factor models

Mci
cx :=

{
X = (X1, . . . , Xd) | FXi ≤cx Fi , CXi,Z ≤∂2S ,G Ei , i ∈ {1, . . . , d} , CX|Z=z = Π

d for PZ-almost all z
}

(24)

with upper bounds on the copula specifications in the Schur-order and, now, with marginal distributions that are upper
bounded in the convex order.

As an immediate consequence of Corollary 4 and (4), we obtain improved risk bounds for the classes Mci and
Mci

cx of conditionally independent factor models. In particular, the improved bounds are the greatest elements in these
classes.

Theorem 4 (Improved risk bounds).
Let Y be a d-dimensional random vector with FY = ΠGEi ◦ (F1, . . . , Fd) .

(i) If Ei is CIS for all i ∈ {1, . . . , d} , then Y ∈ Mci and X ≤sm Y ≤sm Xc for all X ∈ Mci .

(ii) If Ei is MTP2 for all i ∈ {1, . . . , d} , then Y ∈ Mci and X ≤dcx Y ≤sm Yc for all X ∈ Mci
cx .

Note that the comonotonic vector Xc in statement (i) of the above result has the same distribution as the comono-
tonic vector Yc because all elements inMci have the same univariate marginal distributions.

6. Conclusions

In this paper, we extend and strengthen several ordering results from the literature to general factor models and to
the stronger notion of the supermodular and directionally convex order. The strengthened ordering results are rendered
possible by some new general supermodular comparison conditions for copula products. The proof of this result is
based on mass transfer theory in [43] which characterizes various integral stochastic orderings in duality. As con-
sequence we obtain several simple ordering conditions for general factor models and, in particular, for conditionally
independent factor models. As illustrated, our novel results are of considerable relevance in risk analysis allowing to
derive sharp risk bounds for various classes of risk models.
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Appendix A. Definition of ∗-product for general G

For a general factor distribution function G , the definition of the ∗-product requires the use of the generalized dif-
ferential operator ∂G which has the important property that it provides a representation of the conditional distribution
function as a copula derivative also for general marginal distribution functions. More precisely, denote by

ιG : [0, 1]→ Ran(G) , t 7→ G ◦G−1(t) ,

ι−G : [0, 1]→ Ran(G−) , t 7→ G− ◦G−1(t)
(A.1)

the transformation of the identity with respect to to G and G−, respectively, where G−1 : [0, 1]→ R∪ {±∞} defined by
G−1(u) := inf{x |G(x) ≥ u} , inf ∅ = ∞ , is the generalized inverse of G , and G− denotes the left-continuous version
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of G . Several properties of the transformations ιG and ι−G are given in [4, Lemma A.1]. For a function f : [0, 1]→ R ,
the generalized differential operator ∂G is then defined by the left-hand limit

∂G f (t0) := lim
t↗t0

f (ιG(t0)) − f (ι−G(t))
ιG(t0) − ι−G(t)

, (A.2)

t0 ∈ (0, 1] , if the limit exists. As usual, denote by ∂G
i the operator ∂G which is applied to the ith coordinate of a

function of several arguments.
Now, for a bivariate random vector (Xi,Z) with copula C ∈ C2 , there exists for all x ∈ R a G-null set Nx ⊂ R such

that the conditional distribution function of Xi | Z = z is given by

FXi |Z=z(x) = ∂G
2 C(FXi (x),G(z)) (A.3)

for all z ∈ R \ Nx ; see [4, Theorem 2.7].

The ∗-product of bivariate copulas D1, . . . ,Dd is defined in dependence on a measurable family B = (Bt)t∈[0,1] of
d-copulas and on a distribution function G ∈ F 1 as follows.

Definition 2 (∗-product of copulas, [4]).
(i) Let B := (Bt)t∈[0,1] be measurable, Bt ∈ Cd for all t ∈ [0, 1] , and let G ∈ F 1 . For bivariate copulas D1, . . . ,Dd ∈

C2 , the (d-dimensional) ∗-product of D1, . . . ,Dd with respect to B and G is defined by

∗B,GDi (u) := ∗d
i=1,B,GDi (u) :=

∫ 1

0
BG

t

(
∂G

2 D1(u1, t), . . . , ∂G
2 Dd(ud, t)

)
dt (A.4)

for u = (u1, . . . , ud) ∈ [0, 1]d where BG
t is defined by

BG
t :=

Bt , if ι−G(t) = ιG(t) ,
1

ιG(t)−ι−G(t)

∫ ιG(t)
ι−G(t) Bs ds , if ι−G(t) , ιG(t) ,

(A.5)

for the transformations ιG and ι−G given by (A.1).

(ii) If there exists a copula B ∈ Cd such that BG
t = B for Lebesgue-almost all t , then we write ∗B,GDi := ∗B,GDi

and call it simplified ∗-product of D1, . . . ,Dd with respect to B and G .

If G is continuous, then ∂G
2 = ∂2 and ι−G(t) = ιG(t) for all t and thus the ∗-product in the above definition coincides

with (9). We sometimes use the notation D1∗B,G · · · ∗B,GDd := ∗B,GDi for the ∗-product of d bivariate copulas
D1 . . . ,Dd with respect to to B and G .

Appendix B. General supermodular comparison result for copula products

In this section, we formulate a general comparison result which provides sufficient conditions for the supermodular
ordering of ∗B,GDi with respect to the bivariate dependence specifications Di . These sufficient conditions are given
in terms of the lower orthant order for approximating sequences of ∗-products with finite support. In contrast to
the supermodular order, such lower orthant ordering conditions can often easily be verified. As application of this
theorem, we establish in Sections 3.1 and 3.2 several relevant supermodular ordering results for ∗-products.

The formulation of the supermodular ordering criterion requires a discretization of ∗-products. We introduce the
necessary notation as follows.

For n ∈ N and any integer d ≥ 1 denote by

Gd
n : =

{
( i1

n , . . . ,
id
n ) | ik ∈ {1, . . . , n}, k ∈ {1, . . . , d}

}
, Gd

n,0 : =
{
( i1

n , . . . ,
id
n ) | ik ∈ {0, . . . , n}, k ∈ {1, . . . , d}

}
the (extended) uniform n-grid of dimension d with edge length 1/n . Denote by M1

d(Gd
n,0) the class of signed measures

µ on the Borel σ-algebra on Rd with support in Gd
n,0 such that µ(Gd

n,0) = 1 .
The following notion of an n-grid d-copula is related to an d-subcopula with domain Gd

n , see, e.g., [47, Definition
2.10.5]. For our purposes, we also need a signed version. Denote by ⌊·⌋ the componentwise floor function.
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Definition 3 (Grid copula).
For d ∈ N , a (signed) n-grid d-copula (shortly, grid copula) is the measure generating function D : [0, 1]d → R of a
(signed) measure µ ∈M1

d(Gd
n,0) with uniform univariate marginals, i.e., one has

(i) D(u) = D(⌊nu⌋/n) = µ([0, ⌊nu⌋/n]), u ∈ [0, 1]d , and

(ii) for all i ∈ {1, . . . , d} , it holds D(u1, . . . , ud) = k/n, k ∈ {0, . . . , n} , whenever ui = k/n and u j = 1, j , i .

Denote by Cd,n (Cs
d,n) the set of (signed) n-grid d-copulas.

Define by ∆i
n the difference operator of length 1/n applied to the i-th argument of a function f : [0, 1]d → R , i.e.,

∆i
n f (u) := f (u) − f (u1, . . . , ui−1,max{ui −

1
n , 0}, ui+1, . . . , ud) (B.1)

for u = (u1, . . . , ud) ∈ [0, 1]d .We make use of two types of approximations of a copula D ∈ Cd :
For an approximation by distributions with finite support, denote by Gn(D) : [0, 1]d → [0, 1] the n-grid d-copula

associated with D defined by

Gn(D)(u) := D(⌊nu⌋/n) for all u ∈ [0, 1]d . (B.2)

For an approximation by copulas, denote by Chn(D) the checkerboard copula associated with D that distributes for
each cube Ik

n := ( k1−1
n ,

k1
n ] × · · · × ( kd−1

n ,
kd
n ] , k := (k1, . . . , kd) ∈ {1, . . . , n}d , the mass of D on Ik

n uniformly on Ik
n , i.e.,

for all x ∈ [0, 1]d , we have

Chn(D)(x) :=
∫

[0,x]
β(v) dv , β(v) :=

∑
k∈{1,...,d}n

∆1
n · · ·∆

d
nDn(k)

nd 1Ik
n
(v) ; (B.3)

see [42]. For an n-grid copula D ∈ Cd,n , the associated checkerboard copula Chn(D) is defined in the same way by
(B.3). Note that Chn(D) = Chn(Gn(D)) for all D ∈ Cd .

Denote by F 1
n := {G ∈ F 1 |Ran(G) ⊆ G1

n,0} the set of univariate distribution functions with finite range contained
in the extended n-grid G1

n,0 = {0, 1/n, . . . , (n − 1)/n, 1} .We define the ∗-product for signed grid copulas as follows.

Definition 4 (∗-product for signed grid copulas).
For G ∈ F 1

n and for all i ∈ {1, . . . , d} , let Di
n ∈ C

s
2,n be a signed n-grid copula with 0 ≤ ∂G

2 Di
n(ui,

k
n ) ≤ 1 for all

ui ∈ [0, 1] and k ∈ {1, . . . , n} . Then, define for a measurable family B = (Bt)t∈[0,1] of d-copulas the discrete ∗-product
of D1

n, . . . ,D
d
n with respect to B and G by

∗B,GDi
n(u) :=

∫ 1

0
BG

t

((
∂G

2 Di
n(ui, t)

)
1≤i≤d

)
dt , u = (u1, . . . , ud) ∈ [0, 1]d, (B.4)

where BG
t is defined by (A.5).

Similar to [4, Proposition 2.6], the ∗-product of (signed) grid copulas is a (signed) grid copula. Note that the
integrand in (B.4) is piecewise constant in t , because G ∈ F 1

n .

For bivariate copulas D,Dn , n ∈ N , denote by Dn
∂2
−→ D the ∂2-convergence of bivariate copulas defined by∫ 1

0
|∂2Dn(x, t) − ∂2D(x, t)| dt

n→∞
−−−−→ 0 for all x ∈ [0, 1] ; (B.5)

see [4, Section 2.4]. Note that the ∂2-convergence corresponds to the D1-convergence considered in [62].
To formulate a general criterion for the supermodular ordering of ∗-products, we state without proof the following

simple lemma on bivariate grid copula approximations. Since bivariate grid copulas correspond to doubly stochastic
matrices, it roughly states that, for grid approximations Dn, En ∈ C2,n , n ∈ N , of D, E ∈ C2 , the bivariate copula D
can be transformed into the bivariate copula E by successively transforming for all n ∈ N two columns of the matrix
associated with Dn into the corresponding columns of the matrix associated with En for all n ∈ N .

For signed grid copulas D, E ∈ Cs
d,n , the lower orthant order D ≤lo E is defined pointwise by D(u) ≤ E(u) for all

u ∈ [0, 1]d .
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Lemma 1. Let Di, Ei ∈ C2 be bivariate copulas with Di ≤lo Ei for all i ∈ {1, . . . , d} . Then, for all n ∈ N , there exist
finite sequences (Di

j,n)0≤ j≤mn of signed n-grid copulas in Cs
2,n such that

Ch(Di
0,n)

∂2
−→ Di, Ch(Di

mn,n)
∂2
−→ Ei, for all i , (B.6)

∆2
nDi

j−1,n(ui, t) = ∆2
nDi

j,n(ui, t) for all t ∈ G1
n \ {t∗, t

∗} , ui ∈ [0, 1] , i , j , (B.7)

0 ≤ ∆2
nDi

j(ui, t) ≤ 1 , for all t ∈ G1
n , ui , i , j (B.8)

Di
j−1,n ≤lo Di

j,n , for all i , j , (B.9)

for t∗, t∗ ∈ G1
n depending only on j and n .

Note that the sequences (Di
j,n)0≤ j≤mn in the above lemma are far from being uniquely determined.

The following result is a main result of this paper. It provides a general ≤lo-ordering criterion for the supermodular
ordering of∗B,GDi with respect to the specifications Di .

Theorem 5 (General supermodular ordering criterion for ∗-products).
For G ∈ F 1 , let (Gn)n∈N be an approximation of G with Gn ∈ F

1
n for all n such that ιGn → ιG almost surely pointwise.

Let Di, Ei ∈ C2 with Di ≤lo Ei be copulas with approximating sequences (Di
j,n)0≤ j≤mn , n,mn ∈ N , of signed grid

copulas in Cs
2,n satisfying (B.6) - (B.9) for all n ∈ N and 1 ≤ i ≤ d .

Assume for a measurable family B = (Bt)t∈[0,1] of d-copulas that

∗B,Gn
Di

j−1,n ≤lo ∗B,Gn
Di

j,n , j ∈ {1, . . . ,mn} and n ∈ N . (B.10)

Then, it follows that

∗B,GDi ≤sm ∗B,GEi .

The proof of the above theorem is given in Appendix C.2 and requires several tools from mass transfer theory
provided in Appendix C.1. Note that we make use of Theorem 5 to establish several supermodular comparison results
for copula products in Section 3. Corresponding comparison results for factor models are provided in Section 4.

Appendix C. Proof of the general supermodular ordering criterion for ∗-products

In this appendix, we prove Theorem 5 which requires several tools from mass transfer theory.

Appendix C.1. Construction of mass transfers for grid copulas
For the proof of Theorem 5, we need some tools from mass transfer theory which characterizes several integral

stochastic orders for distributions with finite support by duality; see [43], cf. [41].
Denote by δx , x ∈ Rd , the one-point probability measure in x . Further, denote for a finite signed measure µ on

(Rd,B(Rd)) by (µ+, µ−) the Jordan decomposition of µ , i.e., µ+ and µ− are the uniquely determined finite measures
such that µ = µ+ − µ− .

Then, for two finite signed measures P,Q supported on a finite subset of Rd , the signed measure Q − P is called a
transfer from P to Q . If

(Q − P)− =
n∑

i=1

αiδxi , (Q − P)+ =
m∑

j=1

β jδy j

then the transfer Q − P removes (probability) mass αi > 0 from point xi ∈ Rd for i ∈ {1, . . . , n} and adds (probability)
mass β j > 0 to the point y j ∈ Rd for j ∈ {1, . . . ,m} . The transfer Q − P is indicated by writing

n∑
i=1

αiδxi →

m∑
j=1

β jδy j .
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a) b) c)

d) = +

Fig. C.2 Every arrow illustrates a mass transfer of size η > 0 . a) illustrates a one-dimensional ∆-antitone or decreasing transfer; b)
illustrates a 2-dimensional ∆-antitone transfer; c) illustrates a 3-dimensional ∆-antitone transfer, which consists of a 2-dimensional
∆-antitone and a reverse 2-dimensional ∆-antitone transfer; d) illustrates a (3-dimensional) supermodular transfer, which is decom-
posed into two 2-dimensional ∆-antitone transfers, which are also supermodular transfers.

The reverse transfer corresponding to Q − P is defined as P − Q .

We make use of the following transfers. Denote by ∧ and ∨ the component-wise minimum and maximum, respec-
tively, of vectors having the same length.

Definition 5 (∆-antitone/increasing/supermodular transfer).
Let η > 0 and x, y ∈ Rd such that x ≤ y with strict inequality in k components, i.e., xi < yi, i ∈ I ⊆ {1, . . . , d} with
|I| = k, and x j = y j, j ∈ Ic = {1, . . . , d}\ I .Denote byVo(x, y) andVe(x, y) the set of all vertices z of the k-dimensional
hyperbox [x, y] such that the number of components with zi = xi , i ∈ {i1, . . . , ik} is odd and even, respectively.

(i) A transfer indicated by∑
z∈Vo(x,y)

η δz →
∑

z∈Ve(x,y)

η δz , if k is even,
∑

z∈Ve(x,y)

η δz →
∑

z∈Vo(x,y)

η δz , if k is odd,

is called (k-dimensional) ∆-antitone transfer.

(ii) A transfer indicated by

η δx → η δy resp. η δy → η δx (C.1)

is called (k-dimensional) increasing and decreasing transfer, respectively.

(iii) For v,w ∈ Rd such that v ∧ w = x and v ∨ w = y , a transfer indicated by

η (δv + δw)→ η (δv∧w + δv∨w)

is called (k-dimensional) supermodular transfer.

Denote by T −
∆
, T ↑ , T ↓ , and Tsm the set of ∆-antitone, increasing, decreasing, and supermodular transfers, re-

spectively. For x, y ∈ R1 , define by

T ↓x :=
{
µ | µ = η(δ(x,u1) − δ(x,u2)) , u1, u2 ∈ Rd , u1 ≤ u2 , η ≥ 0

}
,

T ↑y :=
{
µ | µ = η(δ(y,u2) − δ(y,u1)) , u1, u2 ∈ Rd , u1 ≤ u2 , η ≥ 0

}
16



the set of conditionally on the first variable decreasing and increasing transfers, respectively. Then, for x < y , denote
by

T ↓↑x,y :=
{
µ1 + µ2 | µ1 ∈ T ↓x , µ

2 ∈ T ↑y

}
(C.2)

the set of decreasing-increasing transfers conditional on x and y .

The following lemma is the key of the proof of Theorem 5. It states that a set of decreasing-increasing transfers
that corresponds to a set of (k ≥ 2)-dimensional ∆-antitone transfers can be decomposed into a set of supermodular
transfers.

Lemma 2. Let P,Q be finite (signed) measures with finite support in Rd+1 . Assume that P and Q have the same
univariate marginals. For fixed x < y , let {νℓ}ℓ ⊂ T

↓↑
x,y and {µℓ}ℓ ⊂ T −∆ be transfers. If Q − P =

∑
ℓ νℓ =

∑
ℓ µℓ , then

there exists a set {γℓ}ℓ ⊂ Tsm such that Q − P =
∑
ℓ γℓ .

Proof: We show that the transfers {µℓ} ⊂ T −∆ with Q − P =
∑
ℓ νℓ =

∑
ℓ µℓ can be chosen two-dimensional. Then the

statement is proved because every two-dimensional ∆-antitone transfer is supermodular.
Since P and Q have the same univariate marginal measures and Q − P =

∑
ℓ µℓ , no one-dimensional ∆-antitone

transfer µℓ is possible.
Assume for k ≥ 3 that a k-dimensional ∆-antitone transfer µℓ is necessary. Since for such k , any k-dimensional ∆-

antitone transfer consists of 2k−3 two-dimensional ∆-antitone and 2k−3 two-dimensional reverse ∆-antitone transfers,
this implies that a two-dimensional reverse ∆-antitone transfer is necessary; see Fig. C.2.
By definition of the class T ↓↑x,y in (C.2), every transfer νℓ is decreasing-increasing and, thus, of the form νℓ = ν1ℓ + ν

2
ℓ

where ν1ℓ and ν2ℓ are indicated by

η1
ℓδ(x,vℓ) → η

1
ℓδ(x,uℓ), η2

ℓδ(y,uℓ) → η
2
ℓδ(y,vℓ) ,

respectively, with uℓ ≤ vℓ and η1
ℓ , η

2
ℓ ≥ 0 . Since Q − P =

∑
ℓ νℓ , this means that no 2-dimensional reverse ∆-antitone

transfer is necessary.

Appendix C.2. Proof of Theorem 5

We make use of the following result which states that for random vectors with identical copula, the lower orthant
order coincides with the converse stochastic order; cf. [50, Proposition 7] and [45, Theorem 4.1].

Proposition 3. Let X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) be random vectors with identical copula C ∈ Cd , i.e.,
C = CX = CY . Then, X ≤lo Y and X ≥st Y are equivalent.

Proof: Assume X ≤lo Y . For a random vector (U1, . . . ,Ud) ∼ C holds

X =
(
F−1

i (Ui)
)

1≤i≤d
, Y =

(
G−1

i (Ui)
)

1≤i≤d
(C.3)

almost surely where Fi = FXi , Gi = FYi , i ∈ {1, . . . , d} . Then, X ≤lo Y implies Xi ≤lo Yi which means that Fi(x) ≤
Gi(x) for all x ∈ R . But this is equivalent to F−1

i (t) ≥ G−1
i (t) for all t ∈ [0, 1] , which implies X ≥st Y due to the

representation in (C.3).
The reverse direction follows from choosing functions of the form f (x) = −

∏d
i=1 1{xi≤ti} , x = (x1, . . . , xd) ∈ Rd ,

for ti ∈ R , i ∈ {1, . . . , d} .

For the proof of Theorem 5, we need a version of the above statement for signed grid distributions. Similar to the
case of probability measures, there is a one-to-one correspondence between a signed measure µ on Gd

n and a measure
generating function F by F(x) = µ([0, x]) for all x ∈ [0, 1]d .For i ∈ {1, . . . , d} , denote by Fi the i-marginal function
defined by Fi(xi) = F(x) for x ∈ [0, 1]d such that x j = 1 for all j , i . If 0 ≤ Fi(x) ≤ 1 for all xi and i , then similar to
Sklar’s theorem, F may be decomposed into F(x) = C(F1(x1), . . . , Fd(xd)) for all x = (x1, . . . , xd) ∈ [0, 1]d and for a
copula C : [0, 1]d → [0, 1] . The lower orthant and the stochastic order for generating functions of signed measures on
Gd

n are defined in the canonical way.
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Lemma 3. Let F,G be signed distribution functions on Gd
n with 0 ≤ F(x),G(x) ≤ 1 for all x ∈ [0, 1]d . Assume that F

and G have a common copula, i.e. CF = CG on [0, 1]d . Then, F ≤lo G implies F ≥st G .

Proof: Consider the measure νn := ndν , where ν follows the uniform distribution on the grid Gd
n . Then νn has mass

of size 1 at each grid point of Gd
n . Denote by µF and µG the signed measure associated with F and G , respectively.

Then, the measures νF := (µF+νn)/(nd+1) and νG := (µG+νn)/(nd+1) are probability measures on Gd
n with νF ≤lo νG

and with a common copula. Hence, Proposition 3 implies νF ≥st νG . This yields∫
f dµF = (nd + 1)

∫
f dνF −

∫
f dνn ≥ (nd + 1)

∫
f dνG −

∫
f dνn =

∫
f dµG

for all increasing functions f , which implies that F ≥st G .

Denote by⇝ convergence in distribution and recall the ∂2-convergence
∂2
−→ in (B.5). By the following lemma, the

∗-product of copulas can be approximated by discretized ∗-products.

Lemma 4 (Grid copula approximation of ∗-products).
Let (Gn)n∈N be an approximation of G ∈ F 1 with Gn ∈ F

1
n such that ιGn → ιG almost surely pointwise. For all

i ∈ {1, . . . , d} , let Di ∈ C2 and (Di
n)n∈N be a sequence of n-grid copulas in C2,n such that Ch(Di

n)
∂2
−→ Di as n → ∞ .

Then for all measurable families B = (Bt)t∈[0,1] of d-copulas, it holds that

∗B,Gn
Di

n ⇝ ∗B,GDi for n→ ∞ . (C.4)

Proof: Since the discretized ∗-product coincides at the grid points Gd
n with the ∗-product of the associated checker-

board copulas, we obtain

∗B,Gn
Di

n(u) = ∗B,Gn
Ch(Di

n)( ⌊nu⌋
n ) −→ ∗B,GDi(u) for n→ ∞

for all u ∈ [0, 1]d . For the convergence, we apply [4, Theorem 2.23] and use the uniform continuity of the class Cd of
d-copulas.

Remark 6. Let D1, . . . ,Dd be bivariate copulas. The grid approximation of Di in (B.2) defines a sequence of n-grid
2-copulas that satisfies the assumptions of Lemma 4, i.e.,

Chn(Gn(Di)) = Chn(Di)
∂2
−→ Di, n→ ∞ (C.5)

for all i ; see [42, Theorem 5] for the convergence. Hence, we obtain for the ∗-product of the canonical grid copulas
Di

n = Gn(Di) , i ∈ {1, . . . , d} , the convergence in (C.4), i.e.,

∗B,Gn
Gn(Di)⇝ ∗B,GDi, n→ ∞ (C.6)

for (Gn),G , and B as in Lemma 4.

We are now able to provide the proof of the general supermodular ordering criterion.

Proof of Theorem 5: We show for all n ∈ N that

∗B,Gn
Di

n,0 ≤sm ∗B,Gn
Di

mn,n . (C.7)

Then, the statement follows from the convergence of the grid copula approximations in Lemma 4 and from the closure
of the supermodular order under weak convergence; see [44, Theorem 3.5]. Note that both ∗-products in (C.7) are
probability distribution functions.

In order to prove (C.7), we define for G′ ∈ F 1
n , for a measurable family C = (Ct)t∈[0,1] of d-copulas, and for

Ci
n ∈ C

s
2,n with 0 ≤ ∂G′

2 Ci
n ≤ 1 for all i ∈ {1, . . . , d} , the extended ∗-product⋆d

i=1,B,G′C
i
n : [0, 1]d+1 → [0, 1] by

⋆C,G′Ci
n(u) :=⋆d

i=1,C,G′C
i
n(u) :=

∫ ι+G′ (u0)

0
CG′

s

(
(∂G′

2 Ci
n(ui, s))1≤i≤d

)
ds,
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for u = (u0, u1, . . . , ud) ∈ [0, 1]d+1, where CG′
t is given as in (A.5) and where ι+G denotes the right-continuous version

of ιG . Note that ι−G is left-continuous, but ιG is in general neither left- nor right-continuous; see [4, Lemma A.1 (vi)
and (viii)]. Similar to (B.4), Cn :=⋆C,G′Ci

n is a signed n-grid (d + 1)-copula on Gd+1
n . Denote by C[t]

n where

C[t]
n (u1, . . . , ud) := ∂G′

1 Cn(t, u1, . . . , ud) = 1
ι+G′ (t)−ι

−

G′ (t)

∫ ι+G′ (t)

ι−G′ (t)
CG′

s

(
(∂G′

2 Ci
n(ui, s))1≤i≤d

)
ds, (C.8)

for (u1, . . . , ud) ∈ [0, 1]d, the conditional signed measure generating function of Cn under u0 = t ∈ G1
n . Note that both

ι+G′ (t) and ι+G′ (t) − ι
−
G′ (t) take values in {1/n, 2/n, . . . , 1} , because G′ ∈ F 1

n ; see Lemma [4, Lemma A.1].
Now, for fixed j ∈ {1, . . . ,mn} and n ∈ N , we abbreviate the bivariate grid specifications from the assumptions of

Theorem 5 by Di
n := Di

j−1,n and Ei
n := Di

j,n for i ∈ {1, . . . , d} , and consider the extended ∗-products Dn := ⋆B,Gn Di
n

and En :=⋆B,Gn Ei
n , which are well-defined due to condition (B.8). Using that Ran(Gn) ⊂ G1

n,0 , conditions (B.7) and
(B.9) imply that

∂Gn
2 Di

n(·, s) = ∂Gn
2 Ei

n(·, s), s ∈ (tr−1, tr), tr ∈ Ran(Gn) \ {t∗, t∗, 0} ,

∂Gn
2 Di

n(·, t∗) ≤lo ∂
Gn
2 Ei

n(·, t∗), s ∈ (tr−1, tr), tr = t∗ ,

∂Gn
2 Di

n(·, t∗) ≥lo ∂
Gn
2 Ei

n(·, t∗), s ∈ (tr−1, tr), tr = t∗ .

This yields for the conditional signed measure generating functions that

D[t]
n = E[t]

n for all t ∈ Ran(Gn) \ {t∗, t∗, 0} , D[t∗]
n ≤lo E[t∗]

n , D[t∗]
n ≥lo E[t∗]

n , (C.9)

using that BGn
s , s ∈ [0, 1] , is a copula and, thus, componentwise increasing. For the extended ∗-products, this implies

with condition (B.10) that

Dn ≤lo En . (C.10)

Hence, from a version of Theorem 2.5.7 in [43] for finite signed measures, we obtain the existence of a finite set
{µl}l ⊂ T

−
∆

of ∆-antitone transfers such that

PEn − PDn =
∑

l

µl . (C.11)

Further, the inequalities in (C.9) yield D[t∗]
n ≥st E[t∗]

n and D[t∗]
n ≤st E[t∗]

n ; see Lemma 3. Since the stochastic order
for signed measures with finite support is characterized by increasing transfers, there exists a finite set {ν↓l }l ⊂ T

↓ of
decreasing transfers and a finite set {ν↑l }l ⊂ T

↑ of increasing transfers such that

PE[t∗ ]
n
= PD[t∗ ]

n
+

∑
l

ν↓l , PE[t∗ ]
n
= PD[t∗ ]

n
+

∑
l

ν↑l ,

see [43, Theorem 2.5.1], which also holds true for finite signed measures. This implies

PEn − PDn =
∑

l

νl , (C.12)

for some set {νl}l ⊂ T
↓↑

t∗,t∗ of decreasing-increasing transfers.
Finally, (C.11) and (C.12) yield by Lemma 2 a set {γl}l ⊂ Tsm of supermodular transfers such that PEn − PDn =∑

l γl . This implies Dn ≤sm En; cf. Theorem 2.5.4 in [43]. Then, (C.7) follows from the closure under marginalization
and the transitivity of the supermodular order.
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Appendix D. Proofs of Theorems 1 and 2

In this section, we provide the proofs of Theorems 1 and 2 applying the supermodular ordering criterion in Theo-
rem 5.

Proof of Theorem 1: ’(i) =⇒ (ii)’: Since the supermodular order implies the lower orthant order, we have that
∗B,GDi ≤lo ∗B,GEi for all G ∈ F 1 and for all CIS copulas Di, Ei ∈ C2 with Di ≤lo Ei , i ∈ {1, . . . , d} . Due to
Theorem 3.7 in [4], this is equivalent to (ii).

To show ’(ii) =⇒ (i)’, we apply Theorem 5 as follows. Let (Gn)n∈N be an approximation of G such that Gn ∈ F
1

n
for all n and ιGn → ιG almost surely pointwise, for example, take the approximation in [4, Example 2.18(a)] assuming
without loss of generality that G is supported on a finite interval (see [4, Proposition 2.14]). Without loss of generality,
we assume that D1 , E1 and Di = Ei, i ∈ {2, . . . , d}. For all n ∈ N and 1 ≤ i ≤ d , we construct sequences (Di

j,n)0≤ j≤mn

of (signed) n-grid copulas in Cs
2,n that fulfill conditions (B.6) – (B.10) for the discretized ∗-product with respect to B

and Gn .
Consider the following algorithm which determines for fixed n ∈ N a sequence (D1

j,n)0≤ j≤mn of signed n-grid
copulas that transforms the discretized n-grid copula of D1 into the discretized n-grid copula of E1 by modifying in
each step only four entries in two columns and two rows of the associated mass matrices.

(I) Set j = 0 and k = 1 . For i ∈ {1, . . . , d} , define the n-grid copulas Di
0,n and Ei

n by Di
0,n := Gn(Di) and

Ei
n := Gn(Ei) .

(II) Mass compensation in line n−k+1 : If ∆n,2D1
j,n(k/n, t) = ∆n,2E1

n(k/n, t) for all t ∈ G1
n , go to step (III). Otherwise

fix the columns ℓ∗ := min{ℓ ∈ {1, . . . , n} | ∆n,2D1
j,n(k/n, ℓ/n) < ∆n,2E1

n(k/n, ℓ/n)} and ℓ∗ := max{ℓ ∈ {1, . . . , d} |
∆n,2D1

j,n(k/n, ℓ/n) > ∆n,2E1
n(k/n, ℓ/n)} of the mass matrix associated with D1

j,n . Define the transferred mass η by

η := min
{
∆n,2E1

n(k/n, ℓ∗/n) − ∆n,2D1
j,n(k/n, ℓ∗/n) , ∆n,2D1

j,n(k/n, ℓ∗/n) − ∆n,2E1
n(k/n, ℓ∗/n)

}
.

Define the signed n-grid copula D1
j+1 ∈ C

s
2,n by

D1
j+1,n(r/n, ℓ/n) :=

D1
j,n(k/n, ℓ/n) + η, if r = k and ℓ ∈ {ℓ∗, ℓ∗ + 1, . . . , ℓ∗ − 1} ,

D1
j,n(r/n, ℓ/n), else,

(D.1)

for r, ℓ ∈ {1, . . . , n} . Set j = j + 1 and repeat step (II).

(III) If k = n−1 , set mn := j , define Di
j,n := Di

0,n for all 2 ≤ i ≤ d and 1 ≤ j ≤ m , and stop the algorithm. Otherwise
set k = k + 1 and go to step (II).

Since Di = Ei for 2 ≤ i ≤ d , the algorithm produces in step (III) a constant sequence (Di
j,n)0≤ j≤m for each of these

indices i .
We show for i = 1 that

Ei
n = Di

mn,n, (D.2)

Ch(Di
0,n)

∂2
−→ Di, Ch(Di

mn,n)
∂2
−→ Ei, (D.3)

∆2
nDi

j−1,n(u, t) = ∆2
nDi

j,n(u, t), j ∈ {1, . . . ,mn}, t ∈ G1
n \ {t∗, t

∗}, u ∈ [0, 1], (D.4)

0 ≤ ∆2
nDi

j,n(·, t) ≤ 1, j ∈ {0, . . . ,mn}, t ∈ G1
n, (D.5)

Di
j−1,n ≤lo Di

j,n, j ∈ {1, . . . ,mn}, (D.6)

Di
j,n is CIS, j ∈ {0, . . . ,mn}, (D.7)

where t∗ = ℓ∗/n and t∗ = ℓ∗/n depend on j . For i ∈ {2, . . . , d} , the above equations are trivially fulfilled because the
sequence (Di

j,n)0≤ j≤m is constant and Di is CIS.
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From steps (II) and (III), we observe that only a finite number of iterations is possible which yields mn ∈ N0 .
Note that the algorithm already stops when the lower n − 1 rows of the matrix associated with D1

mn,n are adjusted to
the matrix associated with E1

n , because in this case also the first row given by ∆n,2D1
mn,n(1, ·) equals ∆n,2E1

n(1, ·) due to
the uniform marginal property of signed grid copulas on Gd

n,0 . This yields (D.2). Then, (D.3) follows with (C.5).
We show (D.4) - (D.7) inductively for j ∈ {0, . . . ,mn} . Note that D1

0,n ≤lo E1
n because D1 ≤lo E1 . If D1

0,n = E1
n ,

we have mn = 0 and all the properties are trivially fulfilled. Otherwise, it follows from D1
0,n ≤lo E1

n by construction of
the sequence (D1

j,n)1≤ j≤mn that ℓ∗ < ℓ∗ which implies η > 0 . Note also that D1
j,n is constructed from D1

j−1,n by adding
positive mass η to each of the two grid points (k/n, ℓ∗/n) and ((k + 1)/n, ℓ∗/n) , which lie in diagonal direction, and by
subtracting positive mass η from each of the two grid points (k/n, ℓ∗/n) and ((k+1)/n, ℓ∗/n) , which lie in off-diagonal
direction. This does not affect the uniform marginal property. Hence, each D1

j,n is a bivariate signed n-grid copula
with (potentially negative) mass distributed on G2

n .
For the base case j = 0 , properties (D.4), (D.5), and (D.7) are trivially fulfilled because D1 and E1 are bivariate

CIS copulas with D1 ≤lo E1 . For the induction step, fix j ∈ {1, . . . ,mn} and let k such that D1
j−1,n(k/n, ·) , D1

j,n(k/n, ·)
and D1

j−1,n(r/n, ·) = D1
j,n(r/n, ·) for 1 ≤ r ≤ k − 1 . Since ℓ∗ < ℓ∗ it follows by construction of D1

j,n that

∆2
nD j−1,n( k

n , t∗) < ∆
2
nD j,n( k

n , t∗) ,

∆2
nD j−1,n( k

n , t
∗) > ∆2

nD j,n( k
n , t
∗) ,

∆2
nD j−1,n( k

n , t) = ∆
2
nD j,n( k

n , t), t ∈ G1
n \ {t∗, t

∗} ,

∆2
nD j−1,n( r

n , ·) = ∆
2
nD j,n( r

n , ·), r ∈ {1, . . . , n} \ {k} .

This implies (D.4). To show (D.6), the above equations yield

D1
j−1,n(u, t) = D1

j−1,n( ⌊nu⌋
n ,

⌊nt⌋
n ) =

⌊nt⌋∑
ℓ=1

∆2
nD1

j−1,n( ⌊nu⌋
n ,

ℓ
n ) ≤

⌊nt⌋∑
ℓ=1

∆2
nD1

j,n( ⌊nu⌋
n ,

ℓ
n ) = D1

j,n( ⌊nu⌋
n ,

⌊nt⌋
n ) = D1

j,n(u, t) ,

for u, t ∈ [0, 1] , using that t∗ < t∗.
To show (D.5), we obtain for ∆2

nD1
j,n that

0 < ∆2
nD1

j−1,n( k
n , t∗) + η = ∆

2
nD1

j,n( k
n , t∗) ≤ ∆

2
nE1

n( k
n , t∗) ≤ 1 ,

0 ≤ ∆2
nE1

n( k
n , t
∗) ≤ ∆2

nD1
j−1,n( k

n , t
∗) − η = ∆2

nD1
j,n( k

n , t
∗) < ∆2

nD1
j−1,n( k

n , t
∗) ≤ 1 ,

0 ≤ ∆2
nD1

j−1,n( k
n , t) = ∆

2
nD1

j,n( k
n , t) ≤ 1, t ∈ G1

n \ {t∗, t
∗} ,

using that η > 0 , that 0 ≤ ∆2
nE1

n(k/n, t) ≤ 1 for all t and using the induction hypothesis 0 ≤ ∆2
nD2

j−1,n(k/n, t) ≤ 1,
t ∈ G1

n . Then the statement follows with ∆2
nD1

j−1,n(r/n, ·) = ∆2
nD1

j,n(r/n, ·) for all r ∈ {1, . . . , n} \ {k} .
To show (D.7), we need to prove that ∆2

nD1
j,n(u, t) is decreasing in t for all u ∈ [0, 1] . Since D1

j−1,n and D1
j,n are

signed n-grid copulas, it is sufficient to show this statement for (u, t) ∈ G2
n . Due to the induction hypothesis and the

definition of D1
j,n , it follows that ∆2

nD1
j,n(r/n, ·) is decreasing for all r ∈ {1, . . . , n} \ {k} . For ∆2

nD j,n(k/n, ·) , we obtain
that

∆2
nD1

j,n( k
n , t1) = ∆2

nE1
n( k

n , t1) ≥ ∆2
nE1

n( k
n , t∗) ≥ ∆

2
nD2

j,n( k
n , t∗)

= ∆2
nD2

j−1,n( k
n , t∗) + η > ∆

2
nD2

j−1,n( k
n , t∗) ≥ ∆

2
nD j−1,n( k

n , t2) = ∆2
nD j,n( k

n , t2) ,

t1 ∈ {1/n, 2/n, . . . , t∗ − 1/n} and t2 ∈ {t∗ + 1/n, t∗ + 2/n, . . . , t∗ − 1/n} , where each equality holds by definition of D1
j,n .

The first inequality holds true because E1 and thus E1
n is CIS. The second inequality follows with the definition of

η > 0 . For the last inequality, we use the induction hypothesis that D1
j−1,n is CIS. Similarly, we obtain

∆2
nD1

j,n( k
n , t2) = ∆2

nD1
j−1,n( k

n , t2) ≥ ∆2
nD1

j−1,n( k
n , t
∗) > ∆2

nD1
j−1,n( k

n , t
∗) − η

= ∆2
nD1

j,n( k
n , t
∗) ≥ ∆2

nE1
n( k

n , t
∗) ≥ ∆2

nE1
n( k

n , t3) = ∆2
nD1

j,n( k
n , t3) ,
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t2 ∈ {t∗ + 1/n, t∗ + 2/n, . . . , t∗ − 1/n} and t3 ∈ {t∗ + 1/n, t∗ + 2/n, . . . , 1} . This proves that D1
j,n is CIS and thus (D.7)

holds true.
Next, we prove for the discretized ∗-products that

∗B,Gn
Di

j−1,n ≤lo ∗B,Gn
Di

j,n, j ∈ {1, . . . ,mn} . (D.8)

Note that Di
j−1,n = Di

j,n for all i ∈ {2, . . . , d} . Since for all i and j the signed grid copula Di
j,n is CIS, it follows that

∂Gn
2 Di

j,n(u, t) is decreasing in t f.a. u ∈ [0, 1] .Define for i ∈ {1, . . . , d} and ui ∈ [0, 1] the functions fi, gi : [0, 1]→ [0, 1]
by fi(t) := ∂Gn

2 Di
j−1,n(ui, t) and gi(t) := ∂Gn

2 Di
j,n(ui, t) . Similar to the proof of [4, Theorem 3.7], we obtain from

Di
j−1,n ≤lo Di

j,n that∫ v

0
fi(t) dt = Di

j−1,n(ui, ι
−
Gn

(v)) + (v − ι−Gn
(v)) ∂Gn

2 Di
j−1,n(ui, v) ≤ Di

j,n(ui, ι
−
Gn

(v)) + (v − ι−Gn
(v)) ∂Gn

2 Di
j,n(ui, v) =

∫ v

0
gi(t) dt

with equality if v = 1 . This implies with the decreasingness of fi and gi that fi ≺S gi . Since (BGn
t )t∈[0,1] defined by

(A.5) is a family of componentwise convex copulas satisfying the submodularity Assumption 1 as B does, see [4,
Lemma 3.6], it follows from the Ky Fan–Lorentz theorem (see [22, Theorem 1]) that

∗B,Gn
Di

j−1,n (u) =
∫ 1

0
BGn

t ( f1(t), . . . , fd(t)) dt ≤
∫ 1

0
BGn

t (g1(t), . . . , gd(t)) dt = ∗B,Gn
Di

j,n (u)

for u = (u1, . . . , ud) , where the continuity assumption in the Ky Fan–Lorentz Theorem can be relaxed to piecewise
continuity in t. Since the above inequality holds true for all u ∈ [0, 1]d and for all j ∈ {1, . . . ,mn} , we obtain (D.8).
Since (D.3) - (D.6) and (D.8) are valid for all n ∈ N , we obtain from Theorem 5 that∗B,GDi ≤sm ∗B,GEi .

For the proof of Theorem 2, we need the following lemma which is a version of Skorohod’s theorem; see, e.g.,
[10, Theorem 25.6].

Lemma 5. Let fn, f : [0, 1] → R , n ∈ N , be integrable functions such that fn(t) → f (t) for Lebesgue-almost all t .
Then also the decreasing rearrangements converge, i.e., f ∗n (t)→ f ∗(t) for Lebesgue-almost all t .

Proof of Theorem 2: First, we consider the case where G is continuous. We show that

∗BDi ≤sm ∗BDi
↑
, (D.9)

where Di
↑

is the uniquely determined CIS copula such that Di
↑
=∂2S Di , see [4, Proposition 3.17]. Since Di

↑
and Ei are

CIS, we obtain from Di
↑
≤∂2S Ei that Di

↑
≤lo Ei; see [4, Lemma 3.16(ii)]. Then, Theorem 1 yields

∗BDi
↑
≤sm ∗BEi . (D.10)

Hence, (15) follows from (D.9) and (D.10) with the transitivity of the supermodular order.
To show (D.9), we may assume without loss of generality that G has compact support; see [4, Proposition 2.14].

Let (Gn)n∈N be a sequence of distribution functions defined by Gn(x) := ⌈nG(x)⌉/n for x ∈ R . Since G is continuous
and has compact support, it holds that Ran(Gn) = {0, 1/n, 2/n, . . . , 1} and ιGn (t)→ ιG(t) = t for all t ∈ [0, 1] .

For n ∈ N , denote by j = j(k, ℓ) = 1, . . . , n(n−1)/2 a counting of all pairwise combinations of columns (k, ℓ)1≤k<ℓ≤n

of an (n × n)-matrix. Then, define for i = 1, . . . , d the n-grid copula Di
0,n as well as the n-grid copula sequences

(Di
j,n)1≤ j≤mn = (D j(k,ℓ),n)1≤k<ℓ≤n , mn = n(n − 1)/2 , by

Di
0,n := Gn(Di) , Di

j,n(u, t) :=
⌊nt⌋∑
r=0

∆2
nDi

j,n(u, r
n ), (u, t) ∈ [0, 1]2, j = j(k, ℓ) ∈ {1, . . . ,mn} , k < ℓ .

∆2
nDi

j,n(u, t) :=


∆2

nDi
j−1,n(u, t) for t ∈ G1

n \ {
k
n ,
ℓ
n } ,

max{∆2
nDi

j−1,n(u, k
n ),∆2

nDi
j−1,n(u, ℓn )} for t = k

n ,

min{∆2
nDi

j−1,n(u, k
n ),∆2

nDi
j−1,n(u, ℓn )} for t = ℓn ,

(D.11)
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Note that ∆2
nDi

j,n(u, 0) = 0 by definition of the difference operator ∆2
n in (B.1). We show for i ∈ {1, . . . , d} that

Chn(Di
0,n)

∂2
−→ Di , Chn(Di

mn,n)
∂2
−→ Ei , n→ ∞ , (D.12)

∆2
nDi

j,n(u, t) = ∆2
nDi

j−1,n(u, t), t ∈ G1
n \ {

k
n ,
ℓ
n }, u ∈ [0, 1] , j = j(k, ℓ), k < ℓ , (D.13)

0 ≤ ∆2
nDi

j,n(u, t) ≤ 1, u, t ∈ [0, 1], j ∈ {0, . . . ,mn} , (D.14)

Di
j−1,n ≤lo Di

j,n, j ∈ {1, . . . ,mn} (D.15)

Chn(Di
j−1,n) =∂2,S Chn(Di

j), j ∈ {1, . . . ,mn} (D.16)

Chn(Di
mn,n) is CIS. (D.17)

To show (D.16), observe that, by construction of the grid copula Di
j,n , for all rows of the associated mass matrix,

the entries of the columns k and ℓ (where k < ℓ) are rearranged into a decreasing order. Since rearrangements do
not affect the Schur-order, (D.16) follows. After all such rearrangement with respect to all pairwise combinations of
columns, the mass matrix of the resulting grid copula Di

mn,n has decreasing entries in each row. Thus, the associated
checkerboard copula is CIS, i.e., (D.17) follows.

To show (D.12), define for u ∈ [0, 1] and n ∈ N the functions fn,i, gn,i, fi, gi : [0, 1]→ [0, 1] by

fn,i(t) := ∂Gn
2 Chn(Di

0,n)(u, t) = ∂Gn
2 Di

0,n(u, t) , fi(t) := ∂2Di(u, t) ,

gn,i(t) := ∂Gn
2 Chn(Di

mn,n)(u, t) = ∂Gn
2 Di

mn,n(u, t) , gi(t) := ∂2Di
↑
(u, t) ,

whenever the derivative exists, and by 0 elsewise. From (D.16) and (D.17), we obtain that gn,i is the decreasing
rearrangement of fn,i , i.e., gn,i = f ∗n,i Lebesgue-almost surely. Since Di

↑
is the uniquely determined CIS copula such

that Di
↑
=∂2S Di , it follows that gi is the decreasing rearrangement of fi , i.e., gi = f ∗i . Then, Lemma 5 implies that

gn,i → gi almost surely using that fn,i → fi almost surely. Since gn,i , n ∈ N , and gi are bounded, it follows that

gn,i → gi in L1 , which implies Chn(Di
mn,n)

∂2
−→ Di

↑
. Note that by definition of Di

0,n it holds that Chn(Di
0,n)

∂2
−→ Di , see

(C.5).
Properties (D.13), (D.14), and (D.15) follow immediately by construction of ∆2

nDi
j,n in (D.11).

Now, let u = (u1, . . . , ud) ∈ [0, 1]d . Consider for j = j(k, ℓ) the union J = ((k − 1)/n, k/n) ∪ ((ℓ − 1)/n, ℓ/n) of
intervals on which, for all i ∈ {1, . . . , d} , the values of ∂Gn

2 Di
j−1,n(ui, t) are rearranged with respect to t ∈ J in decreasing

order for j− 1 7→ j due to the construction in (D.11). Then we obtain from a version of the Lorentz theorem, see [37],
that ∫

J
BG

t

(
(∂Gn

2 Di
j−1,n(ui, t))1≤i≤d

)
dt ≤

∫
J

BG
t

(
(∂Gn

2 Di
j,n(ui, t))1≤i≤d

)
, (D.18)

because, restricted on the interval J , it holds that ∂Gn
2 Di

j,n(ui, ·)|J is the decreasing rearrangement of ∂Gn
2 Di

j−1,n(ui, ·)|J .
Since for Jc = [0, 1] \ J , the values of ∂Gn

2 Di
j−1,n(ui, ·)|Jc remain for j−1 7→ j essentially (with respect to the Lebesgue

measure) unchanged, (D.18) implies for the ∗-product of grid copulas that

∗B,Gn
Di

j−1,n(u) =
∫ 1

0
BG

t

(
(∂Gn

2 Di
j−1,n(ui, t))1≤i≤d

)
dt ≤

∫ 1

0
BG

t

(
(∂Gn

2 Di
j,n(ui, t))1≤i≤d

)
dt = ∗B,Gn

Di
j,n(u) .

This applies for all u ∈ [0, 1]d and j = j(k, ℓ) ∈ {1, . . . ,mn} , which yields

∗B,Gn
Di

j−1,n ≤lo ∗B,Gn
Di

j,n, j ∈ {1, . . . ,mn} . (D.19)

Now, we obtain, for the case that G is continuous, from (D.12) - (D.15) and (D.19) by an application of Theorem 5
the supermodular comparison in (D.9).

In the case that G is discontinuous, consider the bivariate copulas D̃i and Ẽi defined by

D̃i(u, t) :=

D(u, t) if ι−G(t) = ιG(t) ,
t · ∂G

2 D(u, t) if ι−G(t) , ιG(t) ,
, Ẽi(u, t) :=

E(u, t) if ι−G(t) = ιG(t) ,
t · ∂G

2 E(u, t) if ι−G(t) , ιG(t) ,
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for (u, t) ∈ [0, 1]2 . By an application of the chain rule, we obtain

∂2D̃i(u, t) = ∂G
2 Di(u, t) and ∂2Ẽi(u, t) = ∂G

2 Ei(u, t) for all u ∈ [0, 1] and for Lebesgue-almost all t ∈ [0, 1] . (D.20)

Note that ∂G
2 D(u, t) and ∂G

2 E(u, t) are constant in t if t ∈ (ι−G(t), ιG(t)) ; see [4, Lemma (xi) and (xii)]. Due to the
assumption that Di ≤∂2S ,G Ei , we have that

∂G
2 Di(ui, ·) ≺S ∂

G
2 Ei(u, ·), u ∈ [0, 1] . (D.21)

Hence, (D.20) and (D.21) imply D̃i ≤∂2S Ẽi . Since B = (Bt)t∈[0,1] is a family of supermodular functions satisfying
the submodularity assumption 1, also BG := (BG

t )t∈[0,1] does, see [4, Lemma 3.6], where BG
t is defined by (A.5). Note

that BG
t is not continuous in t . However, applying an approximation argument to the conditional copulas due to [4,

Theorem 2.23], we obtain from the first part of the proof that

∗BG D̃i =

∫ 1

0
BG

t

(
∂2D̃1(·, t), . . . , ∂2D̃d(·, t)

)
dt ≤sm

∫ 1

0
BG

t

(
∂2Ẽ1(·, t), . . . , ∂2Ẽd(·, t)

)
dt = ∗BG Ẽi .

This implies with (D.20) that

∗B,GDi =

∫ 1

0
BG

t

(
∂G

2 D1(·, t), . . . , ∂G
2 Dd(·, t)

)
dt ≤sm

∫ 1

0
BG

t

(
∂G

2 E1(·, t), . . . , ∂G
2 Ed(·, t)

)
dt = ∗B,GEi ,

which concludes the proof.
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