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Abstract: We consider a completely specified factor model for a risk vector X = (Xi,...,Xy), where the
joint distributions of the components of X with a risk factor Z and the conditional distributions of X given
Z are specified. We extend the notion of sk-product of d-copulas as introduced for d = 2 and continuous
factor distribution in Durante et al. [7] to the multivariate and discontinuous case. We give a Sklar-type
representation theorem for factor models showing that these *k-products determine the copula of a completely
specified factor model. We investigate in detail approximation, transformation, and ordering properties of
k-products and, based on them, derive general orthant ordering results for completely specified factor models
in dependence on their specifications. The paper generalizes previously known ordering results for the worst
case partially specified risk factor models to some general classes of positive or negative dependent risk factor
models. In particular, it develops some tools to derive sharp worst case dependence bounds in subclasses of
completely specified factor models.

Keywords: componentwise convex copulas, concordance order, upper product of bivariate copulas, factor model,

conditional independence, conditionally increasing in sequence

1 Introduction

A relevant class of distributions for modeling dependencies are factor models where the components of the
underlying random vector X = (X1,...,Xy) are supposed to depend on some common random factor Z
through

Xi=fi(Z,e;), 1<i<d

for some functions f; and a random vector (e1,...,&4) that is independent of Z . In this paper, we consider
the case where Z is a real-valued random variable. If the bivariate distribution of (X;, Z) is specified and the
distribution of X|Z = z is known for all ¢ and z, then the distribution of X is fully specified. We denote this
setting a completely specified factor model (CSFM).

For applications to risk modeling, partially specified factor models (PSFMs) are introduced in Bernard
et al. [4]. In these models, the distributions of (X;, Z) are specified. The joint distribution of (1, ..., &4) is, how-
ever, not prescribed. This means, that only the distributions of X; and Z as well as the copula D = Cx, 7z of
(X, Z) are given. Then, the worst case distribution in the PSFM is determined by the conditionally comono-
tonic random vector X5 = F)zll‘Z(U), . "F);;\Z(U))’ where U ~ U(0,1) is independent of Z, assuming
generally a non-atomic underlying probability space (22, A, P). If Z has a continuous distribution, the copula
of X% is given by the upper product of the bivariate copulas D see [2].

In standard factor models, the individual factors €1,...,e,4 are assumed to be independent. Then, the
distribution of X is completely specified and the components of X are conditionally independent given Z = z
for all z. Further, the copula of X is then given by the conditional independence product of the bivariate
specifications Di, which is an extension of the bivariate copula product introduced in Darsow et al. [5] to

arbitrary dimension, see [16].
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Fig. 1 On the left: A partially specified factor model with dependence specifications D!, ..., D% and risk factor dis-
tribution function G'. On the right: A completely specified factor model with dependence specifications E!,... E4,

conditional copula family C and factor distribution function G’ .

In this paper, we introduce and study the sk-product of copulas as an extension of the bivariate copula
product considered in Durante et al. [7] to the multivariate case and to general factor distribution functions in
order to model the copula of X = (f;(Z,¢;)); for general dependence structures among (¢1,...,£4) and also
discontinuous Z . We derive a Sklar-type theorem implying that the dependence structure of X is determined
by the *k-product of the dependence specifications in the CSFM. Further, we establish a general continuity
result for the *k-product in dependence on all its arguments which is useful for corresponding approximation
results. We study transformation properties of the k-product and introduce, as a counterpart of the upper
product, the lower product of bivariate copulas in the two- and three-dimensional case.

In Section 3, we derive general lower and upper orthant ordering results for the *k-product in dependence on
the copula specifications. This requires the consideration of integral inequalities like the rearrangement results
of Lorentz [17] and Fan and Lorentz [11]. We extend and strengthen several recent results on the lower and
upper orthant ordering of upper products to general k-products. In particular, we show that componentwise
convexity of the conditional copulas plays an important role for the ordering of the *k-products. We introduce
the <, g-ordering on the set of bivariate copulas based on the Schur-ordering of copula derivatives allowing to
derive a meaningful comparison criterion. We show that many well-known copula families satisfy this ordering.

Finally, in Section 4, we combine the sk-product ordering results with the ordering of marginal distributions
and obtain several general ordering results in CSFMs. As a consequence, this yields maximum elements and,
thus, sharp bounds w.r.t. the lower and upper orthant ordering for classes of PSFMs as well as for classes of

CSFMs with the conditional independence assumption.

2 The *-product of copulas in CSFMs

A d-copula is a distribution function C': [0,1]% — [0, 1] with uniform univariate marginal distribution functions.
Due to Sklar’s theorem, every d-dimensional distribution function F' can be decomposed into a composition

of a d-copula C' and the univariate marginal distribution functions F1,..., Fy of F' i.e.
F(z) = C(Fi(z1),. .., Fa(zq)) 1)

for all z = (z1,...,24) € R?. The copula C is uniquely determined on the Cartesian product X?:l Ran(F;)
of the ranges of F;, 1 < i < d. Further, for every d-copula and for all distribution functions Fi,..., Fy,
the right-hand side in (1) defines a d-variate distribution function, see the original papers of Sklar [30] and
Schweizer and Sklar [28], see also Nelsen [23], Riischendorf [26], and Durante and Sempi [10]. Denote by Cq4

the set of all d-copulas and by F? (FZ) the set of (continuous) d-dimensional distribution functions.
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In the setting of a completely specified factor model, the distribution function F' of X = (X1,...,Xy)

can be decomposed into

oo (oo}
F(:cl, ‘o 7££'d) = / Fz(xl, ey J}d) dG(Z) = / Cz (F1|Z(x1), ey Fdlz(ibd)) dG(Z) )
— 00 — 00
where F is the conditional distribution function of (X1, ..., Xy)|Z = z with univariate marginal conditional

distribution functions £y, and conditional copula C; € C4. Each Fj|, depends via

z

waﬂw:aﬂw@:/mwmm>

—0o0

only on the dependence specification D'=C x,,z and the marginal distribution functions F; and G, where
G = Fz denotes the distribution function of Z .

Altogether, this motivates to introduce the sk-product of copulas as a product of the specifications
Dl7 cee D4 e Ca, of the conditional copulas (C)., C. € C4, and of the risk factor distribution function
GeFl.Ina Sklar-type theorem, we show that the sk-product is a copula that describes the dependence
structure of the risk vector X in the CSFM. We give the basic properties of the sk-products that are used in
the following sections to develop several ordering results for sk-products and, thus, ordering results for CSFMs.

Our results extend the bivariate sk-product considered in Durante et al. [7] and the bivariate conditional
independence product introduced in Darsow et al. [5]. A discussion of some properties of bivariate *k-products
is given in Durante and Sempi [10, Section 5.5]. An important particular case of the sk-product in the present
paper is the multivariate conditional independence product which describes the dependence structure of the
commonly used factor models with conditional independence assumption, cf. Krupskii and Joe [16]. The
particular case of upper products that corresponds to upper risk bounds in partially specified factor models
has been investigated in Ansari and Riischendorf [2]. As a counterpart of upper products, we introduce the
lower product of bivariate copulas that describes best case bounds in the two-, respectively, three-dimensional
PSFM.

2.1 Definition of %-products

The consideration of general factor distributions needs the following notion of generalized differentiation. For
G € F! denote by

i1 [0,1] = Ran(G), t GoG 1),
15:[0,1] = Ran(G7), t—G oG (1)

the transformation of the identity w.r.t. to G, resp. G~ , where G™1: [0,1] = RU {#o0} given by G~} (u) :=
inf{z | G(x) > u}, inf § = oo, is the generalized inverse of G, and G~ is the left-side continuous version of G .
Several properties of the transformations ¢ and ¢ are given in Lemma A.1 in the appendix, see also Figure
2.

Define for a left-continuous function f: [0,1] — R the generalized differential operator ¢ by the left-hand
limit

aGfuwzzgmlf“G“w>—fuau», .

Ato - 1g(to) —g(t)

to € (0,1], if the limit exists. As usual, denote by 8Z-G the operator 9% which is applied to the i-th coordinate

of a function of several arguments.

Remark 2.1. (a) The denominator in (2) is positive for all 0 <t < tp < 1 because g(to) > to >t > 15(t)
by Lemma A.1(iv).
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Fig. 2 On the left: a distribution function G ; on the right: its corresponding transformations ¢g (dashed and solid
line) and ¢, (dotted and solid line) which both coincide with the identity function on the interior of the range of G
Note that ¢ is left-continuous, and g is neither left- nor right-continuous.

(b) If f is left-continuous and if the (ordinary) left-hand derivative f’ (to) := limy ny, w exists, then
Y f(to) exists for all G € F'. To see this, we know by (a) that vq(to) > to > limy g, 0 (t) . Hence,
if ta(to) = limg g 1o (t) = to, then % f(to) = fL(to). If ta(to) > limy ot (t), then % f(to) exists
since f and g are left-continuous, see Lemma A.1(vi).

(c) A useful transformation property of 0% is that
BGf(t) = aGf(LGv(t)) = 8Gf(G(x)) for all G € F', for G-almost all t ,and x = G~ (t). (3)
This is a consequence of Lemma A.1(v) considering the cases where G is continuous at x or has a jump

discontinuity at x, compare equations (38) and (39) in the proof of Proposition 2.2.

The following result gives the representation of a conditional distribution function by the univariate marginals

and the generalized partial derivative of the corresponding copula.

Proposition 2.2 (Representation of conditional distribution functions).
For F,G € F! , let X ~ F and Z ~ G be real random variables with copula C' € Co, i.e., C = Cx 7. Then,

the following statements hold true:

(i) For all x € R, there exists a G-null set Nz such that the conditional distribution function of X given

Z = z evaluated at x is represented by

Fx|z=s(@) = Jim SHREEL=EHABCEZR) _ o (r (@), 6() 0
for all z € Ng .
(i) There exists a G-null set N such that
Fx|z=2(@) = lim 5’ C(F(w), G(2)) ()

for all x € R and for all z € N€.

The proof is given in the appendix.

Remark 2.3. (a) For the representation of the conditional distribution function in (4) and (5), we make

use of the left-hand limit in the definition of the generalized differential operator given by (2). If G has a
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discontinuity at z , then the operator GQG is the difference quotient operator w.r.t. the second component of
C between G(z) and G~ (2). If G is continuous at z , the operator 85 reduces to the 0, -operator denoting
the left-hand partial derivative with respect to the second variable. Hence, if G is continuous for all z,
then it holds that 82G = 0,y . Denote by 02 the operator which takes the partial derivative w.r.t. the second
component of a multivariate function. Since copulas are almost surely partially differentiable, see Nelsen
[23, Theorem 2.2.7], it holds for all w, that 05 C(u,v) = 02C(u,v) for almost all v.

(b) We point out that the right-hand expression in (4) is not necessarily right-continuous in =, and, thus,
it does not generally define a distribution function in x. However, in the following definition of the %-
product as well as in most results of the paper, we integrate over the conditioning variable and, then, this

representation of the conditional distribution function is appropriate.

In the following definition, we extend the *-product introduced by Darsow et al. [5] for Markov structures,
and, for arbitrary conditional dependencies, by Durante et al. [7] (for d = 2) and Ansari and Riischendorf [2]
(ford >2)toGeF 1 allowing also discontinuous factor distribution functions.

We need a measurability assumption which is implicitly assumed in the above mentioned literature by
the definition of the corresponding integrals. We call a family B = (B¢);¢(o,1) of d-copulas measurable if the
mapping (t,u) — Bi(u), (t,u) € [0,1] x [0,1]¢, is measurable.

The *-product of bivariate copulas is defined in dependence on a measurable family B = (B¢);c[o,1] of

d-dimensional copulas and on a distribution function G € F e
Definition 2.4 (x-product of copulas).

(i) Let B := (Bt)¢c(o,1] be measurable, Bt € Cq,0 <t <1, andG € FL. For bivariate copulas D', ... D% e
Co, the (d-dimensional) s-product of D!, .. ., D% w.rt. B and G is defined by

1
*t D' (u) _/BE (a?pl(uhm.,.,aQGDd(ud,t)) at (6)
0

foru = (u1,...,uq) €10, 1]d where B is defined by

. [B iFiG) = 6,
Br=y o [ Bods,ifigt) # ). @
ta(t)—ig(t) “ig(t) G
(i) If there exists a copula B € Cyq such that Bt = B for almost all t, then we use the notion >|<1<Z<d D=
*]13<é<d D' and call it simplified *k-product ofD 7D w.r.t. B and G.
(i) If G is continuous, then the (simplified) s%k-product is abbreviated by *1<l<dD = *]13<é<dD and
>I<1<Z<d D= }B<é<d D' | respectively.

1<l<d D', similarly

We will often omit the upper indices and write *B g D' or *iB,GD instead of *p
for the simplified *k-product and the version for continuous G., We also sometlmes use the notation
D! XB,¢ " X¥B,G D = *B,G D' for the k-product of d bivariate copulas Dl...,Dd w.r.t. to B and
G.

Note that for fixed ui,...,uq € [0,1] the integrand in (6) is well-defined as a consequence of Remark
2.1(b) because copulas are Lipschitz-continuous. The justification for the simplified notation in (iii) of the
above definition is due to Proposition 2.14.

As usual, we denote by Hd, Md, and Wd, defined by

% (u) 1=y g, M () = min {ui}, W) = 1952 {Zuz s O}

the product copula, the upper Fréchet copula, and the lower Fréchet bound, respectively, where wis a copula

only for d < 2. As special k-products, we consider the following simplified products of bivariate copulas.
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Definition 2.5 (Some specific simplified *-products).
(i) The conditional independence product 42’5 defined as NgD" := *d, ¢ D*. 4
(it) The upper product is defined as \/ 5 D' := D'vg---vg D= *pa D'
(i) The lower product is defined as A\ D" := D' Ag -+ Ag D4 = *pwag D'

If G is gontinuous, we abbreviate the independence produgt by np' = HleDi, the upper product by \/Di =
\/?ZlDZ =D'v.--v D?, and the lower product by AD* =D'A---AD?.

Since W% is a copula only if d < 2, we clarify that for d > 3, the lower product is defined in the sense of (6).

The following result shows that the sk-product is a copula. It extends [2, Proposition 2.1] from continuous

to general factor distribution functions.

Proposition 2.6. For all measurable B = (Bt)te[o,l]’ By € Cq for dll t, for all G € F', and for all
DL ..., D% e ¢y , the k-product *B g Diisa d-copula.

Proof. Due to Proposition 2.2, the functions H., 1 < i < d, defined by Hé(u) = lim,, |, 8§;Di(v,G(z)) for
w e [0,1) and H:(1) := 8§ D*(1,G(2)) = 1 are univariate distribution functions for G-almost all z € R. Then,
by Sklar’s Theorem, F, defined by

Fa(ur,... uq) = BE ) (Hi(w1), ..., HE (ug)), (u1,...,uq) €1[0,1],

is a d-dimensional distribution function on [0,1]¢, where (Bf) is defined by (7). It follows that

*B,G D' (u1,...,uq) = BtG (8§;D1(u1,t), RN OQGDd(ud,t)> dt

Q

B

G (95D w6 t)), ., 05 D (g, (1)) at

B

R W O | O~

) (aQGDl(ul, G(2), ..., 05 D% (ug, G(z))) dG(2)

QAR

BS., (H;(ul),...,Hj(ud)) dG(z) = /Fz(ul,...,ud)dG(z). 8)
R

For the second equality, we apply (3) and use that B = Bi(t) which follows from Lemma A.1(v). The third
equality follows from the transformation formula, see, e.g., [33, Theorem 2]. For the fourth equality, we use
for fixed (uy,...,uq) € [0, 1] that H! (u;) = 82GDi(ui, G(2)),1<1i<d, for Pg-almost all z, see Proposition
2.2. Since the last integral is a mixture of distribution functions, the product *p g D' is a distribution

function. The measurability of F%(uj,...,uq) in z is a consequence of the measurability of B and, by (4), of
t > 0§ D (u;,t) for all u; € [0,1],1<i <d.
It remains to show that *g g D has uniform marginals. For i € {1,...,d}, let v=(v1,...,vq) € [0, 1]d

with v; € [0,1] and v; =1 for all j # 4. Since o5 DI (vj,t) = 1for all t and j # 4, it follows that

1
k.0 D (nvva) = [ 05D 0t = |06 D00, G2 aG(:) =i,
0 R

where the first equality holds due to the uniform marginals of the copula BtG , the second one is a consequence
of the transformation formula and (3), and the last equality is given by Proposition 2.2 and the disintegration
theorem. O
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2.2 Sklar-type theorem for factor models

The following theorem describes the meaning of the notion of *k-products. It is a version of Sklar’s Theorem
for completely specified factor models and states that the dependence structure of a random vector (X;)1<ij<q
that follows a completely specified factor model, X; = f;(Z,¢;), is given by a *k-product of the specifications
G=Fz,C"'=Cx, z,and Bf =Cx, _ x,z-c-1(1),t€[0,1].

Theorem 2.7 (Sklar’s Theorem for completely specified factor models).

Let Fy .. 441 € FI*L be q (d + 1)-dimensional distribution function with univariate marginal distribution

functions Fi,...,Fyy1. Denote by F; 411 the bivariate marginal distribution function of the (i, d+1)-marginal,
by F,... q the distribution function of the first d components, and by F, AP (1) the conditional distribution
sesd| Fi

function of the first d components given that the (d+1)-st component equals Fd_+11 (t). Then, there exist bivariate

copulas C',...,C% € Cy and a measurable family B = (Bt)tejo,1] of d-copulas such that
Fyap1(@i,zar) = C (Fy(2;), Fag1(zas1)) fori=1,...,d, 9)

F, . F P
Fl,...,d|F;r11(t)(I17""md) =B, ! ((J;ﬁIGQdJ’ICl(Fi(wZ—),t)) ) for almost all t € [0,1], (10)
T 1<i<d
Fia(x1,...,2q) = *Bp,,, O (Fi(z1),..., Fi(zq)) (11)
for all (x1,...,2441) € R

Conversely, for distribution functions Fy,...,Fgy € FY . bivariate copulas C*, ..., C? € Cy and a measurable

family B = (Bt)¢c(o,1) of d-copulas, the family (Fl n (10) defines a (d + 1)-dimensional

,...,d\Fd;ll(t))te[o)l] ¢
distribution function Fy 441 with bivariate marginal distribution functions I; g1 given by (9) and d-variate
distribution function Fy g4 given by (11).

Further, for 1 < i < d, the copula C* is uniquely determined on Ran(F;) x Ran(Fg41), and de“ 18

uniquely determined on X(:Zl Ran (limwii. 85d+10i(Fi(wi), t)) for almost all t € [0,1].

Proof. Due to Sklar’s Theorem in the bivariate case, there exist C!,. .., C? € Cy such that (9) holds for all

(x1,...,2441) € R The univariate marginal distribution functions of F} dlFTL (1) Are given by
yeenn @ gy
F. -1 5 (z) = lim 8§d+10i(F¢(w), t), for all z € R and for almost all ¢ € [0, 1], (12)
il Fg 5 () wlx

1 <i < d, see Proposition 2.2(ii). Due to Sklar’s Theorem in the d-variate case, B € Cyq, t € [0,1], with

Bt(u) =F

—1 —1 d
1“'d|F<;+11 (t) (Fl‘Fr;}—ll(t) (ul)a ] Fd|F7+11(t) ('LLd)) ’ u= (U], e ,Ud) € [07 1} ’

d
for almost all ¢ defines a family B = (Bt);¢[o,1) of d-copulas such that (10) holds true. Note that B is measur-

(z) and [0,1] x [0,1] > (t,u;) — F ! (u;) ,

able because the mappings [0, 1] x R? 5 (t,z) = F .
HEF L (8)

d Pl (1)
1 <i < d, are measurable.

To show (11), we apply the disintegration theorem and obtain for all x = (z1,...,24) € R? that

1

1
Fi  q(z) = /Fl,.i.,d|Fd’+11(t)(x) dt = /Bth+1 ((afdﬂci(p‘i(mi),t)) > dt = xB F, ., ok (Fi(z)),
0 0

1<i<d
where for the second equality we use the representation in (10) and that lim,,|,. 6§d+10i(Fi(wi),t) =
8§d+1Ci(Fi (z;),t) for all t outside a Lebesgue-null set N, C [0,1], see Proposition 2.2.
For the converse direction, let Fy,..., Fgy1 € F1, ct, .. .,C’d € C2 and B = (Bt)te[OJ] be measurable,
Bt € Cq for all t. Then, by Proposition 2.2 and Sklar’s Theorem, F} AFTL (1) given by (10) defines a d-
send| F

variate distribution function for almost all ¢ € [0,1]. As a consequence of the measurability of B, the mapping
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t— Fl""’d|F¢l_1»11 (t)(a:) is measurable for all z € R?, cf. (8). Hence, Fi, . 441 defined by
Fay1(2)
B ar(w,2) = / Fl,...,le;le(t)(“”l’ oy mg)dt,
0
x = (z1,...,2q) € R, z e R,is a (d + 1)-dimensional distribution function with marginal distribution

function of the first d components given by

1
Fy, q(x) =P 441(z,00) = /de+1 ((82Fd+1ci(Fi(mi)at))1<i<d> dt
) <i<

wilT;

1
:/Bth“ (( lim 32Fd“0i(Fi(wi),t)> ) dt = *B,r,,, C' (Fi(21), ..., Fa(zq))
1<i<d
J <i<

and bivariate marginal distribution functions w.r.t. to the i-th and (d + 1)-st component given by

Fa1(2)
F ) )
Fi,d_t'_l(llfi,z):F17..‘7d+1(007...,OO,II:i,OO,...,OO,Z) = / 82(“»16'Z (Fl(x1)7t)) dt:cl(Fl(xl)7Fd+1(z))
0
The uniqueness properties follow directly from the uniqueness properties in Sklar’s Theorem. O

Remark 2.8. (a) For Fy,...,F3,G € FL et (X1,...,Xq,Z) be a (d+ 1)-dimensional random vector with
Xi~F;,1<i<dand Z ~ G. Then, from Theorem 2.7 it follows that

(Xl,A . ~7Xd) ~ *B7G Dl(Fh. . ~7Fd)7

for D' = Cx,;,z and B = (Bt);c[o,1] measurable such that Bf = Cx,,...Xq|Z2=G—1(t) S the conditional
copula of (X1,...,Xq) given Z =G~ L(t).
(b) As a weakening of (10), there exists for all x = (z1,...,24) € R? a Lebesgue-null set Ny such that

F, F, i
Fl,---,d\F@_ll(t)(x) = B, ((62 d+1CZ(Fi(xi),t))1Si§d) for allt € Ny,

cf. Proposition 2.2.

As a consequence of Sklar’s theorem 2.7 for factor models, the conditional independence product, the upper
product, and the lower product is characterized by conditional independence, conditional comonotonicity, and

conditional countermonotonicity, respectively.

Corollary 2.9. For 1 <i<d and F; € .7:1, let X; ~ F; be random variables on a mon-atomic probability
space. Then, for G € Fland Dl7 R D% e Ca, the following statements hold true.

(i) (X1,...,Xq) ~ UgD'(Fy,...,Fy) if and only if there exists a random variable Z ~ G such that
(X1,...,Xq)|Z = z is independent for G-almost all z.
(it) (X1,...,Xq) ~ Vg D' (Fy,...,Fy) if and only if there exists a random variable Z ~ G such that

(
(X1,...,Xq)|Z = z is comonotonic for G-almost all z.
(iii) (X1,X2) ~ DYAGD? (F1, Fy) if and only if there exists a random variable Z ~ G such that (X1, X2)|Z =

z is countermonotonic for G-almost all z .

Throughout the following sections, the copula families B and C are assumed to be measurable.
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2.3 Basic properties of *-products

For a d-copula C, denote by C the corresponding survival function and by C its survival copula. Then, the

survival function and the survival copula of the *k-product are determined as follows.

Proposition 2.10 (Survival function and survival copula).

The survival function *B g Dt and the survival copula xg ¢ D? of the *-product *B ¢ D’ are given by

1
*B.cDi(u / BE 1—82GD (ur,0)s. .1 — 0§ DHuy, t )) dt (13)
0
1
*B.g Di(u / 1fagc"Dl(lful,t),...,l78§Dd(17ui,t)) dt,
0
foru = (uy,...,ug) €[0,1]%, where BE is the survival copula of B .

Proof. Let (Uy,...,Uq, Z) be a random vector such that U; is uniformly distributed on (0,1), Z ~ G, and
(U1,....U)|Z =G (t) ~ By (lim 95 DY (wy,t), ..., lim 8§Dd(wd,t))
wi - wql-

for almost all ¢ € (0,1) and Cy, 7z = D for all 1 < i < d, cf. Remark 2.8(a). Then, it holds by (11) that
*B,G D(u) = P(U; < u;, 1 <i<d). Further, we obtain

*p.c D (u) = P(U; > u; Vi) = | P (Ui > Vil Z = G*l(t)) dt

Bf (1_ lim 05 DY(wi,t),...,1— lim 8§Dd(wd,t)> dt

wiuy wqluq

BC (1 89D (ur,b), ... 1— achd(u,-,t)> at,

I Il
S O O—_

where the third equality follows by the application of Sklar’s Theorem for survival functions to the conditional
survival function in the integrand, see, e.g., Georges et al. [12, Theorems 1 and 2| using that the i-th conditional
marginal survival function is given by FU,;\Z:Gﬂ(t)(ui) =1-Fy,jz=g-1(t)(wi) =1 = limy, 4, 0§ D (w;, t) .
The fourth equality is a consequence of Proposition 2.2.

The second statement follows from the relationship C’(ul, cooug) = O —ut,..., 1 —ug), (ut,...,uq) €
[0, l]d , between the survival copula C' and the survival function C of a copula C' € Cj. O

For some particular specifications, the sk-products simplify as follows.

Proposition 2.11 (Particular specifications).
For the %k-product, the following statements hold true.

(i) If DJ: = M? forall j # i, then kg D(u) = Di(ui7minj¢i{uj}).
(ii) If DI = W? forallj # i, then xp Dk( )= Dx (ul, minj;{u;}), where D (v1,v2) := v1—D(v1, 1—-v2).
(iii) If D' =T1% for all i, then B ¢ D'(u [0 BE (u)dt. ' _
(w) Marginalization property: For J C {1,...,d}, the J-marginal of xB g D" is given by *pr,g D’ with
bivariate copulas (Dj)je] and conditional copulas B' = (B}); € C) 7| where Bj is the J-marginal of By .
(v) Identifiability property: If D = M? | then the (i, j)-marginal of *B D¥ is given by D.
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Proof. To show statement (i), observe that 9o M2 (v,t) = 1 {t<v} for almost all ¢. This yields

1

*B Dk (u) = /Bt (]l{t<u1}7"'71{t<u¢,1}782Di(ui7t)71{t<ui+1}7"'71{t<ud}) dt
0
mingz; {u;}

82 D" (ui, t) dt = D" (u;, min{u;})
e

0

for u = (u1,...,uq) € [0, l]d, where the second equality follows because all B; have uniform univariate
marginals and are grounded.

Statement (i) follows similarly with 9, W?2(v,t) = 1 {t>1—v} for almost all ¢, and statement (iii) follows from
S (v,t) = v.

(iv): For u = (ut,...,uq) with u; = 1 for i ¢ J, it follows that *p g D'(u) = *p/.q D/ (us), where
uy = (uj)jer-

Statement (v) is a consequence of (i) setting uy =1 for all k € {1,...,d} \ {i,5}. O
Note that statements (i), (ii), and (v) in the above result are formulated w.r.t. continuous risk factor distri-
bution functions and cannot be generalized to arbitrary G € F L A counterexample can be constructed from

the following example.

Example 2.12. Let D' = M? for all i and G = 1[0700) be the distribution function of the Dirac distribution
in 0. Then, it holds that Il D* = % # M? using that tg(t) =1 and 15 (t) =0 for all t € (0,1). In fact, for
Z ~ G, it holds that P(Z = 0) = 1, and, thus, the dependence specifications Cx, 7 = D' = M? do not yield

any information on the X; and cannot force comonotonicity of (X1,...,Xgq).

Next, we study the product *p g D’ in the case where D' = M? for all i. We make use of ordinal sums
defined as follows.

Let J C N be a finite or countable subset of the natural numbers. Let (ay,by)rcs be a family of pair-
wise disjoint, open subinterval of [0,1] and let (Ck)res be a family of d-copulas. Then, the ordinal sum

((ag; bx; Cr))ker of (Cr)res wr.t. (ag,by)res is defined by

ay + (b — ag)Cy (min{m,bk}—ak o min{“mbk}—ak) ’

br—ag by —ay
({ag, bk, Ck)) ke (u) = if min{uy,...,uq} € (ag,by) for some k € J
min{ui,...,uq} else,
where u = (uy,...,uq) € [0, 1]d7 see, e.g., Mesiar and Sempi [18].

The following proposition characterizes ordinal sums by sk-products.

Proposition 2.13 (Ordinal sums).
For G € F', for a measurable family B = (Bt)te[o,l] and a sequence (Cy)recy of d-copulas, and for pairwise

disjoint open subintervals (ay,bg)res of (0,1), the following statements are equivalent:

(i) *B,c M* = ({ak, bk, Ci))kes
(i) (a,bp)pes = {(tg(t),tc(®) | 1g(t) # ta(t) ,t € (0,1)} and Cy = BY for t € (ay, by) = (15(t), ta(t)) .
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Proof. For u = (uy,...,uq) € [0, l]d , let v := min{u;}. Then, we have that

1
*B,c M (u) =/BtG (921 < y)1<ica) At
0

v if 1 (v) = ta(v)

La(v) + (tg(v) — LE;(U)) Bg; <<min{u7‘,,LG(’0)}_LG(U)) ) if L5(v) £16(v),
1<i<d

tq(v)—tg(v)

which implies the assertion. Note that BY is constant for ¢ € (ta(t),ea(t)) - O

The following result justifies the simplified notation for the sk-products where the argument G is omitted in

the case that G is continuous, see Definition 2.4(iii). The proof is given in the appendix.

Proposition 2.14.

Let d > 2. Then, the following statements are equivalent:

(i) *B,G, D = *B,Gy D for all measurable families B = (Bt)o<t<1 of d-copulas and for all D' € Co,
1<i<d,
(%) Ran(G1) = Ran(G2) .
(i1) vq, = tq, -

As a consequence of the above result, the *k-product depends only on the range of the risk factor distribution
G . Thus, the copula of a completely specified factor model is invariant under strictly increasing transforma-

tions of the factor variable.

The following result shows in which relevant cases the s*k-product attains the upper Fréchet copula.

Proposition 2.15 (Maximality).
For the %k-product, the following statements hold true.

(i) If D* = M? for all i, then sg D' = M?.
(ii) If D' = W2 for all i, then g D' = M%.
(iii) \/ D' = M® if and only if D’ = D* on [0,1] x Ran(G) for all j # k.

Proof. Statements (i) and (ii) follow from Proposition 2.11(i) and (ii).
Statement (iii) is an extension of Ansari and Riischendorf [2, Proposition 2.4(v)] to arbitrary G € F!. We
give the proof in the appendix. O

The definition of the k-product also yields an invariance property under Lebesgue-measure preserving trans-
formations.
Let A be the Lebesgue measure on B([0,1]). Denote by 7 the set of measurable transformations
T: ([0,1],B([0,1]),A) — ([0,1],B([0,1]),A) that are measure preserving, i.e. AT = X, where AT(A) :=
MT7Y(A)) for all A € B(]0,1]) denotes the distribution of 7' w.r.t. A. Let Tp be the set of all T € T such
that T is bijective and its inverse T~ is measure preserving. Then, elements of Tp are called shuffles, see [§].
The following statement shows that simplified sk-products are invariant under joint shuffles of the factor

variable Z assuming a continuous distribution function.
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Proposition 2.16 (Invariance under shuffles). For all T € Tp and C € Ca, the function Sp(C): [0,1]? —
[0,1] given through

v

S7(C)(u,v) := /OQC(u,T(t))dt
0

is a bivariate copula. Furthermore, for simplified *-products with continuous factor distribution function and
B € C4 holds

xpC" = x5 Sp(CY).

The proof is given in the appendix.

2.4 Continuity results for x-products

For the approximation of *k-products w.r.t. the factor distribution, we need the following lemma. The proof

is given in the appendix.
Lemma 2.17. For Gp,G € F'', n € N, the following statements hold true.
(i) 1g determines v uniquely by 1o (t) = inf{s|ig(s) > t}.

(it) If tq, — tq, then 1o — 1o, where each convergence is almost surely pointwise.

In the following example, we consider some typical approximations of distribution functions for which the

corresponding transformations ¢ converge almost surely pointwise.

Example 2.18. (a) Denote by ]-—01 the set of distribution functions with compact support. For G € .7-"&,

consider the discretization (Gn)n given by Gp(z) := ]'nG'ian)] . Then, Gy, is a distribution function for all
n with Ran(Gr) C {0, %, %, ...,1}. Fort € (0,1) such that G™' is continuous at t, it can be verified that

tq, (t) = g (t) . Thus, g, converges to vq almost surely pointwise.
(b) For G € F', consider the discretization (Gn)n € F' given by

sup{%|G(x)2%,keNo}, ifG(:U)<%,
Gn(®) =1 3 if Glr) =3,
inf{¥|G(x) < £ keNo}, ifGx)>3.

Similarly to the above example, it holds that Ran(Gpn) C {0, %, %,...,1} and g, — tg almost surely

pointwise.

The following two counterexamples show that, in general, neither convergence in distribution (denoted by
2>) implies almost surely pointwise convergence of the corresponding transformations ¢ nor that the converse
holds true.

Example 2.19 (G ENye! = 1q, = Lq)-

Let Gn = Fn(o,1/n) be the distribution function of the normal distribution with mean 0 and variance %

Then, Gy, N G = ]l[opo). But 1q, / tg almost surely pointwise because for all t € (0,1) it holds that
G, (t) =t # L1 (t) =1a(t) for alln € N.

Example 2.20 (1q, — g 7= Gn o, G).
Let G,G' € FL be continuous distribution functions with G # G’ . Let (Gp)n be the approzimation of G given
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by Example 2.18(b). Then, 1q, — tqr almost surely pointwise because vq, (t) = tq(t) =t = v (t) for all
t€(0,1). But Gn, 72> G’ because Gn 25 G and G’ #G.

For a continuity result of the *-product xg g D’ w.r.t. the bivariate dependence specifications D’ , we consider

as slightly generalized version of the d-convergence for bivariate copulas in Mikusiniski and Taylor [19].

Definition 2.21 (d2-convergence).
Let Dy, D € Co be bivariate copulas for all n € N. Then, the O2-convergence Dy, 8—2> D is defined by

1
/|82Dn(m,t) — oD(z,t)|dt 22220 for all x€[0,1].
0

Remark 2.22. a) Some typical approximations of copulas are the checkerboard, the checkmin and the Bern-
stein approximation, respectively. All these approximations are w.r.t. the 9-convergence, see Mikusiriski and
Taylor [19], and, thus, also w.r.t. the Oa-convergence. In contrast, the Oa-convergence does not generally
hold for the shuffle-of-min approzimation, see Mikusiriski and Taylor [19, Example 4J.

b) For a bivariate copula D , denote by DT with DT (u,v) := D(v,u), (u,v) € [0,1]?, the transposed copula
w.r.t. D, and by Kp the associated Markov kernel defined by Kp(t,[0,v]) := limy, 01D(t,u) for all
u € [0,1] and for Lebesgue-almost all t € [0,1]. Then, the O2-convergence is metrizable with a metric r
given by (A, B) = D1 (AT, BT) | where Dy denotes the metric defined by

11
D14 B) = [ [ 1Katt,[0.0]) = Kple, [0.0D)] o (14)
00
for A, B € Ca, see [31]. Note that for allv € [0,1], there exists a Lebesque-null set Ny such that 01 A(t,v) =
K4 (t,[0,v]) and 01 B(t,v) = Kg(t,[0,v]) for all t € Ny, see, e.g., Proposition 2.2(i).
As a main result, we give sufficient conditions for the continuity of the sk-product w.r.t. all its arguments.

Theorem 2.23 (Continuity of sk-products).
Let Di,, D' € Cy be bivariate copulas, 1 < i < d, B® = (Bi")tej0,1), B = (Bt)iejo,1) be measurable families of
d-copulas, and Gpn,G € FL be distribution functions for alln € N. If

(i) D 2 Dl forall1 <i<d,
(is) Bf Ny for almost all t € [0,1], and
(iii) 1, (t) = tq(t) for almost all t € [0,1],

then it holds true that
*Bn.G, D}, — *B,G D' uniformly.

Proof. We show for u = (uy,...,ug) € [0,1]% that

n—oo

*Bm ., Dh (1) 2222 sgm g, D' (u) forallk,meN, (15)
xBm ., Di (u) 2225 xp.q, Di (u) forall k,neN, (16)
*Bm. G, D, (u) oo, *Bm G DL (u) for all n,m e N. (17)

Due to the equicontinuity of copulas, the above sk-products converge uniformly using Arzela-Ascoli’s theorem.
Thus, the statement follows from the exchangeability of applying the limits and, again, from Arzela-Ascoli’s

theorem.



14 = Jonathan Ansari and Ludger Riischendorf, Products of copulas in factor models DE GRUYTER

First, we show (17). Assume w.l.g. that D}, = D and B™ = B for all n,m € N. From Lemma 2.17(ii)
we obtain that vg, — (¢ a.s. implies that v (1) = 1g(t) for all ¢ € Ny N [0,1] outside a Lebesgue-null set
No. Fix t € N§n[0,1].

If .5 (t) < g(t), then there exists R € N such that for all k > R it holds that v, (t) < g, (t) and, thus,

LGy (1) LG(t)
1 k—o0 1 G
B )= — / Bs(u)ds — / Bs(u)ds = B (u)
' v () =g, () " 1 (t) — 1 (t) S
LGk t la t

and

D (uj, 16, (1)) = D'(uis i, (1) hooo D' (uis () — D' (ui, 1g(1)

- 9$ D Ug,
) — g (1) ) — g (1) 2w

oS D (u;, t) =

fori=1,...,d.
If .o (t) = v (t) and v, (t) = 1, (t) for all k, then it follows that

BtGk (u) = Be(u) = B?(u) and 82GkDi(ui,t) = 9o D" (u;,t) = 8§Di(ui,t) for all k.

If 1o (t) = 1q(t) and Lakl () < LGy, (t) for a subsequence (k;);cn , then it follows from Lebesgue’s differential
theorem that

Lle (t)
Btsz — % / Bs(u)ds Iz, Bi(u) = BtG(u)
G, (1) = LGM( )f (t)
le

and, since the partial derivative of a copula exists almost surely, that

D (i1, (1) = D' (i, 15, (1)

G () = 1, ()

l—o0

8y " D (uy,t) = 82D (us,t) = 05D (u;, 1)
if t € Ny N[0,1] is outside of a Lebesgue-null set N1 2 Ny .
Altogether, this yields

i k—o0 i
B <(a2GkD (ui’s))1<z’<d) - = ((82GD (ui’s))1<i<d)

for all s € Ny N[0, 1] using that BS’“ € C4 is equicontinuous for all s. This implies

1

1
*B,G D' () = /BSGk ((8§kDi(ui’S))1<i<d) ds 25 /BSG <<8§Di(ui’s))1<i<d) ds = *B,c D' ),
0 o 0 T

where we apply the dominated convergence theorem.

To show (15), let j € {1,...,d} and choose w.lg. G, = G, B™ = B, and D}, = D,, for all k,m,n € N
and i # j . Let (G');en be the discrete approximation of G given in Example 2.18(b). Then, the family (BtGl)t
is constant in ¢ on the intervals ( "Tfl, 7), 1 <k <1, and each BtG l is Lipschitz continuous with Lipschitz
constant 1.

Thus, for the Lebesgue measure A on [0,1], it holds that

A ({25 1BE (98 Diu(uis 0)1<i<a) = BE (95 Di(us, r<ica)l > 2} 01 (572, 5)

n—oo

< A ({t: 168 Dh(uj,t) = 05 Dil(us, 0] > e} 0 (571, ) “25 0
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for all e > 0 and 1 < k <1, where the convergence follows from the assumption that D% 8—2> D’ . Then

1
l L . 1 l .
/|BtG (85 Dh(uiyt))1<i<a) — BE (85 (D' (ui, t)1<i<a)| dt

(=)

§
1 1 - i l ; n—oo
=3 / |BE (08 Diy(ui,1)i) — BE (05 D' (ui, t))1<i<a)| dt =250,

which implies that *g ¢ Di(u) — *B,G! D¥(u) as n — oo for all [. Thus, the statement follows from
sp.c1 Diy 2% s ¢ D}y uniformly, see (17).

Statement (16) follows with the dominated convergence theorem. O

In the following remark, we note that a weak approximation of the bivariate dependence specifications or
a weak approximation of the factor distribution does not guarantee the convergence of the corresponding
k-products.

Remark 2.24. (a) In general, the *-product *B g D' is not continuous in D' w.r.t. weak convergence. A
counterezample is given for the upper product and G € _7-'C1 in Ansari and Rischendorf [2, Example 2.7].
(b) In general, the xk-product is not continuous in the factor distribution w.r.t. weak convergence, i.e. Gp 2)
G 4~ *B.G, pi 2 *B,¢ D,
For a counterezample, let (Gn)n be the approzimation of G given by Example 2.19. Then, Gn 3> G =
]l[o,oo) . If the D do not coincide for all i, then the %k-products do not necessarily converge because, e.g.,
for the upper products, it holds that

\/D'=\/D" £ M =\/D',
Gp G

where the first equality holds due to the continuity of Gy for all n, and the inequality is true because of

the mazimality property of the upper product, see Proposition 2.15(iii). The last equality follows from

1

min{uy,...,ug} = /min {8§;D1(u1,t),...,achd(ud,t)} dt
0

= P )
G (t) —1g(t)

for all u; € [0,1] and 1 < i < d because tg(t) =1 and 15 (t) =0 for all t € (0,1).

2.5 The lower product of bivariate copulas

In the following proposition, we provide basic properties for the lower product of bivariate copulas which are
parallel to some results in [2] for the upper product.

For a bivariate copula D € Co, define the reflected copulas D« and D* as well as the transposed copula
DT by

Di(u,v) :=v - D(1 —u,v), and D*(u,v):=u— D(u,1—0v), (18)

respectively, for all (u,v) € [0, 1]2. Remember that the transposed copula D' is defined by DT(u,v) =
D(v,u), (u,v) € [0,1)%.
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Proposition 2.25. For D, E € Co and for a random vector (U1, U, Us) the following statements hold true:

(i) Minimality property: D Ag E = W? if and only if D = Ex on [0,1] x Ran(G) .
(ii) M?* Ag D Ag E is a 3-copula if and only if G € F}.
(iii) (U1,Us,U3) ~ MPADAE <= Cv, v, = D", Cy, v, = E* and (U2, U3)|Uy =t is countermonotonic
for almost all t.
(iv) D Ag M? = D on [0,1] x Ran(G) and M? Ag D = DT on Ran(G) x [0,1].
(v) DAgW?=D* on[0,1] x Ran(G) and W? Ag D = (D*)T on Ran(G) x [0,1].

(vi) In general, the lower product is neither commutative nor associative.

The proof is given in the appendix.

3 Ordering results for %-products

In this section, we establish lower and upper orthant ordering results for the *-product *p g D' w.r.t. the
conditional copulas B and the bivariate specifications D', By the Sklar-representation theorem (Theorem

2.7) these results imply corresponding dependence ordering results for CSFM w.r.t. their specifications.

Definition 3.1 (Stochastic orderings).

Let £, be d-dimensional random vectors. Then, define the

(i) lower orthant ordering & <;, & if for the corresponding distributions holds that F¢(z) < Fer(x) for all
r € R? ,
(i) upper orthant ordering & <uo &' if for the corresponding survival functions holds that Fe(z) < Fer(x)
for all x € R,
(ii3) concordance ordering & <. ¢’ if it holds that & <j, & and & <yo &',

Note that all these orderings depend only on the distributions and, thus, are also defined for the corresponding
distribution functions. A comparison w.r.t. the concordance ordering requires that the corresponding univari-
ate marginal distributions are equal, i.e., (£1,...,&3) <c (&1,-..,&q) implies &; 4 ¢} for all 4. Further, if d = 2
and &; 4 5;, the orderings <;,, <wo, and <. are equivalent and we denote them as the standard bivariate
dependence orderings.

For an overview of stochastic orderings, see Miiller and Stoyan [22]|, Shaked and Shanthikumar [29] and
Riischendorf [27].

In comparison to the ordering of *pB ¢ D' w.r.t. the specifications D , an ordering w.r.t. the copula family
B is a simple task and given by the following proposition which extends Durante et al. [7, Proposition 3].

Proposition 3.2 (Ordering w.r.t. conditional copulas).
Let B = (Bt)o<t<1,C = (Ct)o<t<1 be measurable families of d-copulas. If By < Cy for almost all t, where <

is one of the orders <;,, <uwo, and <., respectively, then it holds true that
*B,G D' < *c,¢ D'
for all G € Fl and for all copulas DieCy,1<i<d.

Proof. The statement follows from the closure of these orders under mixtures (see Shaked and Shanthikumar
[29, Theorems 6.G.3.(d)]). O
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In the sequel, we are interested in ordering conditions for g g D' w.r.t. the specifications D .

Intuitively, if the D? increase in the standard bivariate dependence orderings, then the product *B,G D’
should increase due to the following reason: If all the D’ get closer to the upper Fréchet bound M 2 , then each
X; = fi(Z,e;) depends more strongly positively on Z . Thus, the copula Cx, . x, of (X1,...,Xg) should be
closer to the upper Fréchet bound M ¢ But it turns out that ordering criteria on D' are more complicated. One
can also couple each X; more strongly negatively with Z which also leads to a stronger positive dependence
among the X; . Further, as we see in Theorem 3.7, general ordering conditions for *g g D% in D' for fixed
D7 j # i, restrict the choice of the conditional copula family B.

Another difficulty is that ordering results for xg g Diw.rt. D* always involve integral inequalities because
1
D (y) — G (4G i
*B,g D' (u) = [ By ((02 D" (uj,t))1<i<a ) dt
0

depends on D? through the (generalized) partial derivative 82G D' of D*. More precisely, a pointwise order-
ing of the integrands w.r.t. D' and E’, i.e., BtG ((BgDi(ui,t))lgiSd) < BtG ((8§Ei(ui,t))1§i§d) for all
(u1,...,uq) €0, l}d and t € (0,1), is not possible: If we set u; = 1 for all ¢ # j, then

05 D (uj,t) = BE ((08'D'(ws, 0)1<i<a) < BE (05 B (ws, 0)1<ia) = 08B (uy, 1))

for all ¢ implies DY = EJ on [0,1] x Ran(G) and, thus, *B g D' = *B,G E'.

In the remaining part of this section, we derive several lower and upper orthant ordering results for
*B,G D' w.r.t. the D verifying integral inequalities based on the Schur-ordering, the sign-change ordering,

and the lower orthant ordering, respectively.

3.1 Ordering results for componentwise convex conditional copulas

Denote by <g the Schur-ordering for functions, i.e. for integrable functions f,g: [0,1] — R, the relation
f <s g is defined by fow frf)de < fow g"(t)dt for all z € (0,1) and fol f)dt = fol g(t)dt. Here h* denotes
the decreasing rearrangement of an integrable function h, i.e., the (essentially w.r.t. the Lebesgue measure
A) uniquely determined decreasing function h* such that A(h* <t) = A(h <t¢) for all t € R.

We say that a family (®¢);¢[o,1) of functions ®;: © — R is continuous, © = R? or © = [0, 1]d7 if the
mapping (¢,x) — P¢(z) is continuous for all (¢,z) € [0,1] x ©. As a basic integral inequality result, we make

use of the following theorem on rearrangements from Fan and Lorentz [11, Theorem 1].

Theorem 3.3 (Ky Fan—Lorentz Theorem).
Let®i: RY SR, t e [0,1], be a family of continuous functions. Then, the following statements are equivalent:

(i) For all bounded and decreasing functions f;, g; on [0,1] with f; <g g; holds
1 1
/‘@t(fl,m,fd)dté/‘Pt(gl,u-,gd)dt- (19)
0 0
(ii) © with ®(t,-) := P¢(-) satisfies the following conditions for all0 <t <1,0<a<1-2§,0 >0, u; >0,

k=1,...,d, h >0 and i # j where those arguments are omitted which are the same in each expression:
D(u; + h,u; +h) — ®(u; + h,uy) — (ug, uj + h) + @(ug,u;) >0, (20)
D(u; + h) — 2®(u;) + P(u; — h) >0, (21)

§
/ ((I)a+5+s(ui) - cI)aJr(SJrs(ui + h) + (I>a+s(ui + h) - (I)a-l-s(ui)) ds > 0. (22)
0
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For a function f: R? —» R, let AZ f(z) := f(z +ee;) — f(z) be the difference operator where € > 0 and where
e; denotes the i-th unit vector w.r.t. the canonical base in R? . Then, f is said to be supermodular, respectively,
directionally convex if A?Ajjf(:p) > 0 for all z € R? ,foralle;,e; > 0,and forall 1 <i < j < d, respectively,
1 <i < j <d.Note that in the literature, directionally convex functions are also called ultramodular or Wright
convex.

Here, Condition (20) is supermodularity of ®; for all ¢, condition (21) is convexity of ®; in each component
for all ¢. Functions that fulfill both conditions (20) and (21) are directionally convex. Motivated by Theorem

CcCcx

3.3, we consider the class C;“" of componentwise convex d-copulas which is identical to the class of directionally

convex copulas since copulas are by definition supermodular.

Remark 3.4. (a) As a consequence of the transformation formula, Theorem 3.3 also holds true if “decreasing”

in (1) is substituted by “increasing” and the inequality in (22) is reversed, i.e.,

)
/ ((Da+5+s(ui) — q)a+5+s(ui + h) + ®gys(u; +h) — <I>a+5(ui)) ds <0. (23)
0

forall0<a<1-2§5,6>0,u,>0,k=1,...,d, h>0.
(b) If ® has continuous second partial derivatives w.r.t. all variables, then conditions (20), (21), (22), and
(23), respectively, are equivalent to
9’ 9’ >’ 9’

Z2 50 Vitj Z2>0 vi <0 Vi d
Bupu; =0 V7T ouz = " otou; = " 1o

>0 Vi,

respectively, see Lorentz [17].

In order to apply the Ky Fan—Lorentz Theorem to k-products, we consider an important class of bivariate

copulas which are convex or concave in the second variable.

Definition 3.5 (CI/CIS/CDS copula). A bivariate copula D € Ca is said to be conditionally increasing in
sequence (CIS), respectively, conditionally decreasing in sequence (CDS) if 92D (u,t) is decreasing, respec-
tively, increasing in t for all u € [0,1].

Further, D is conditionally increasing (CI) if D and DT are CIS, i.e., D is concave in both components.

In the literature, the CIS property is often defined by the partial derivative w.r.t. the first component. However,
we define it in this way because the k-product depends on the derivatives of the bivariate copulas w.r.t. the
second component.

Note that for a random vector (U1,Us) ~ D with D € Co CIS, the conditional distribution Uy | Uz = v
is stochastically increasing in v. This explains the denomination of conditional increasingness.

For the next theorem, we need the following lemma. The proof is given in the appendix.

Lemma 3.6. For G € F', conditions (21), (22), and (23), respectively, transfer from measurable B =
(Bt)te[o,1]» Bt € Ca, to the miztures BC = (BtG)te[o,l] .

As a consequence of the Ky Fan-Lorentz Theorem 3.3, we obtain that general <;,-ordering results for *g ¢ D’

w.r.t. D require convexity of B; in each component for all ¢.

Theorem 3.7 (<jo-ordering of componentwise convex x-products).

Assume that B = (Bt)te[o,l] is a continuous family of d-copulas. Then, the following statements are equivalent:
(i) For all G € F' and for all CIS copulas D', E* € Co with D* <;, E*, 1< i <d, it holds

*B,G D' <y, *B,G E".
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(i) B fulfills conditions (21) and (22).

Proof. Assume (ii). Let G € F' and D', E* € Cy be CIS. For (uy, .. .,ug) € [0,1]%, define f;(t) := 0F D’ (u;, t)
and g;(t) := 05 E*(u;, ), for almost all t € (0,1). For v € (0,1], we obtain from D’ <;, E’ that

/f,-(t) dt = D' (ui, 15 (v) + (v — 15(v) F D' (us, v)
0

v

< B (ui15(0) + (- 15(0)) 0 B (s, v) = / gi(t) dt
0

with equality if v = 1. Since D' and E? are CIS, the functions f; and g; are decreasing; this yields f; <g g; -
Together with the boundedness of f; and g; it follows from the Ky Fan—Lorentz Theorem 3.3 that

1

1
*B.c D' ( /BtG fi(t), ..., fa(t) dt < /B (t),...,94(t)) dt = B g E (u),
0 0

because (B); fulfills conditions (21) and (22), see Lemma 3.6. This proves (i).

The reverse direction follows in the same way as in the proof of the Ky Fan—Lorentz Theorem 3.3 (see
Fan and Lorentz [11, Theorem 1]) because for all decreasing functions f;, g;: [0,1] — [0,1] with f; <g g;,
there exist (uq,...,uq) € [0, l]d and copulas D, E* € Co with D* <;, E® such that f;(t) = 92D%(u;,t) and
gi(t) = 92 E*(u;, t) holds. O

A similar result holds true w.r.t. the upper orthant ordering as follows.

Theorem 3.8 (<yo-ordering of componentwise convex k-products).

Assume that B = (Bt)te[(),l] 18 a continuous family of d-copulas. Then, the following statements are equivalent:
(i) For all G € FL and for all CIS copulas D', E* € Co with D* <;, E*, 1< i <d, holds
*B,G D' <uo *B.,G E.

(ii) The survival copulas B = (Bt)te(o,l) Julfill conditions (21) and (23).

Proof. The proof is similar to the proof of Theorem 3.7 applying the Ky Fan—Lorentz Theorem to the survival
functions of the x-products given by (13). Since 1 — 82GDi(ui7 t) is increasing in ¢ for all u; and ¢, the survival
copulas B have to fulfill condition (23), see Remark 3.4(a). O

Remark 3.9. (a) If B and the associated survival copulas B fulfill the convezity condition (21) as well as
condition (22) and (23), respectively, then it holds *B g D' <, *B,G E' for all CIS copulas D', E* with
D' <, E', 1< i <d. For simplified -products, condition (22) and (23) are trivially fulfilled. If d =2,
then By is componenth'se convex if and only if By is componentwise conver.

(b) The componentwise convexity condition (21) for each By implies negative lower orthant dependence for
all the bivariate marginals of By . To see this, let i # j and u = (uy,...,uq) with up =1 for all k #14,j .
Then, it holds true that

Uj Uj
Bt(u):/@'Bt(uh«~,Uz‘—1,S,Ui+1,-~7ud)d8S/ujdtIHd(u)
0 0

using the uniform marginal condition fol 0;Bt(u) du; = uj; and that 0; Bi(u) is increasing in u;. For a

discussion of componentwise convex copulas, see, e.g., Klement et al. [13] and Klement et al. [14].
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If By is not componentwise convex for some t outside a null set, then general lower orthant ordering
results for kg D¥ w.r.t. D depend on D7 N EER

For example, the conditional copula M corresponding to the upper product \/ = % pza is component-wise
concave (and not convez). Due to the mazimality property of the upper product, general ordering conditions
for'\/ D¥ w.r.t. D' depend on D7 | see Proposition 2.15(iii).

(c) The ordering results for comonotonic random vectors in Rischendorf [25, Corollary 8(b)] and for random
vectors with common CI copula in Miiller and Scarsini [20, Theorem 4.5], respectively, are based on the
application of the Ky Fan—Lorentz Theorem 3.8 to (conditional) quantile functions. In contrast, Theorem
8.7 follows from the Ky Fan—Lorentz Theorem 8.8 comparing conditional distribution functions w.r.t. the

conditioning variable.
We make use of another integral inequality due to Lorentz [17] as follows.
Theorem 3.10 (Lorentz). Let ®: [0,1] x R? — R be continuous. The following statements are equivalent:

(i) For all positive bounded measurable functions fi, on [0,1], 1 < k < d, holds

1 1
/(I)tfl ...,fd dtg/@tfl ,f;(t))dt
0 0

() ® satisfies conditions (20) and (22).

Note that the above result also holds true if we replace the decreasing rearrangements f;° by the increasing
rearrangements f;, of f; and condition (22) by (23).
As a consequence of the Lorentz Theorem 3.10, we obtain for continuous factor distribution functions

G € F} the following result concerning shuffles.
Proposition 3.11. Let D', .. .,Dd € Ca be CIS copulas.

(i) If B = (Bt);g[0,1] s a continuous family of d-copulas that fulfills condition (22), then it holds true that
*B S1,(D") <10 *B D’
for all shuffles T; € Tp of D*.
(i) For B € Cq, the simplified products satisfy
*p S1,(D') <10 % Sr(D") (24)

for all shuffles T;, T € Tp .

Proof. For u = (uy,...,uq) € [0, 1]d7 define g; 4, (t) := 02T, (D%)(u;,t) . Since D' is conditionally increasing,

the decreasing rearrangement is given by g;ui(t) = BgDi(ui, t) for almost all ¢. Hence, Theorem 3.10 implies

1 1
*B St, (D) (u) = /Bt ((gi,u; (1)) 1<i<a) dt < /Bt (9Fu; ) 1<i<a) dt = B D' (u).
0 0

The second statement follows from the first one with Proposition 2.16. O

Remark 3.12. (a) Note that the specifications on the right side of (24) are jointly shuffled.

(b) A similar result to Proposition 3.11 holds true w.r.t. the upper orthant ordering. A generalization to arbi-
trary factor distribution functions G € F' is not possible because, in general, Giu; = agSTi (DY) (ug,-) A5
826Di(ui, -) and, thus, g;ui # 8§Di(ui, -), see also Example 3.15.
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To apply Lorentz’s Theorem 3.10 to the ordering of g g D* wrt. D , we introduce and study the orderings
<a8,5,c and <y, 5 on the set C2 of bivariate copulas.

Definition 3.13 (<p,s , Schur order for copula derivatives).
For G € F! and D, E € Cy, define the Schur order for the partial copula derivative (w.r.t. the second variable)
by

D<p,5¢E if agD(v, ) <s agE(U, ) forallv € [0,1].

For G € FL, we abbreviate <a,s.¢ by <a,5 -

The least element in Co w.r.t to the <p,g-order is given by the independence copula 1'[2, i.e. it holds that
112 <a,5 C for all C € C2. In contrast, a greatest element does not exist. However, M 2 and W2 as well as
every shuffle of these copulas are maximal elements.

Let ¢1: Coa — [0, 1] be the dependence measure defined by
G1(A) = 3D1(4,11%),

see [32]. By the following result, {; is increasing w.r.t. the <p, g-ordering, cf. Figure 4.
Proposition 3.14. Let D and E be bivariate copulas. Then D <g,5 E implies Cl(DT) < Cl(ET).

Proof. By definition of the Di-metric in (14) and by the transpose of a copula, we have that

(D" =Dy(D", ()" = |K pr (£,0,0]) — Kqzyz (£, [0,])| dtdv

1 1
‘alDT(t,fu)—&(HQ) (t,v dtdv //|82th — o] dtdv
0 0

< [ [ 102E(v,t) — v dtdv =--- = G (ET),

I
S O O—
O O O—

where the inequality follows from the Hardy-Littlewood-Polya theorem which states that f <g g is equivalent
to fol e(f(t)dt < fo (t)) dt for all convex functions ¢: R — R such that the expectations exist, see, e.g.,
[27, Theorem 3.21]. O

In general, D <p,5 E does not imply D <p,s5 ¢ E even if E is a CIS copula, which is shown by the following
counterexample.

Example 3.15 (<y,5 # <9,5,G)-
Let D = ((ag, bk, Ck))req1,2,3) be the ordinal sum of C1 = Cy = 1% and C3 = M? w.r.t. the intervals
(al,bl) = (0, i), (ag,b2) = (%, %), and a3,b3) = (%,1). Consider the symmetric copula D* of D defined
y (18). It can easily be seen that D* <g,g M? and D* #0955 M?. Let G € F' be given by G(z) =
( + (:m D)1,y Then, it holds that Ran(G) = {0} U [$,1], 1 (t) = 3L (01/2)(t) +t- L (10,1)(t), and
ta(t) =t-L(g/9q)(t).
For u < % , it holds that

min{u,tg(t)} —min{u,.q (¢)} _
8§;M2(u, t) — L?(t)—LE (t)
lim, , (et —minst g, ite .1,

=2u- ]1[071/2](75) y and
05 D* (u,t) = du - T34 1)(t)
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Hence, we obtain for u € (0, %] that S D*(u,-) =g 85 M?(u,-) and 8§ D* (u,-) # 85 M?(u,-) . But this means
that D* $8QS,G M2 .

However, if both D and E are CIS (or CDS), then it can easily be verified that D <p,g E yields D <g,5.¢ E.

A relation of the <y, g-ordering to the lower orthant ordering is given as follows. Note that we obtain
from the definition of the reflected copula E* of E in (18) that E* =5,¢ E, where, as usual, =g, holds if
<5,5 and >4, g is fulfilled.

Lemma 3.16. For D, E € Cq, the following statements hold true.

(i) If E is CIS, then D <p,5 E wmplies E* <;, D <j, E.
(i) If D and E are CIS, then D <g,5 E and D <, E are equivalent.

Proof. (i): Let (u,v) € [0,1]%. For the decreasing rearrangement gj; of 2 D(u,-), it follows that

v v v

D(u,v) = /GQD(u, t)dt < /gZ(t) dt < /82E(u, t)dt = E(u,v).

0 0 0

For the increasing rearrangement gy of d2D(u,t), it similarly holds that

v v v v

E*(u,v) = /82E*(u, t)dt = /82E(u, 1—t)dt < /gf(t) dt < /agD(u, t)dt = D(u,v).
0

0 0 0
(ii): If D <4 E, then D <p,g E follows from

v v

/82D(u,t) dt = D(u,v) < E(u,v) = /82E(u,t) dt
0 0
for all u,v € [0, 1], using that D and E are CIS. The reverse direction is given by (i). O

Consider the class
¥ ={DeC|D<p,s E},

of bivariate copulas that are closer than E to the independence copula or equal to £/ w.r.t. the <y, g-ordering.
Due to the following result, the class Cf has a least and a greatest element w.r.t. the lower orthant ordering

given by a CDS and a CIS copula.
Proposition 3.17. There exist a unique CDS copula E| € CQE and a unique CIS copula Ey € CQE such that
E| =g9,5 E=p,5 Et. (25)
It holds that E| = EX, where E{ is defined by (18), and
By <1o D <, By forallDeCy. (26)

Proof. To show (25), let w € [0,1] and denote by fu: (0,1) — [0,1] the essentially (w.r.t. the Lebesgue

measure) unique decreasing rearrangement of 82 E(u, -) . For (u,v) € [0,1]?, define

Ey(u,v) ::/fu(t)dt.
0
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Then, Ej is a bivariate copula, where the property of 2-increasingness follows for (u1,v1) < (u2,v2) from

va
By (u1,v1) + Ep(u2,v2) — Ex(u1,v2) — Ep(ug,v1) = /fu2 () = fu, (t) dt >0
v1 >0

because 92 F(ug,t) > 02E(uq,t) for all ¢.
Since 02 B4 (u, -) is a rearrangement of 02 E(u, -) , it holds that £ =5, 5 E4 . Since 92 E4(u,t) = fu(t) for almost
all t and f, is the essentially uniquely determined decreasing rearrangement of 02 E(u,-), it follows that E;
is the uniquely determined CIS copula with E =4, Ey .

For the lower bound E|, given by E|(u,v) := fll_v fu(t)dt, (u,v) € [0, 1]2, the statement follows
similarly, so (25) is proved. Since f01 fu(t)dt = u for all u € [0,1], it follows that

1-v
E|(u,v) =u— / fu(t)dt = u— Ey(u, 1 —v) = Ef(u,v)
0
for all (u,v) € [0,1)%. Statement (26) follows with Lemma 3.16 (i). O

In the following, we give some examples of <p,g-ordered copula families.

Example 3.18 (Elliptical copulas).
Let (Dp)pe[—l,l] be a family of bivariate elliptical copulas with correlation parameter p. If DlP1l gng DIl
are CI, then

o1l <lp2l = D' <p,5 D*. (27)

A sufficient condition for DIP1l 4o be CT is given by Abdous et al. [1, Proposition 1.2]. Then also ple2l s cr.
Note that only in the Gaussian case, DY s CI, ¢f. Rischendorf [24, Theorem 2.

To show (27), let 0 < p1 < pa. Since elliptical distributions are increasing w.r.t. the lower orthant ordering
in the (generalized) correlation parameter, see Das Gupta et al. [6, Theorem 5.1], it follows that D' <;, DP? .
Then, Lemma 8.16(ii) implies DP* <p,5 DP? using that DP* and DP? are CI. The general case follows from
the symmetry (DP)* = D™" of elliptical copulas.

Example 3.19 (Archimedean copulas).

Let Cy, defined by Cy(u,v) = Y~ (u) +1p 7L (v)) be the bivariate Archimedean copula with (strict) generator

¢¥: Ry —[0,1]. The Cl-property of Cy, is characterized by the log-convexity of —1, see Miiller and Scarsini

[21, Theorem 2.8]. Further, it holds that Cy, <;, Cy, if and only if 1/}1_1 o 1y is subadditive, see Nelsen [23,

Theorem 4.4.2]. Thus, we obtain from Lemma 3.16(ii) the following <g,s-criterion for Archimedean copulas:

If =)} is log-convex for i = 1,2, then it holds that Cy, Za,5 Cy, if and only if 1/)1_1 o vy is subadditive.
Sufficient conditions for the subadditivity are given in [23, Section 4.4]. We give some illustrating examples

of <g,s-increasing Archimedean copula families. The log-convezity of —’ can be verified straightforwardly.

(a) The Clayton family (Cy,)ge[—1,00) With (inverse) generator pg(t) = 1/19_1(15) = % (1‘79 — 1) for 0 #0 and
wo(t) = wal(t) = —1In(t) is <jo-increasing, see Nelsen [23, Example 4.14]. Since —y is log-convex for
0 >0, it follows that (Cy,)e>0 is <o,s-increasing in 6.

(b) The Gumbel-Hougaard family (Cy,)oe(1,00) With (inverse) generator ¢q(t) = we_l(t) = (=In())? is <jo-
increasing, see Nelsen [23, Example 4.12]. Since —yp is log-convex for all 0, it follows that (Cyy)o>1 s
<g,s-tncreasing in 6.

(c) The Frank family (Cy,)ocr with (inverse) generator wg(t) = ng_l(t) =—In (%) for 0 #0 and
wol(t) = ¢61(t) = —1In(t) is <j,-increasing, see Nelsen [23, p. 150]. Since —1} is log-convex for 6 > 0
and C:;e =Cy_, , see Nelsen [23, p. 133], it follows that |0] < |6'| implies Cyy 8,5 Cyy, -

Combining the Ky Fan—Lorentz Theorem 3.3 and Lorentz’s Theorem 3.10, we get the following main result.
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Theorem 3.20 (<p,g-ordering criterion).
Let G € F! and let D', E* € Co be bivariate copulas with E' CIS and D' <8,5,G E! foralll <i<d. Assume
that B = (Bt)c(o,1] is continuous, By € Cq for all t.

(1) If B fulfills condition (22) and if By € C3™* for all t, then
*B,c D' <o *B,c E'.
(ii) If B = (Bt)te[o,l] fulfills condition (23) and if By € CS® for all t, then
*B,c D' <uo ¥B,c E'.
Proof. To show (i), define for u = (u1,...,uq) € [0,1]¢ the function Giu,; (t) == 95 D (uy,t) for almost all
t € (0,1) and for s = 1,...,d. Since E' is CIS, it holds that 82GEi (uj,-) is decreasing. From the assumption

that D <8,8.G E', we obtain for the decreasing rearrangement i u; of i, that g7, <s GQGEi(ui, -). This
yields the integral inequalities

>l<B,G Di (u) = BtG (82GD1(u17t)7‘"7820Dd(ud7t)) de
G * *
By (91,u1 (t), o 9duyg (t)) de

< [ BE (08B (ur,0),..., 0 B (ua,t)) dt = #p.6 E' (u)

IA
O O O~

where we apply Theorems 3.10 and 3.3 using that also the copulas (BtG )+ are componentwise convex and fulfill
condition (22), see Lemma 3.6.

Statement (ii) follows similarly to (i) applying formula (13) for the survival function of the sk-product. O

Since the independence copula coincides with its survival copula and is componentwise convex, we obtain the

following result as a consequence of Theorem 3.20.

Corollary 3.21 (Ordering the conditional independence product).
If G € F! and D', E' € Cy such that E* is CIS and D' <g,5.¢ E* for all1 <i<d, then

HgDi <c Hc;Ei .

Remark 3.22. (a) For simplified *k-products, condition (22) of Proposition 3.11 and Theorem 3.20 are triv-
tally fulfilled. In Proposition 3.11 there is no convexity condition w.r.t. B and B, respectively. The state-
ment in Theorem 3.20 also holds true if the E' are conditionally decreasing, i.e. if 82Ei(ui, -) is increasing
for all u; .

(b) Corollary 3.21 extends [16, Proposition 1] to arbitrary dimension and general factor distribution G € F!
where the authors show that TT2_1 E* (u,v) > 1% (u, v) = uv for u,v € [0,1] and CIS copulas E', E* € C5.

(c) The intuition why Theorem 8.20 is true can be seen in the following explanation. The condition D’ <8,8 E?
indicates that D' is closer to the independence copula than E'. Since additionally E' s CIS, E' is closer
to the upper Fréchet bound than Di, and (Ez)* is closer to the lower Fréchet bound than D*. This yields
a stronger positive dependence among the X; in the factor model with specifications E'. However, in

general, such a statement cannot be obtained if the conditional copulas are not componentwise conver.

The following counterexample shows that the assumption D’ <8,5,G E" in Theorem 3.20 cannot be simplified
to D* <8,5 E*, and that, in general, kg D* <;, *p E* does not imply *B,G D' <y, *B,G E'forG e F! \]"c1 .
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Example 3.23. For d > 2, let D' = D* and E' = M? with D* and G € F' given by Ezample 3.15,
i=1,...,d. As shown there, it holds that D’ <8,8 E' as well as 8§Di(u, ) =g OQC:Ei(u, ) foru < %. This
yields by Theorem 3.20 for all continuous B = (Bt).e(0,1)» Bt € Cg™" , satisfying condition (22) that *p D' <,
*B E' and, as a consequence of Theorems 3.3 and 3.10, that xB,g D'(u,...,u) > *B g E'(u,...,u). So, for
general G € F! \]-'(} and for a general continuous family B of componentwise convexr d-copulas which fulfills
condition (22), we have the following diagram:

D" <8,5 E 7= D’ <8,5.,G¢ B
U =< i)

*B Di <io *B Ei 7&;’ *B7G Di <io *B’G Ei'

3.2 Upper product ordering results

To derive ordering results for upper and lower products of bivariate copulas, consider on Co the sign change
ordering and the symmetric sign change ordering defined as follows.
For bivariate copulas D, E € Ca, define the function fu: [0,1] — [-1,1] by

fu,v(t) = 82E(u7 t) — 62D(U7t)

for almost all ¢ € (0,1) as the difference of the partial derivatives of E and D w.r.t. the second variable for

fixed first components u,v € [0,1] .

Definition 3.24 (Sign change orderings).
The sign change ordering D <ga E, respectively, the symmetric sign change ordering D < ga E s defined

via the property that for all u,v, respectively, for all u = v, the function fu. has no (—,+)-sign change.

The sign change orderings strengthen the standard bivariate dependence orderings. It holds true that
D<grnF — D<pgaEF — D<F <= D<,F,

see Ansari and Riischendorf [2, Proposition 3.4|. Note that the lower and upper Fréchet copula are the least
and greatest element, respectively, w.r.t. the <ga-ordering, i.e., it holds that w2 <soan D <sa M? for all
D € Cy. Examples of <ga-ordered copula families are elliptical copulas and some families of Archimedean
copulas, see [2].
Each of both conditions
D' = E' <pa DYE?, D'<on EY, V1<j<d-1, (28)
and D’/ = E/ >50 DY E?, DY>ga EY, V1<j<d-1, (29)

implies \/ D' >.\/ E*, see Ansari and Riischendorf [2, Proposition 3.6]. We generalize this result to arbitrary
factor distributions as follows.

Theorem 3.25 (Sign-change ordering criterion for upper products).
Let G € F! be a distribution function and let D' E' € Ca, 1 <i<d, be bivariate copulas. If either (28) or
(29) holds, then it follows that

\/Dizc\/Ei.
G G

Proof. Assume (28). For 1 <i <d—1 and u;,v € [0, 1], the functions f;, g;, h: (0,1) — [—1,1] given by
£i(t) = 02E% (v, t) — 9D (us, 1),
9;(t) = 92 D% (v, t) — 92D (u;,t), and
h(t) = fi(t) = gi(t) = 02 (v,1) — 02D (v, 1)
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have a.s. no (—, +)-sign change. Then, also the piecewise averaged functions fZ-G, gl-G, RS : (0, 1) — [-1,1]
given by

18 (t) = 05 B (v,t) — 85 D' (u, 1),
glc(t) 82G-Dd(va t) - 82G-DZ (ui7 t) 3 and
hE(t) = £ (t) — of (t) = 05 E%(v,t) — 05 D% (v, 1)

have a.s. no (—,+)-sign change. Thus, the assertion follows in the same way as the proof of Ansari and
Riischendorf [2, Proposition 3.6].
Under the assumption of (29), the statement follows similarly with [2, Lemma 3.2], using that the functions

J"’Z-G,giG7 and hZG have a.s. no (4, —)-sign change. O

Since we make use of it later on, we cite another concordance ordering criterion for upper products, based on

the lower orthant ordering of the arguments.

Proposition 3.26 (<;,-ordering criterion for upper products). For G € F' and D?,. .., DY E € Ca, the

following statements are equivalent:

i) D' <;, E forall1<i<d,

(i)

(i) M*vD?*v...vD4 <. M?>VEV.-.-VE .
——
(d—1)-times

The result of Proposition 3.26 is given by [3, Theorem 1] even for the tighter supermodular ordering.

3.3 Lower product ordering results

An ordering criterion similar to the sign change criterion for upper products in Theorem 3.25 holds true for
lower products. Remember that, in general, the lower products M? Ag D Ag E and W2 Ag D Ag E are
3-copulas only for continuous G . The symmetric copula Dy associated with D € Ca is defined in (18).

Theorem 3.27 (Sign-change ordering criterion for lower products).
For bivariate copulas Dl7 D% D3 cCy and G € F', the following statements hold true:

(i) If D} <pa D? D3 and D* < ,ya D?, then
M2AD'AD?<,, M*AD*AD® and D' Ag D?<,, D' Ag D3.
(ii) If DI >ga D?,D? and D? > g D?, then

W2AD'AD?<,, WEAD'AD?® and D'Ag D?<,, D' Ag D3.

Proof. To show the lower orthant ordering in (i), let u = (u1,u2,u3) € [0,1]>. In the case that G € F1 \ F}
is discontinuous, set u; = 1. Consider the functions f, g, h: [0,1] — [—1, 1] defined by

F(8) = 05 D*(1 — 3, t) — 95 Di(uz, 1),
g(t) :== 820D3(1 —ug,t) — 8§Di(u2,t),
h(t) = 05 D* (1 — ug, 1) — 05 D*(1 — us,t) = g(t) — £(1).
Then f,g,h have no (—,+)-sign change and it holds that [ f(t)dt = [ g(¢t)d¢. This yields the integral

inequality

/max{f(t)70} dt < /max{g(t),O} de,
0 0
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cf. Ansari and Riischendorf [2, Lemma 3.2]. Thus, we obtain

ul
M2 Ag D' A D2(u) = /max {aQGDl(ug,t) + 09D (1 — ug, t) — 1,0} at
0
ul
= /max {8§D2(1 —us,t) — achi(ug,t) ,O} dt
0

= /max{f(t),()} dt
0

uy
< /max{g(t),()} dt =---= M? Ag D' Ag D3 (u),
0

where the first equality follows from 85 M2 (uy,t) = Ly, >y for almost all ¢ and for arbitrary u; € [0,1] in
the case that G is continuous, respectively, for u; = 1 if G is discontinuous. This yields M2 A D' A D? <o
M2 A D' A D? in the continuous case and D! iVe! D? <o D! NG D3 for arbitrary G .

For the upper orthant ordering in (i), we obtain analogously that

1
M2 Ag DY AG D2 (u) = /max{l — 8§D (us, t) — 05 D*(1 — us, t) ,0} at

U1

1
< /max{1 — 0§ DY (ug,t) — 05 D3(1 —U3,t),0} dt = M2 Ag DY Ag D3 (u).

uy
Statement (ii) follows analogously. O

Similarly to the <;,-ordering criterion for the concordance ordering of upper products in Proposition 3.26,
we obtain a concordance-ordering result for lower products based on a <;,-ordering criterion for the bivariate
dependence specifications.

Theorem 3.28 (<;,-ordering criterion for lower products).

Let D, E', E? € Cy be bivariate copulas. Then, the following statements are equivalent:

(i) D <io E* and Dy <o E?,
(ii) MPANDADy <. M> NE'ANE?.
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Proof. Assume (i). To show the lower orthant ordering, let v = (uj,uz,us3) € [0, 1]3. Then, it holds that

ul
M?* A DA Dy (u) = /max {02D(u2,t) + 02D« (ug,t) — 1,0} dt
0
ul
= /max {02D(uz,t) — 2D(1 — us,t),0} dt
0

uy
= /max {02D(uz,t),0oD(1 — us,t)} dt — D(1 — ug,uq)
0

= max {D(u2,u1),D(1 —us,u1)} — D(1 —us3,u1)

< max {El(ug,ul) 7E,%(l — U3,u1)} — Ef(l — u3,uy)

uy
< /max{@gEl(uQ,t),agEf(l —u3,t)} dt — Ez(l —uz,uy)
0

uy
:/max{agEl(uQ,t)—agEf(l—ug,t),O} dt = M* ANE' A E? (u),
0

where the first inequality follows from the assumptions using that Ds« <;, E? if and only if D >;, E2. The
second inequality holds due to Jensen’s inequality.

For the upper orthant ordering, we similarly obtain

1
M2A DA Dy (u) = /max {02D(uz,t) — 92D« (us,t),0} dt

U1

1
< /max {aQEl(uQ,t) - 82E2(u3,t),0} dt = M2 AELAE2 (u).
u1
Assume (ii). Then, (i) follows from the closure of the lower orthant ordering under marginalization and from
the marginalization property of *k-products, see Proposition 2.11(iv). O

3.4 Ordering results for convex combinations

In Section 3.1, we have established that general lower orthant ordering results for xg g D% in D' for fixed D7 ,
i # j, are only possible if the conditional copulas B = (By); fulfill the convexity condition (21). Remember
that this convexity condition implies negative dependence of the bivariate marginals of By .

Motivated by Theorem 3.20 for componentwise convex conditional copulas and by Proposition 3.26 con-
cerning a <j,-ordering criterion for the upper product, the question arises for which sk-products ordering

results of the form
D' <5, E, Vi,ECIS = xpD'<;,*BE (30)

hold true. Note that F is assumed to be a joint upper bound for the D',
To partly answer this question, we generalize the necessary integral ordering condition in the Ky Fan—

Lorentz Theorem 3.3 under an additional ordering assumption on the upper bound.

Proposition 3.29. If for all decreasing and bounded functions f;, g; on [0,1] with g;; < ... < g, ,%1,...,%4 €
{1,...,d}, such that f; <g g; the integral inequality (19) holds true, then ® fulfills the milder convexity

condition

®(u; + h) — 2¢(u;) + ®(u; —h) >0 for all i, u;,u; #u;, h < m;ién [u; — uyl (31)
J 1
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where those components are omitted which are the same in each expression.

Proof. We modify the proof of Fan and Lorentz [11, Theorem 1]: Let 0 < a < a+2§ <1, and uy,...,uq €
[0,1] . For some fixed i, let h € [0, min-; |u; — u;|] . Assume w.l.g. that u; # u; for all j # i. Define
ui+h, 0<t<a,
filt) = q ui, a<t<a+26, gi(t)—{
u;—h, a+20<t<1,
fit)=g;@t) =u;, j#i.
Then, it holds true that fr <g g, k =1,...,d. Further, there exist i1,...,iq € {1,...,d} pairwise different
such that g;, (¢) < ... < g;,(t) for all £. The inequality (19) reduces in this case to

u;+h, 0<t<a+9,
u;—h, a+d<t<1,

)
/{@(a—&—t,ui+h)—<1>(a+t,ui)+<l>(a+5+t,ui —h;)—P(a+d+tu)} dt >0.
0

Dividing by ¢ and making § — 0, yields (31). O

As a consequence, we obtain that lower orthant ordering results for sk-products with a joint upper bound for

all copulas also restrict the choice of conditional copulas.

Corollary 3.30. If for all CIS copulas D' E € Cy with D* <9, I the inequality
*g D' <ip *B E (32)

holds true, then B fulfills the milder convezity condition (31).

Proof. Let f;, g; be decreasing and bounded such that f; <g g; and g;; < ... < g, , i1,...,iq € {1,...,d}.
Assume w.l.o.g. that 0 < f;,g9; < 1. Then, there exist uy,...,uq € [0,1] and CIS copulas D, E € Cy with
D! <g,5 F such that f;(t) = 9o D (u;,t) and g;(t) = B2 E(us, t) . Thus, the statement follows from Proposition
3.29. L)

Remark 3.31. (a) Due to Corollary 3.30, ordering results of the form (30) can not be obtained for all
continuous families B = (Bt);¢[0,1) of d-copulas.

(b) The upper Fréchet copula M? fulfills the milder convexity condition (31). In this case, inequality (32)
is trivially fulfilled because \/Ei = M? whenever E' = E for all ©. Note that for the upper product the

non-trivial generalized inequality

M*vD?v...vDY'<.M?*VEV---VE (33)
—_——
(d—1)-times

holds true whenever D' <;, E (see Proposition 3.26).

Denote by co(M%,C5°%) the set of convex combinations of M? with elements of C5°”. Then, we obtain the

following result.

Theorem 3.32. Let D' = E' = M? and D? € Cy such that for a CIS copula E € Ca holds D! <o,8 E = E*,
2<i<d. Let Be co(Md,Cgcw). Then, for the simplified %-products, it holds true that

xp D' <ip *p E".
Proof. The copula B is of the form B = aM? + (1 — a)C, for some a € [0,1], where C' € C5** fulfills the

convexity condition (21). Thus, the statement follows from Theorem 3.20 and from (33) using that D’ <5, E
implies D’ <;, E, see Lemma 3.16. O

Note that in the above result, E'=Eforic {2,...,d} is a joint upper bound for the copulas D2, ey DY
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Fig. 3 The setting in Section 4: Completely specified factor models with dependence specifications D* and B =
(Bt)t, respectively, E* and C = (Ct)t, 1 < i < d, and with factor distribution function G and G’ , respectively,
such that Ran(G) = Ran(G’).

4 Ordering results for completely specified factor models

In this section, we combine the ordering results on s-products in Section 3 with the ordering of the univariate
marginal distributions. This leads to lower and upper orthant as well as concordance ordering results for
CSFMs and, thus, to bounds w.r.t. these orderings in classes of CSFMs and PSFMs, respectively.

Suppose that X = (X1,...,Xg) with X; = fi(Z,&;) and Y = (Y1,...,Yy) with Y; = ¢;(Z',¢}) are d-
dimensional random vectors that follow a completely specified factor model with factor distribution function
G = Fz and G' = Fz , respectively, such that Ran(G) = Ran(G’) . Then the corresponding copulas are given
by the sk-products

Cx =*p,gD' and Oy =xca E',

respectively, where D' = Cx, z, E' = Cy, 7+, BtG = OX|Z=G*1(t) , and CtGl = Cy‘Z/:G/—l(t) , see Theorem
2.7. Further, by Sklar’s Theorem, the corresponding distribution functions are given by

Fx = *B,GDZ- (FXla--~7FXd) and Fy = >|<C7GEi (Fyl,...,FYd),

using that Ran(G) = Ran(G"), see Proposition 2.14.
We establish conditions on the conditional copula families B and C assumed generally to be measurable,
on the dependence specifications D' and E* , and on the distributions of the components X; and Y; to infer

lower orthant, upper orthant and concordance comparison results for X and Y .

The following proposition compares CSFMs where the bivariate dependence specifications D' and E°

coincide.

Proposition 4.1 (Ordering conditional copulas).
Assume that D' = E* for all i. Then, the following statements hold true.

(Z) ]fB Slo C and Xi Slo Y—z then X Slo Y.
(i) If B <uo C and X; <uo Y; then X <uo Y .
(iii) If B <c C and X; 2 Y; then X <. Y .

Proof. The statements follow from Proposition 3.2 for fixed marginal distributions together with Sklar’s
Theorem (respectively, Sklar’s Theorem for survival functions) for fixed conditional copulas using that X; <;,
Y; (respectively, X; <uo Y;) implies Fx, (x) < Fy,(x) (respectively, Fx,(z) > Fy,(z)) for all x € R and
1<i<d. O
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In the remaining part of this section, we also establish ordering conditions w.r.t. the dependence specifications
D' and E.

For the following theorem, we need a family of componentwise convex conditional (survival) copulas
that lies between B and C. Then, we obtain a general ordering condition in dependence on the bivariate

specifications, the conditional copulas and the marginal distributions.
Theorem 4.2. Let B’ = (Bwé)te[o,l] C Cy4 be continuous. Assume that all E* are CIS.

(i) If B’ satisfies condition (22) and if By € CS°" for all t, then
B<;,,B' <, C, D' <p,5¢ E', and X; <;, Y; foralli = X <3, Y.
(ii) If B' satisfies condition (23) and if By € C3™ for all t, then
B <uo B <uo C, D' <p,5.6 E', and X; <uo Y; for alli = X <uo Y.
(iii) If B' and B’ satisfy condition (22) and (23), respectively, and if By, By € C for all t, then

B<.B' <.C, D'<p56FE, and X; Y, foralli = X <.Y.

Proof. To show (i), we obtain from Proposition 3.2 and Theorem 3.20 that
*B,G D' <y, *B/,G D' <y, *B/,G E' <, *c,a E".
Then, the statement follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously. O

Since the independence copula and its associated survival copula are componentwise convex, we obtain as a

consequence of the above theorem ordering results for the standard factor model.

Corollary 4.3 (Ordering results for standard factor models).
Assume that B = C =TI = (119) . If D' <a,5,G E' and if E® is CIS for all i, then

(i) X; <ioY; for all i imply X <;, Y,
(1) Xi <uo Y; for all i imply X <uo Y,
(i) X; 4 Y; for alli imply X <. Y.

In the following remark, we determine sharp bounds for some relevant classes of CSFMs including classes of

standard factor models with bounded bivariate specification sets.

Remark 4.4. Let F; € FL for all i. Denote by < one of the orderings <;, and <yo . For E* € Cy, denote
by CQEl ={C €Cy | C <p,5 E%Y the class of bivariate copulas that is upper bounded w.r.t. <a,s5 by E,
1<i<d. For a risk factor Z ~ G, G € .7-"61 , consider the class

x! = {gz (€1y---160) | Ceoz €CE' | Fey < F for alli, Cejz—y <11 for allz}

of d-variate random vectors that are conditionally on Z = z negative dependent w.r.t. <, have marginal
distributions upper bounded by F;, and have dependence specifications Cg, 7 € CQEt , see Figure 4. Then, for
all ¢ € X7, it holds that

Fe < W B} (F1,...,Fy), (34)

where E% is the uniquely determined CIS copula such that E% =8,9 E' | see Proposition 3.17. Further, a vector
e xXF such that € ~ Hd: EL(Fy,... , Fy) can explicitly be determined which implies that the bound in (34
=11
is attained, cf. Corollary 2.9.
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M? M? M?
Slo
C2Evl C2EQ d CQEd
w32 w? w?

Fig. 4 Classes C2Ei ={C e C | C <p,s E'} of bivariate copulas generated by the copulas E* € C2,i = 1,...,d,
via the <p, s-ordering. Note that M? 112, and W2 denote the upper Fréchet copula, the independence copula, and

the lower Fréchet copula, respectively. The copulas E% and Ei are the uniquely determined copulas that are CIS and

CDS, respectively, such that E'}r =055 E? =8,5 E? | see Proposition 3.17. As a consequence of Proposition 3.14, it
holds for all D € CE" that ¢1(DT) < ¢ ((E)T).

In PSFMs, the conditional copulas are not specified. For the comparison of upper bounds in classes of PSFMs,
we note that the worst case distribution in a PSFM w.r.t. the orthant orders is obtained when the conditional

copula specifications attain the upper Fréchet copula.

Theorem 4.5 (Upper bounds in classes of PSFMs).
Assume that C = M9 = (M%) . If DI = B9 <gp D EY for j=1,...,d—1 and D% < g E?, then

(i) X; <io Y; for all i implies X <;, Y,
(i) X; <uwo Y; for all i implies X <yo Y,
(i) X; 4 Y; for all i implies X <. Y .

Proof. From Proposition 3.2 and Theorem 3.25 we obtain that

*B,G D' <y, \/Di <lo \/El =*c,¢ E'.
G G

Then (i) follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously. O

Similarly, we obtain for lower bounds in the two- and three-dimensional case the following result.

Theorem 4.6 (Lower bounds in classes of PSFMs, d = 3).
Assume that B = W3 = (W?3) and D' = E* = M? . If D? = E2? <ya D3, E? and D? <,9a E>, Then

(i) Xi <10 Y; implies (X2, X3) < (Y2,Y3), and if G € F¢ then (X1, X2, X3) <jo (Y1,Y2,Y3),
(ZZ) Xi Suo Yz implies (X27X3) Suo (Yé,Yg)7 and ZfG € f,} then (Xl,X27X3) Suo (Yl,Y27Y3),
(m) Xi g }/z implies (XQ,X,?,) Sc (YQ,Yg), and ZfG S ./—‘.(} then (Xl,XQ,Xg) Sc (Yl,YQ,Yg),

Proof. For G € FL . we obtain from Theorem 3.27 and Proposition 3.2 that
xgD'=M*AD*AD? <, M* NE?> NE® <), kG E°.

Then, (X1, X2, X3) <, (Y1, Y2,Y3) follows with Sklar’s Theorem.
For general G € F', denote by C23 = (Ct23)te[071] the bivariate (2, 3)-marginal copulas of C, i.e., C#3(u,v) =
Ct(1,u,v) for all t,u,v € [0,1]. Similarly, B3 =w?2 = (W2) . Then, we obtain that

l)2 *BZS,G D3 = D2 NG D3 glo E2 laYe! E3 Slo E2 *CZS,G EB,
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and, thus, (X2,X3) <;, (Y2,Y3). For the upper orthant and concordance ordering, the statements follow

analogously. O

Note that the same results hold true if the inequality signs <ga and < ga in Theorem 4.5 and Theorem 4.6
(with D! = E* = W?) are reversed.

For classes of partially specified internal factor models (PSIFMs) where the first component of the risk
vector in the PSFM coincides with (an increasing function of) the factor variable, see [3|, we obtain the
following results. Note that in this class, the first bivariate dependence specification is given by the upper
Fréchet copula M 2,

Theorem 4.7 (Upper bounds in classes of PSIFMs).
Assume that G € F} and C = MY = (M%) . If D' = E' = M? and DV <;, BV = E for j =2,...,d and
E € Co, then

(i) X; <10 Y; for all i implies X <;, Y,
() X; <uo Y; for all i implies X <uo Y,
(i) X; 4 Y; for all i implies X <. Y .

Proof. From Proposition 3.2 and Theorem 3.26, we obtain that
*B D' <, \/ D' <10 \/ E' = *c E".
Thus, the statement follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously. O

For lower bounds in the three-dimensional case, we obtain the following result.

Theorem 4.8 (Lower bounds in classes of PSIFMs, d = 3).
Assume that G € F} and B=W?2 = (W?3). If D' = E' = M? and D? = D3 <;, E7 for j = 2,3, then

(i) X; <10 Y; for all i implies X <;, Y,
(1) X; <uo Y; for all i implies X <uo Y,
(i) X; 4 Y; for all i implies X <. Y .

Proof. From Theorem 3.28 and Proposition 3.2, we obtain
xgD'=D'AD*AD?<,, E'AE* NE? <), ¢ E".

Then, (X1, X2, X3) <jp (Y1,Y2,Y3) follows with Sklar’s Theorem. Statements (ii) and (iii) follow analogously.
O

Conclusion

In this paper, we obtain some general ordering results for factor models w.r.t. the specifications of the joint
distributions of the components with the risk factor variable. The results generalize the upper product ordering
results in [2, 3] to general conditional dependence structures and are based essentially on a version of Sklar‘s
theorem as well as on classical ordering results based on rearrangements. The results in this paper allow to
determine worst case distributions w.r.t. the orthant orderings for classes of CSFMs as well as in subclasses of
PSFMs for any d > 2 and, similarly, of best case distributions for d = 2,3 . Related ordering results w.r.t. the
stronger supermodular and the directionally convex ordering need different techniques and are the subject of

a subsequent study.
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A Appendix

Lemma A.1. For G € F', the following statements hold true.

(i) 1g and v are non-decreasing and Lebesgue-almost surely continuous.
(i) G g(t)) = G7Ht) and 1g(G(x)) = G(x) for all t € [0,1] and z € R.
(iii) If G(x —€) < G(x) for alle >0, then 1o (G(x)) = G~ (x).
(iv) 1o(t) <t <ig(t) Vvt e (0,1), t5(0) =0 =1q(0) and t(1) <1 =15(1).
(v) tgotg=1g and igoig = tg.
(vi) 1 is left-continuous.
(vii) For ally € R, 1q is left-continuous at G(y) and v is continuous at G~ (y) .
(viis) In general, v is neither left-continuous nor right-continuous.
(iz) 1o(t) =t =1q(t) if and only if G is continuous at G ().
(x) 1o(t) =t =1g(t) for allt € [0,1] if and only if G € Fi.
(xi) If Lg(t) > t, then gt +¢) = 1a(t) and 1ot +€) = 15 (t) for all 0 < e <ig(t) —t.
(zii) If 1o (t) <t, then ig(t —e) = 1q(t) and 1o(t —€) = 15 (t) for all 0 <e <t —15(t).

Proof. (i): The non-decreasingness is clear. Since (g and ¢ can only have an at most countable number of
jumps, the set of discontinuity points is a Lebesgue-null set.

(i), (iii) and (iv) follow from the definition of G~ and G~ , respectively, considering the cases where G is
discontinuous and constant around x, respectively.

(v) is a consequence of (ii).

(vi): This follows from the left-continuity of G~ and G~1.

(vii): To show the left-continuity of tg at G(y) , let (tn)nen be strictly increasing in [0, 1] with limit G(y) > 0.

Then, we have

G(y) = 1a(G(y)) > ta(tn) > ta — G(y)

as m — oo applying (ii), (i), and (iv). To show the right-continuity of ¢ at G~ (y), let (tn)nen be strictly
decreasing in [0, 1] with limit G~ (y) < 1. Then, we obtain similarly that

G (y) =1q(G () <igtn) <tn = G (y).

(viii): Consider the distribution functions G and H defined by

0 ifz <0, 0 ifzx<O,
2 i 1 1
G((p): ;.’E ) lf$€ [?72)7 H({L’): .’f 1f13€ [?72)7 (35)
sr+3 ifze(z,1], 5 ifxelsz,1),
1 ifx>1. 1 ifz>1

Then 1 and ¢y are given by
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So, ¢ is not left-continuous at t = % and ¢z is not right-continuous at t = % .

(ix): tg(t) = t = 15 (t) holds if and only if G(G™Y(t)) = G~ (G7L(t)), which is equivalent to the continuity of
Gat G7L(t).

(x): If G € F}, the statement follows from (ix). For the reverse direction, assume that G € F!\ F} is
discontinuous. Then there exists « such that G(x) > G~ (). For ¢t € [G™ (x),G(x)), it follows that tg(t) =
GG rt) =G(z) > t.

(xi): Let € € (0,tG(t) —t] . Then, the non-decreasingness of (g and (v) imply tg(t) < tg(t+e¢) <ia(g(t)) =
ta(t) and v (t) < ia(t+¢) <ig(eg(t)) = o (t) -

(xii): Let & = G~1(t). Then, the statement follows from G~ (z) < t — e < G(x). O

Proof of Proposition 2.2.
Consider the set Z. := {(z0, #1) | 20 < 21, G is continuous on (zg, z1)} of open intervals on which G is con-
tinuous, and denote by Zs := {{z} | z € R} the set of one-point sets. We show that

/ Fx|z—.(x)dG(z) = / 05 C(F(z),G(2))dG(z), and (36)
(20,21) (20,21)

/ Fx|z=.(2)dG(2) = / 05 C(P(x), G(2)) dG(2) (37)

=} =}

for all (20,21) € Z¢ and {2z} € Zs. Since G has at most countably many jump discontinuities, every open
interval (yo,y1) C R can be written as a disjoint union of at most countably many elements of Z. and Zs .
Then, (36) and (37) imply

Fxiz=(@)d6(2) = [ 0§ C(P@). G a6
(yo,y1) (yo,y1)
for all open intervals (yo,y1) C R. Hence, the integrands coincide for G-almost all z, which yields (i).

To show (36), let (20,21) € Zc. Assume w.l.o.g. that tg := G(20) < G~ (21) =: t1 . Then we obtain from
the disintegration theorem and Sklar’s Theorem that

/ FX‘Z:Z(I) dG(z) = lim F(x,2) — F(z,20) = C(F(x),G™ (21)) — C(F(z),G(20))

2121
(20,21)

= / 0C(F(z),s)ds = / lim C(F(z),5) = C(F(z),5 — €) ds
eN\0 £
(to;t1) (to,t1)

~ [ i O seleel) - OPl) st =)

N0 a(ta(s)) —1glea(s) —€)

ds (38)

(tost1)

= / A C(F(),16(s)) ds = / 95 C(F(2),G(2)) dG(2),

(tost1) (20,21)

where the third equality follows from the disintegration theorem applied on copulas. For the fourth equality,
we use that the left-hand derivative and the derivative of the copula w.r.t. the second component coincide
for Lebesgue-almost all s. The fifth equality follows from tg(s) = s = 15(s) and (s —¢) = s — ¢ for all
s € (to,t1) and e € (0,5 — to because G is continuous at G~ 1(s) and G~1(s — ¢), respectively, see Lemma
A.1(ix). The sixth equality holds by definition of the differential operator in (2), and the last equality is a

consequence of the transformation formula.
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To show (37), assume for z € R w.l.o.g. that G(z) > G~ (z) . Then we obtain

/ Fx|z=y(x)dG(y) = F(z,2) — lim F(z,w) = C(F(z),G(2)) = C(F(z), G (2))
{=}

_ C(F(2),16(G(2) = C:(F(w)wf;(G(z))) (G() - G (2))
1q(G(2)) —15(G(2))
= lim ClF(@),00(G(2))) = (’:(F(x)’ 1g(G(z) —¢)) (G(z) — G (2)) (39)
e\O 1g(G(2)) —1a(G(2) —¢)
- /BQGC(F(m),G(z))dG(z),
(=}

where we use G(z) > G~ (z) and apply Lemma A.1(v) for the third equality. For the fourth equality, we use
the left-continuity of ¢, , see Lemma A.1(vi). The last equality follows with the definition of the operator 82G
in (2).

To show statement (ii) of Proposition 2.2, denote by Q the rational numbers. Due to part (i) it holds that

G
Fx|z=.(z) = 05 C(F(z),G(2))
for all z € QQ and for all z outside the G-null set N := Uer Nz . Then we obtain for x € R that

Fx|z=-(®) = lim Fx|z_.(w) = lim 85 C(F(w),G(2)) =: Hx(a)

weQ weQ

for all z € N¢. For z € N, the function H, is by definition right-continuous. Since C' is a 2-copula

and thus 2-increasing, H. is non-decreasing. Further, H,(—oo0) = 0 and H.(co) = 1. Hence, H.(z) =
limy, | 5 9§ C(F(w),G(z)) coincides with Fx|z=(z) for all z € R and for all z € N°. This proves the as-
sertion. O

Proof of Proposition 2.14.

(i) = (ii): Assume that Ran(G1) # Ran(G3). As a consequence of Proposition 2.13, the d-variate products
HG1M2 and IIg, M 2 do not coincide because for G € F', IgM? defines an ordinal sum with intervals
{(tg®);eq(®)) |ta(t) # wa(t),t € (0,1)} which are different for G = G1 and G = G2 unless Ran(G1) =
Ran(Ga2) .

(ii) = (iii): Let Ran(G1) = Ran(G2). Then, for all ¢ € (0,1), it holds that

1q, (t) = G1 (inf{z | G1(z) > t}) = inf{u € Ran(G1)|u > t}
= inf{u € Ran(G2)|u >t} = Go (inf{x | Ga(x) > t}) = 1q, (t).
(iii) = (i): This follows from the definition of the *-product because *p ¢ D* depends on G only through
LG - O

Proof of Proposition 2.15(iii). Assume that D' = DJ for all i # j. Then, for u = (u1,...,uq) € [0, l]d, it
holds true that

1 1 1
\/ D¥(w) = / min {05 D" (us, 1)} dt = / 05 D! (min{us}, 1) dt = / 95 D (min{u;}, G)) dG(y) = minfu;}
G 0 0 0
where the second equality holds because 82G Dl(-,t) is increasing for all ¢, the third equality follows from

(3) and the transformation formula, see, e.g., [33, Theorem 2|, and the last equality is a consequence of

Proposition 2.2 and the disintegration theorem.

For the reverse direction, assume w.l.g. that d = 2 and Dl(wl,wg) > Dz(wl,wg) for some (wi,w2) €
[0,1] x Ran(G) . Then, there exist (u,v) € (0,1) x Ran(G) and an e-ball Be(u,v) C (0,1)? such that

95 DYz, t) > 85 D (x,t) for almost all (z,t) € Be((u,v)), (40)
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because, otherwise, it would hold that

w2 w2
DY (w1, w) :/82GD1(w1,t) dt < /a§D2(w1,t)dt:D2(wl,w2).
0 0

which is a contradiction to Dl(wl, wy) > D2(w1, wa) . As a consequence of (40), we obtain that

1 1
M?(u,u) = u = /820D1(u,t) dt > /min {8§;D1(u,t),8§D2(u,t)} dt = D' v D*(u,u).
0 0
This yields D Vg D? # M2 . O

Proof of Proposition 2.16.
The first statement is a consequence of [32, Proposition 3.
Since ST(C’i) € Cy for all 7, the product * g ST(Ci) is well-defined. Hence, the second statement follows

from

1 1
%5 S7(C") (u1,...,uq) :/B (0287 (C )(Uzvt))1<z<d :/B 320 (g, (ﬂ)hgigd) dt
0 0

B (82Ci(ui75))1§i§d) A" (s) = / B ((aQCi(ui:S))1§i§d> dA(s)
[0,1] [0,1]
=xpC' (w1, ..., uq)
for all (uy,...,uq) € [0,1], using that 9287 (C)(u, t) = 82C (u, T(t)) for A-almost all ¢ . O

Proof of Lemma 2.17. (i): Let ¢t € (0,1). Due to Lemma A.1, we consider three cases.
In the first case, assume that tg(t) = ¢ and tq(t — €) = ¢ for some € > 0. Define

to :=inf{s|tg(s) = g(t)}. (41)

Then, Lemma A.1(xi) implies that ¢ in constant on (tg, t] . We show that ¢ (t) = to . Suppose that ¢+ ~(t) > to.
Let n = 15 (t) — to. Then, t,(to + ) = to +n for some 6 € (0,n). But this is a contradiction to Lemma
A.1(iv). Suppose that ¢(t) < to. Then, Lemma A.1(xii) implies that 1 is constant on (¢ (t),] . But this is
a contradiction to (41).
In the second case, assume that tg(t) =t and 1g(t — ) =t — 6 for all 0 < § < ¢ for some £ > 0. Then,
Lemma A.1(xii) implies that ¢, (t) =¢.
In the third case, assume that ¢ (t) # ¢. Then, Lemma A.1(iv) implies that ¢ (t) > ¢. Lemma A.1(xi) implies
that ¢, is constant on (to, tq(t)] for to defined by (41). We show that ¢ (to +0) = to for all 0 < d < 1g(t) —to
and, thus, ¢~(t) = to . Suppose that ¢ (to + ) > to for some § € (0,:c(t) —to). Then, there is a contradiction
to Lemma A.1(iv). Suppose that ¢ (to + ) < to for some ¢ € (0,:5(t) —to). Then, Lemma A.1(xii) yields a
contradiction to the minimality of ¢g .
All of the three above considered cases imply that 1(t) = inf{s|ig(s) > tg(t)}. It remains to show that
tg(s) > 1g(t) <= 1g(s) > t. From Lemma A.1(iv), we obtain that tg(¢) > t, which implies the direction
from left to right. For the reverse direction, we obtain from Lemma A.1(v) and (i) that tq(s) = tq(tg(s)) >
L (t).

(ii): Consider the functions Fp, F: R — [0,1], n € N, defined by

0 ift <0, 0 ift<o0,
Fu(t) = limg 0, (s) ift € [0,1], F(t) = { limg s eq(s) if t €[0,1],
1 ift>1, 1 ift>1,
0 ift <0, 0 ift <0,
Fy (t) = { limgpe e, () if t € [0,1], F(t) = limgp g (s) if t € [0,1],
1 ift>1, 1 ift>1.
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Then, Fy, and F are distribution functions with left-continuous version F,, and F'~ , respectively. Since by
assumption v, — tc almost surely pointwise, we obtain that Fy(t) — F(t) for all t at which F is continuous.

This implies that the generalized inverse distribution functions converge almost surely, i.e.,

-1

FY(t) = F71(t) for almost all t € [0,1]. (42)

Since F~1(t) = inf{s| F(s) >t} = inf{s| F~(s) > t}, it holds by construction of F' and F~ and by (i) that
F7Yt) = inf{s|ig(s) > t} = t(t) . Similarly, we obtain that E7Nt) = Lg, (t). Hence, (42) implies that
tg, (t) = 15(t) for almost all ¢ € [0,1]. O

Proof of Proposition 2.25. (i): Let D = E4 on [0,1] x Ran(G) . Then, for (u,v) € [0,1]?, it holds that

1 1
D Ag E(u,v) = /max {BgD(u,t) + agE(v,t) - 1,0} = /max {agD(u,t) — BgE*(l - v,t),O} dt
0 0

1 1
:/max{agaD(u,t),agD(l—U,t)} dt—1+U:/8§D(max{u,1—v},t)dt—l—i—v
0 0

:max{u,lfv}flJrv:WQ(u,v).

For the reverse direction, assume w.l.g. that D(w1,w2) < Ex(w1,w2) for some (w1, ws2) € [0,1] x Ran(G).
Then, there exist (u,v) € (0,1) x Ran(G) and an e-ball Be(u,v) C (0,1)? such that

agD(x,t) < 8§E*(m, t) for almost all (z,t) € Be((u,v)), (43)

because, otherwise, it would hold that

w2 w2
D(wy, wy) = /BQGD(wl,t) dt > /82GE*(w1,t) dt = Ex (w1, ws),
0 0

which is a contradiction to D! (w1, ws) < Ex(w1,ws). As a consequence of (43), we obtain that
1
W2(u,1—u)=0= /3§D(u,t)dt—u
0

1 1
< /max {BgD(u,t),agE*(u,t)} dt —u = /max {agD(u,t), 1-— 6§E(1 — u,t)} dt —u
0 0

1
:/max{agc;D(u,t)—l—ach(l—uJ) - 1,0} dt=DAg E (u,1—u).
0

This yields D A E # W?2.
(ii): If G € F} is continuous, then it holds that

1
M? ANa D Ng E(u) = /max {1{u12t} + 02 D(u2,t) + 02 E(us,t) — 2,0} dt
0
uy
= /max {OQD(UQ,t) + 02 E(us,t) — 1,0} dt
0

for u = (uy,ug,us) € [0,1]%. This defines a 3-copula, cf. Durante et al. |7, Proposition 2|.
For the reverse direction, assume that G € ‘7’-'1\]-'61 is discontinuous and that M2 ANgDAgFE is a 3-copula. Then,
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Theorem 2.7 implies that there exists a random vector (U, Uz, Us, Z) (under an extension of the probability
space if necessary) such that Z ~ G, Cy, z = M2, Cu,,z =D, and Cy, 7z = E as well as

P((U1,Us,Us) <u|Z = 2) = W> <8§M2(u1,t),agD(uQ,t),BgaE(ug,t))

for all z = G_l(t)7 t € (0,1), and for all v = (uy,u2,us) € [0, 1}3. Since G is discontinuous, there exists
to € (0,1) such that ¢ (to) < tg(to). This implies that the conditional distribution functions A5 M2 (- to)
5 D(-,to) , and 85 E(-, to) are continuous. Now, choose u = (u1, u2,u3) € [0,1]% and v = (v1,v2,v3) = (1,1,1)
such that

05 D(uy,to) = 95 E(us, to) = 05 M>(us, to) = 0.5,
95 D(v1,t0) = 05 E(va, ) = 85 M*(vs,t0) = 1.
Then, it follows that
P ((Ul, Us,U3) € [u,v] | Z = G_l(to)) = Vs ([%, 1]3) - _05<0,

where VW:»,([%, 1]3) denotes the W3-volume of the box [%, 113  [0,1]3, see Nelsen [23, Exercise 2.36]. This
yields a contradiction and, thus, M 2 Aa D Ag E is not a copula.
(iii) is a consequence of Theorem 2.7 and Remark 2.8.
(iv) and (v): For (u,v) € [0,1] x Ran(G), it holds that
v
D NAg M2(u,v) = /max {Bgc(uﬂf) + 6§M2(’U,t) — 170} dt = /826;D(u7t) dt = D(u,v),
0

where the second equality holds true because 85 M2 (v, t) = Ly>¢y using that v € Ran(G) . The third equality
follows from Proposition 2.2.

The other statements follow similarly

(vi): As a consequence of (iv), A is not commutative if D is not symmetric. For a counterexample for
associativity, let D' € Cy be a Gau551an copula with correlation p; € (—1,1), ¢ = 1,2,3. Then, C'ACY s
a Gaussian copula with correlation m(p;, pj) = pip; — /1 — p?, /1— p? . Obviously, in general, it holds that

m(p1, m(p2, p3)) # m(m(p1, p2), p3) -

O

Proof of Lemma 3.6. For condition (21), the statement is trivial.
For condition (22), we need to show that

/[Ba+5+s(u) — Bgys+s(0) + Bats(v) — Bats(u)] ds >0, V0<a<1-26,V5>0, (44)
implies

)

[ [BSsatw) = Blisiato) + BEno) = B ds 20, Yo<a<i-m w0, @)

0

where u = (uy,),v = (vg) € [0,1]¢ such that for some i € {1,...,d} and u; < v;, uj =wv; forall j #1i.
Consider the function f: [0,1] — [—1, 0] given by

f(t) = Bt(u) — Bt(v) .

Then, condition (44) is equivalent to

& &
/f(a+6+s ds > /fa+s ds forall0<a<1-—26andd >0,
0 0
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which means that f is increasing. Thus, the smoothed function f&: [0,1] — [—1, 0] given by

IR R it 15(1) = (),
e S s, 0 ot

Bt (ug) — Bt (u; + h)

~—

is also increasing. But this is equivalent to (45).
For condition (23), the statement follows analogously. O
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