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COMPARISON OF PERCOLATION PROBABILITIES

LUDGER RUSCHENDORF,* University of Freiburg

Abstract

Some recent results of Oxley and Welsh (1979) and McDiarmid (1981)
concerning Bernoulli percolation on clutters are generalized. Our results allow
to consider quantitative aspects of percolation on graphs and clutters.

PERCOLATION PROBABILITY; CLUTTER; RANDOM GRAPH; ASSOCIATION

1. Introduction

Let I be an ordered finite set and let € be a clutter of I, i.e. € is a set of
pairwise incomparable subsets of I Let X = (Xi)ier be an |I|-dimensional
random vector and define for E € €, Xe = (Xi)ice, the random vector with
indices in E ordered according to the order of I Let f=(fe)eee, where
fe:R"™'—R' is measurable and let h: R R also be measurable. Then
define the quantitative percolation probability

1) Pis (6, X) = Eh(fe (X)),

where f¢(Xe¢) = (fz (Xe))eee and the expectation is assumed to exist. Definition
(1) is extended to the case where fe are defined on subsets of R
way.

in an obvious

We give some examples showing the connection to the usual percolation
models. For a discussion of these models cf. Hammersley and Welsh (1965),
Smythe and Wierman (1978), Oxley and Welsh (1979) and McDiarmid (1981).

(@) If X;, i €1, are binomial distributed,

fe(Xe)=]] Xi foreach E € ¢ and h(X¢)=max Xz for X¢=(Xe)ees € R

i€E

then

@ Pux)=P(U N X=1))=r@x),

E€¢ ieE
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where P(%, X) is the probability that there exists an open element in the clutter
€. (P(%,X) is called percolation probability by Oxley and Welsh (1979) and
McDiarmid (1981).) Comparison results for this case were studied by Oxley and
Welsh (1979) and McDiarmid (1981).

(b) Let I be the set of edges of a graph G and let the elements of € be the
edge-sets of minimal paths between two vertices lo, Ii; let X; denote the time a
particle remains on edge i,

fe(xe)=2 x, x: €R™ and h(x¢) = min xg,
i€EE Ee¢

X¢ = (X£)eee € R'®! then Pys (€, X) is the expected first-passage time between
io, I (cf. Hammersley and Welsh (1965)). Assume that a fluid passes from vertex
Io to iy and assume that edge i is only partially open, so that only X; percent of a
fluid arriving at this edge can pass it, then Ilice X; = fz (Xe) is the proportion
passing from i, to i, on the path E. If we choose h(xe)=2gcexe, xe € R
Py, (%, X) is the total quantity of fluid passing from i, to i,.

(c) Let N be a network with random capacities X; on node i and let € be the
set of minimal cuts separating source i, and sink i,. Then by the maxflow-mincut
theorem P, (%, S), with h(xe)= MiNgceXe, fe(Xe)=icpx; is the expected
maximal flow between iy, i,. '

2. Comparison of percolation probabilities

We want to compare percolation probabilities for two different random
mechanisms X = (X;)c, and Y = (Yi)ie:. To do this we need some definitions.
Let W\, W, be two k-dimensional random vectors. Define

Wis,W, it P(W,Z2)=P(W,22) for all z € R*
(3) (=is the componentwise order on R*) and

WiS'W, it P(W,=2)=P(W,=z),

Let 1(,e) (1¢-=.)) denote the indicator function of [z, ©) (=, 2]); let M¥ be the
closure of the set

(4) {d()""z dllllzj-“’); doERI, di ;0, Zi ERk,jé n, n EN}
i=1

with respect to pointwise limits of isotone (i.e. monotonically decreasing or
increasing) sequences and, similarly,

M5 the closure of {d0+ 2l lews);d20,dy€ER', z; ER* j=n,n EN}
=

with respect to pointwise limits of isotone sequences. M7 is a subset of the set of
A-monotone functions and was studied by Riischendorf (1980). It includes for
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instance fi(x)=min=x;, x € R, fH(x)=Zx, x €R* or fi(x)=1I%, Xi,
X € RY; similarly hy(x) = maxi=i x:, x € R hy(x) =3k, x4 x ER¥, d, =0 are
elements of M5 Let I=3" 1 be a partition of I and consider the following
assumptions.

A, {X1}1si= are independent random vectors; similarly {Y; }i<i=,
are independent random vectors.

A, Forall E €% we have |[ENL|=1, 1=i=n
A, fe is monotonically non-decreasing for E € ¢,
A, X, = Y,1=i=n
As X, =Y, 1=si=n

Theorem 1. Under assumptions A, A,, A,
(@) Poy(6,X)=Pw(%,Y) for h € MI° if A, holds.

©) (b) Pus (%, X)Z P,y (%, Y) for h € M¥ if A, holds.

Proof. (a) Without loss of generality we may assume that X, =Y, 2=i=n,
Assume, furthermore, that X, =x, 2=i=n, are given. With ¢ ={E€ ¥;
i € E} for i €1, we have by our independence assumption A, that fg (Xz)=
fe (X, xey), for EE€ 4, is a monotonically non-decreasing function of X, i €1,
conditionally on x,, 2 =i = n. Therefore, by A, conditionally on x,, 2= i = n, we
have

(fe (Xe)eee =i (fe (Ye))ree.

This implies by definition of M!¢! using the theorem on monotone convergence,
that Ph_/ (Cg, X) = Ph‘/'((g, Y)
(b) follows from (a) by replacing x by —x.

Remark 1. (a) If X, Y, are binary our assumptions are identical to
condition (C) and the independence assumption of McDiarmid (1981). So
Theorem 1 includes part (a) of Theorem 2.1 of McDiarmid (1981) (the Gcp
theorem) on comparison of P(%, X), P(6, Y) (cf. the introduction). Part (b) of
the Gcp theorem can be generalized in a similar way.

(b) Our proof of Theorem 1 is on the lines of a proof given by Lehmann (1966)
for concordant functions; we do not need results on clutters.

(¢) The following sufficient conditions for =°, =, correspond to those in
Lemma 2.2 of McDiarmid (1981); Let F; be the distribution function of P = P,
i € [, and let U, be independent and uniformly distributed on (0,1), 1 Si = n.

LI Y, =(F;/'(U))er, 1=i=n, then X =, Y and

(6) X=vY.
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2. If [L[|=2, 1=i=n, and Y, =(F'(U),F;'A-0)) if I, = 1.0} ¥ =
(), if I ={j}, then Y=,X and Y=°X (cf. Riischendorf (1980)).

Jsing 1 and 2 above we can generalize some applications concerning compari-
ons of different random graphs given by McDiarmid (1981) as, for instance,
heorem 4.1 and Corollary 2.3.

(d) Under stronger domination assumptions than given in A,, A, for example
ochastic order, we do not need A, for a similar comparison result. Some
:neralizations of Theorem 1 to countable I are obvious.

Now let € be the disjoint union of €, 1=i=r X is called associated, if
f(X)g(X)= Ef(X)Eg(X) for all monotonically non-decreasing f, g such that
1e expectation exists (cf. Esary, Proschan and Walkup (1967)).

Theorem 2. Let X be associated, € = 3[_, 4, let (Y¢,)i=i=, be independent
ndom vectors such that Xe, and Y have the same distribution and assume As.
hen,

Poi(€,X)ZPs(6Y) forhe M

) P (6, X)SP.(%Y) for h e M.

Proof. Since X is associated, also (X¢, )1=i=, with X, = (Xk)eeq, is associated
d, therefore, by A; also (fe, (Xe,))i=i=, is associated (cf. Esary, Proschan and
alkup (1967)); this implies that (fe,(Ye,))i=iz, =, (fe,(X«,))i=i=, (and also with
spect to =°). As in the proof of Theorem 1 this implies Theorem 2.

Remark 2. If X is associated with- P =B(1,p;), i €I, where B, p)
notes binomial distribution with parameter p;, if € ={E,, - E,}=3/_, &
(¥e)=Micexi, h(x¢)=maxgeexs, then h €M and P, (%, X)=P(%, X).
" Theorem 2 P(6,X)=P(6,Y)=P(¢,U---U €.,.Y) If n=r, ¢ = {E:},

2i=n,

P v)=1-IIP{U (v =of-1-[](1- ] »).
i=1 J€E, i=1 JEE;

IS remark generalizes Theorems 3.1 and 3.2 of Oxley and Welsh (1979) who
1sider the case that {Xi}ic: are independent and pi=p;, L,jEL (For a
‘queness part as in Theorem 3.1 of Oxley and Welsh (1979) we had to impose
¢t monotonicity on fe, and on h.)

orp=pie I, define P(%,p)=P(%, X). Oxley and Welsh (1979) derive in
>orem 4.1 (sharp) lower bounds for P(%, p). These bounds can be sharpened
ler further restrictions on the clutter 4. If for instance € ={E\,-E,},

=@ and |E\E; |22 for all i#j, then

P(€,p)Zp +p=(1=p*)+ - +p=(1-p>
8 similar proof as given by Oxley and Welsh (1979).
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