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Abstract

The main aim of this paper is to introduce the notion of risk excess measure, to analyze its
properties and to describe some basic construction methods. To compare the risk excess
of one distribution Q w.r.t. a given risk distribution P , we propose to apply the concept
of hemi-metric on the space of probability measures. This view of risk comparison has a
natural basis in the extension of orderings and hemi-metrics on the underlying space to
the level of probability measures. Basic examples of these kind of extensions are induced
by mass transportation and by function class induced orderings. Our view towards
measuring risk excess adds to the usually considered method to compare risks of Q and
P by the values ρ(Q), ρ(P ) of a risk measure ρ. We argue that the di�erence ρ(Q)−ρ(P )
neglects relevant aspects of the risk excess which are adequately described by the new
notion of risk excess measure. We derive various concrete classes of risk excess measures
and discuss corresponding ordering and measure extension properties.
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1. Introduction

1.1. Motivation

The evaluation and comparison of risks is a basic task of risk analysis. For the
evaluation of risks, the notion of risk measures -in particular of coherent and convex
risk measures- has been introduced in an axiomatic way for real risks in [1], [6], [10]
and has been extended to vector risks in [12], [3] and many others. This notion leads
to the comparison of two risks X,Y (resp. distributions Q,P ) by ρ(X) − ρ(Y ) (resp.
ρ(P )− ρ(Q)). If the main interest is to compare a risk X to a benchmark risk Y w.r.t.
a common risk measure ρ, then the one-sided distance

D+(X,Y ) = (ρ(X)− ρ(Y ))+, (1.1)
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respectively,
D+(Q,P ) = (ρ(Q)− ρ(P ))+, (1.2)

is the induced comparison of risks (where x+ = max(x, 0) denotes the positive part of
x).

We argue that the comparisons in (1.1), (1.2) neglects some relevant part of measuring
the risk excess. This de�cit can be seen in the analog simple case where for the basic
space E = Rd, the risk of a vector x = (x1, . . . , xd) ∈ Rd is measured by the Euclidean
norm ρ(x) = |x|. In this case,

D+(x,y) = (|x| − |y|)+ (1.3)

gives a quantitative comparison of the new risk x w.r.t. a benchmark risk y, which is
not informative enough. If |x| = |y|, then the comparisons in (1.3) would not take into
account whether some or many components of x might be essentially larger than those
of y. A better measure for the risk excess would be

D+(x,y) =

d∑
i=1

(xi − yi)+. (1.4)

Another motivation comes from the fact that some concepts which have an impact
on the notion of risk are better de�ned in a relative manner than in absolute terms: for
example, the concept of �heavy tailedness� of a distribution (and the subsequent idea of
�tail risk�) is easier to de�ne by comparing the �size of the tail� or �speed of decrease
of the density� of the distribution F to the corresponding �size of the tail� or �speed of
decrease of the density� of a benchmark distribution G (say, the standard Gaussian one).
These comparisons can be operationalized in a quantitative measure of tail risk, e.g. by
computing the di�erence of mass of the distribution F over an α-quantile w.r.t. to the
corresponding mass for the benchmark distribution G over the same α−quantile, viz.

Tα(F,G) :=

∫ 1

α

(
F−1(u)−G−1(u)

)
+
du

or, for operationalizing the comparisons of �speed of decrease of the density� by something
like,

τα(F,G) :=
F−1(α)− F−1(0.5)

F−1(0.75)− F−1(0.5)
×
(

G−1(α)−G−1(0.5)

G−1(0.75)−G−1(0.5)

)−1

see e.g. [5] p. 45, [22]. See also the motivation in Section 4.

1.2. Outline

In this paper, we propose to measure the risk excess of a risk distribution Q over a
given risk distribution P by a hemi-metric on the space of probability measures. Hemi-
metrics are a suitable tool for one-sided comparison of risks. When measuring the risk
excess of Q compared to P , it is natural to associate a one-sided distanceD+ = D+(Q,P )
on the spaceM1(E) of probability measures to an order on the underlying space E, i.e.
to assume that E is supplied with an ordering ≤. For a quantitative risk comparison,
also a one-sided hemi-distance on E seems to be a natural ingredient.
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We discuss several classes of hemi-distancesD+(Q,P ) and consider the question when
these distances are given as order extensions of hemi-distances d+ on the underlying
space E. Several relevant hemi-distances are induced by mass transportation and thus
give access to natural interpretation. One particular extension is given by a version of
the Kantorovich-Rubinstein theorem for hemi-distances. The paper develops basic tools
and notions for measuring the one-sided risk excess of a risk distribution Q compared to
P .

The paper is organized as follows: in Section 2, we introduce the notion of hemi-
metrics which are basic for obtaining a quantitative description of one sided distance in
a preordered space (E,≤). We discuss several examples to describe the meaning of this
notion and the interplay of order and distance. The risk excess measure D+(Q,P ) of
Q w.r.t. P is then introduced as a one-sided hemi-metric on the space of probability
measuresM1(E). The ordering � onM1(E) is chosen consistent to the preorder ≤ on
E and describing a positive risk excess, i.e. Q � P if Q has no positive risk excess w.r.t.
P .

In Section 3, we describe several classes of interesting risk excess comparison measures
and corresponding extension properties of the preorderings on the underlying space.
A general class of risk comparison measures is introduced by considering worst-case
comparison over suitable classes of increasing functions. This is analogue to the worst
case representation of convex and coherent risk measures. There are several classes of
examples.

In Section 4, we describe risk excess measures D+(X,Y ) on the space of random
variables. The class of compound risk excess measures is obtained for those measures
which depends only on the joint law of the random elements (X,Y ). Mass transportation
gives a natural way to obtain minimal extensions of compound risk excess measures to
risk excess measures in the space of distributions, i.e. which depend only on the marginal
laws of X and Y . Dual representations of these risk excess measures are obtained by
a version of the Kantorovich-Rubinstein's Theorem for hemi-metrics. Several examples
illustrate these constructions.

In Section 5, we introduce the concept of weak risk excess measures, which is an
risk excess measure without the weak identity property. Similarly to Section 4, a mass
transportation formulation gives a way to obtain weak risk excess measures as maximal
extension of compound risk excess measures. We also give a dual representation of
this risk excess measure and introduce several examples of weak excess risk measures
constructed from mass transportation problems.

Finally in Section 6, we consider dependence restrictions on the class of risk pairs
(X,Y ) and consider maximal and minimal excess risks with these restrictions. These
maximal and minimal excess risks do not de�ne risk excess measures, but give rele-
vant and well motivated bounds. For one and two-sided restrictions, we obtain explicit
formulas for the bounds.

2. Hemi-metrics and measuring risk excess

2.1. Hemi-metrics

As a motivation for the introduction of measuring risk excess of distributions, one
could argue that, from the structural and phenomenological point of view, the concept
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of risk combines aspects of the metric structure (a risk measure evaluates some �size� or
�norm� on the space of distributions) and of the order structure (there is an underlying
preorder structure on the space of distributions which allows one to say when one risk
is larger than an other). Such �quantitative measure of the order� is encapsulated in
the notion of hemi-metric, see [11] Chapter 6, p. 203. (The terminology is not com-
pletely standard and the notion of hemi-metric is also known of as pseudo quasi-metric
in the topology literature, while [17] p. 61 calls it a semi-metric). We use the following
de�nition:

De�nition 2.1 (Hemi-metric). A hemi-metric or hemi-distance d+ on a set E is an
application d+ : E × E → R which satis�es the following axioms: for all x, y, z ∈ E,
(A1) positivity: d+(x, y) ≥ 0;

(A2) weak identity: x = y ⇒ d+(x, y) = 0;

(A3) triangle inequality: d+(x, z) ≤ d+(x, y) + d+(y, z).

The main di�erence with the notion of metric is the omittance of the symmetry
condition, and assuming only the weak identity property. For establishing a connection
with a preorder ≤ on E, we introduce the notion of one-sided hemi-metric.

De�nition 2.2 (One-sided hemi-metric). Let d+ be a hemi-metric on a preordered set
(E,≤). Then, d+ is called a one-sided hemi-metric on (E,≤) if

(A4) x ≤ y ⇔ d+(x, y) = 0.

For two comparable elements, the one-sided hemi-metric of a smaller element x to a
larger element y is zero.

Remark 2.1. 1. If E is a set and d+ a hemi-metric on E, one can endow E with a
preorder structure by setting

x ≤ y ⇔ d+(x, y) = 0. (2.1)

Then, by construction of ≤, we obtain that d+ is a one-sided hemi-metric on E.

2. Hemi-norms and hemi-metrics:
When E has a vector space structure, a metric d can be induced in a natural way by
a norm ρ, as d(x, y) := ρ(x− y). In a similar way, a hemi-norm ρ+ on E, (i.e. a
subadditive, positive homogeneous, non-negative functional ρ+ : E → R satisfying
the weak separation condition x = 0E ⇒ ρ+(x) = 0) de�nes a hemi-metric d+ by
setting

d+(x, y) := ρ+(x− y). (2.2)

In addition, if E has a preorder ≤ and ρ+ is a hemi-norm which has the property
that

x ≤ 0E ⇔ ρ+(x) = 0, (2.3)

then d+ in (2.2) de�nes a one-sided hemi-metric.
More generally, if (E,≤, |.|) is a lattice-ordered normed vector space, one can con-
struct a one-sided hemi-metric compatible with ≤ by setting

d+(x, y) := |(x− y) ∨ 0E |,

where ∨ is the least upper bound operation.
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3. To any hemi-metric d+ on E, one can associate its dual hemi-metric d−, obtained
by symmetrization of d+,

d−(x, y) := d+(y, x). (2.4)

When d+ is a one-sided hemi-metric associated with the order ≤ on E, d− is a
one-sided hemi-metric associated with the corresponding dual order ≥ on E.
A hemi-metric d+ induces a distance d by symmetrization

d∞(x, y) := max(d+(x, y), d−(x, y)),

or by taking positive linear combination, say

d1(x, y) := αd+(x, y) + βd−(x, y), α, β > 0.

More generally, a hemi-metric allows to de�ne a �one-sided� topology by setting the
open balls as

B+(x, r) := {y ∈ X , d+(x, y) < r}. (2.5)

4. The concept of a hemi-metric is implicit in several notions encountered in analysis,
probability and statistics. For example, recall that a real valued function f on a
metric space (E, d) is upper semi-continuous at x0 i�

∀ε > 0,∃δ > 0, d(x, x0) ≤ δ ⇒ db+(f(x), f(x0)) ≤ ε,

where db+(x, y) := ρ+(x−y) = max(x−y, 0) is the usual basic one-sided hemi-metric
on (R,≤, |.|) (see Example 2.1 and (2.7) below).

2.2. Examples of hemi-metrics

Hemi-metrics are suitable tools to measure one-sided distances. The following are
some standard examples of hemi-distances.

Example 2.1. 1. Discrete one-sided hemi-metric:
Let (E,≤) be a preordered space, then

d≤+(x, y) =

{
0 if x ≤ y
1 else

(2.6)

de�nes a one-sided hemi-metric on (E,≤), which we call the discrete one-sided
hemi-metric on (E,≤).

2. lp hemi-metric:
On E = R1, one can decompose the absolute value into its positive and negative
parts |x| = x+ + x− = ρ+(x)− ρ+(−x), viz. into two hemi-norms satisfying (2.3).
As a consequence of (2.2), the metric

|x− y| = d+(x, y)− d+(−y,−x) = d+(x, y) + d−(x, y)

is decomposed as a sum of two one-sided hemi-metric (d+, d−) associated with the
dual orders (≤,≥). The basic one-sided hemi-metric,

db+(x, y) := (x− y)+ (2.7)
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describes in a quantitative way the ordering relationship ≤. Compared to the dis-
crete hemi-metric (2.6), it also contains information on the magnitude of the one-
sided departure of two elements.
Similarly on (E,≤) = (Rd,≤) supplied with the componentwise (product) order

x ≤ y⇔ xi ≤ yi, 1 ≤ i ≤ d,

the lp hemi-norms, de�ned as

lp+(x) := (

d∑
i=1

(x+
i )p)1/p, 1 ≤ p <∞, (2.8)

l∞+ (x) := max{x+
i }

induce the one-sided lp hemi-metrics

dp+(x,y) := lp+(x− y), 1 ≤ p ≤ ∞.

3. Schur-order ≤S on Rd:
The majorization or Schur order ≤S is useful to compare vectors x,y ∈ Rd with
identical sums w.r.t. their degree of dispersion, see e.g. [16]. In a natural way,
this ordering extends to an ordering on M1(Rd), comparing the relative degree
of dispersions of two measures. Let x,y ∈ Rd, Γ(d) the set of permutations of
{1, . . . , d}. The Schur-ordering on Rd x ≤S y is de�ned by,

d∑
k=l

xγ(k) ≤
d∑
k=l

yβ(k), l = 2, . . . , d,

d∑
k=1

xγ(k) =

d∑
k=1

yβ(k) (2.9)

where γ, β ∈ Γ(d) are the decreasing rearrangements of x and y:

xγ(1) ≥ xγ(2) ≥ . . . ≥ xγ(d), yβ(1) ≥ yβ(2) ≥ . . . ≥ yβ(d).

≤S is a preorder: x ≤S y and y ≤S x only implies that the components of each
vector are equal, but not necessarily in the same order. Geometrically, x ≤S y if and
only if x is in the convex hull of all vectors obtained by permuting the coordinates
of y. When x,y stands for a pair of discrete probability measures on the same set
of d-points, the norming condition (2.9) is satis�ed as the sum is normalized to
one.
Say that x and y are Schur-comparable if

∑n
i=1 xi =

∑n
i=1 yi. The degree of dis-

persion is measured by the following one-sided hemi-metric: for Schur-comparable
elements x,y, de�ne

d+(x,y) := sup
l=2,...,d

(
d∑
k=l

[xγ(k) − yβ(k)]

)
+

.

One has, for Schur-comparable elements:

x ≤S y i� d+(x,y) = 0.
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4. One-sided Hausdor� hemi-metric on closed subsets:
Let (E, d) be a metric space. Set

d+(A,B) := sup
y∈A

inf
x∈B

d(x, y). (2.10)

Then, for closed sets A,B, it holds d+(A,B) = 0⇔ A ⊂ B, and d+ is a one-sided
hemi-metric on (C(E),⊂), the set of closed subsets of E.

5. Levy-Prohorov hemi-metric on probability measures:
Let E be a space with a hemi-metric d+. De�ne a �one-sided� topology on E by
setting the open balls as in (2.5). Let E be the corresponding Borel σ−algebra. For
two probability measures P,Q ∈M1(E, E) , de�ne

D+(Q,P ) = inf{ε > 0 : Q(A) ≤ P (Aε) + ε, A open} (2.11)

where Aε := {x ∈ E : ∃a ∈ A, d+(a, x) < ε} = ∪x∈AB+(x, ε). Then D+ is a one
sided hemi-metric between probability measures and D+(Q,P ) = 0 i� Q(A) ≤ P (A)
for all A ∈ E.
One can replace Aε by Aε] := {x ∈ E : ∃a ∈ A, d+(a, x) ≤ ε}, and the open
sets by the closed set in the de�nition (2.11), see [7], [8] Section 8, [9] Chapter
11.3. For the one-sidedness, if Q(A) ≤ P (A) for all A ∈ E, then, for every ε > 0,
Q(A) ≤ P (A) ≤ P (Aε) + ε, since A ⊂ Aε. Hence D+(Q,P ) ≤ ε. Letting ε ↓ 0
yields D+(Q,P ) = 0. Conversely, if D+(Q,P ) = 0, there exists a sequence εn ↓ 0
s.t. for all closed sets A, Q(A) ≤ P (Aεn) + εn. Since Aεn ↓ A = A , this yields
Q(A) ≤ P (A) for all closed sets A. Hence, Q(A) ≤ P (A) also for all A ∈ E.

Several of the hemi-metrics have a direct interpretation and extensions as risk mea-
sures for probability distributions. We give two examples:

Example 2.2. 1. τ−quantiles:
Consider on the real line E = R1, the hemi-norm

ρτ (x) := τx+ + (1− τ)x− = τx+ + (1− τ)(−x)+, 0 < τ < 1 (2.12)

induces, by Remark 2.1 and (2.2), a hemi-metric

dτ (x, y) := ρτ (x− y). (2.13)

It is well-known that this hemi-metric can be used to de�ne τ−quantiles qτ (Y ) (viz.
the Value at Risk) of a r.v. Y as a minimizer of E[ρτ (Y − y)], i.e.

qτ (Y ) := F−1
Y (τ) = arg inf

y
E[ρτ (Y − y)] (2.14)

= arg inf
y
E[dτ (Y, y)] = V aRτ (Y ), (2.15)

see [14] p. 5. Note however that the order induced by dτ reduces to the trivial order
=, as dτ (x, y) = 0 i� x = y.

2. Half-space depth, departure in direction u:
On E = Rd, we de�ne for any unit vector u an ordering (the length in the direction
u), by

x ≤u y⇔ uT (y − x) ≥ 0, (2.16)
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where xT denotes the transpose of x. With this ordering,

du+(x,y) =

{
1 if uT (y − x) > 0

0 else
(2.17)

de�nes, as in (2.6), a one-sided hemi-metric. It is one if the length of y in direction
u is greater than that of x, and is zero else.
This one sided hemi-metric has as basic application the de�nition of the half-space
depth function , which describes the degree of outlyingness of a point x ∈ Rd w.r.t.
a probability measure P on Rd. It is de�ned as

D+(x, P ) := inf
u∈Sd−1

∫
du+(x, y)dP (y)

= inf
u∈Sd−1

∫
1{uT (y−x)>0}dP (y), (2.18)

where Sd−1 is the unit sphere of Rd. Several modi�cation of this de�nition are useful
to describe a one-sided degree of outlyingness (or risk) or quantitative versions of
it. Two relevant examples are

D1
+(x, P ) := inf

u∈S+
d−1

∫
1{uT (y−x)>0}dP (y), (2.19)

or

D2
+(x, P ) := inf

u∈S+
d−1

∫
(uT (y − x))+dP (y),

where S+
d−1 = Sd−1 ∩Rd,+ is the part of the unit sphere in the positive cone x ≥ 0.

2.3. Risk excess measures

After the discussion of hemi-metrics and several examples of them as well as some
connections to risk measures, we �nally introduce the main object of this paper, which is
a measure of the risk excess of a distribution Q w.r.t. P . To that aim, we assume that a
preorder � is de�ned on the setM1(E) of probability measures on a measurable space
(E, E): P � Q describes that Q has more risk than P . Here, � is consistent w.r.t some
preorder ≤ on the underlying space E.

De�nition 2.3 (Risk excess measure). A risk excess measure D+ is de�ned as an one-
sided hemi-metric on the preordered space (M1(E),�), (or on a subset M ⊂ M1(E)).
D+(Q,P ) is called the risk excess of Q w.r.t. P .

Example 2.3 (Stochastic ordering). On E = Rd, we consider the componentwise order
≤, which is closely connected with the stochastic order �st: for a measurable set B ⊂ E,
de�ne B↑ = {y ∈ E; ∃x ∈ B s.t. y ≥ x} and say that B is an increasing set if
B = B↑. Denote by I(E) the set of measurable increasing sets of E.

The stochastic order �st is de�ned onM1(Rd) by

Q �st P ⇔ Q(B) ≤ P (B),
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for all measurable sets B ∈ I(E). A corresponding risk excess measure is given by

Dst
+ (Q,P ) := sup{(Q(B)− P (B))+;B ∈ I(E)}. (2.20)

There exists no risk excess of Q w.r.t. P , i.e.

Dst
+ (Q,P ) = 0 ⇔ Q(B) ≤ P (B), ∀B ∈ I(E),

⇔ Q �st P.

By the well-known Strassen's Theorem (see [27] and e.g. [26] Theorem 1.18 p. 22), this
is equivalent to the existence of random vectors X ∼ Q, Y ∼ P s.t. X ≤ Y a.s.

In other words, the distribution Q is considered more safe than P if one can construct
representations X of Q and Y of P s.t. all coordinates of X are lower than those of Y.
Q has a positive risk excess w.r.t. P if some of the components of any representation X
of Q exceed the corresponding components of any representation Y of P . Of course, this
gives a very strict notion of no risk excess.

3. Risk excess measures induced by function classes

3.1. Motivation and de�nition

For a law invariant, convex risk measure ρ on M1(Rd), one has a representation of
the form

ρ(Q) = sup
ν∈A

(Eν(X)− α(ν)) , (3.1)

where X ∼ Q, A is a class of scenario measures and α(ν) is a penalization term, see [10].
This representation suggests to consider for a class F of real functions on E the following
hemi-metric

DF+(Q,P ) := sup
f∈F

(∫
fd(Q− P )

)
+

. (3.2)

LetMF := {P ∈M1(E) : supf∈F
(∫
fdP

)
+
<∞} and de�ne onMF the preorder

P �F Q⇔
∫
fdP ≤

∫
fdQ,∀f ∈ F . (3.3)

Then, DF+ is a risk excess measure on (MF ,�F ).

De�nition 3.1 (F-induced risk excess measure). The risk excess measure DF+ on
(MF ,�F ) de�ned in (3.2) is called the F-induced risk excess measure.

Remark 3.1. On a probability space (Ω,B, µ), let X be a random variable with image
measure µX = Q. By (3.1) any law-invariant convex coherent risk measure ρ has a rep-

resentation of the form DF+(Q, δ0) where F = {x dν
X

dµX
(x), ν ∈ A} where µ is an underlying

measure dominating A, µX and νX the image measures of µ, ν by X. Indeed,

Eν(X) =

∫
Xdν =

∫
X
dν

dµ
dµ =

∫
x
dνX

dµX
dµX =

∫
x
dνX

dµX
dQ.

So the notion of risk excess measure can be seen as an extension of the notion of risk
measures.
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3.2. Extension and restrictions of orders and hemi-metrics

For risk excess measures, an important aspect is to have a kind of consistency w.r.t.
some ordering ≤ on E, i.e. F consists of increasing functions w.r.t. ≤. In this respect,
the following order extension properties are useful.

Lemma 3.2 (Extension and restriction of order).

1. If � is a preorder onM1(E), then, the relation ≤r, de�ned, for x, y ∈ E, by

x ≤r y ⇔ δx � δy, (3.4)

de�nes a preorder on E. ≤r is called the restriction of the preorder � onM1(E).

2. Conversely, if ≤ is a preorder on E, then the stochastic order �st de�nes a partial
order onM1(E), such that its restriction ≤r is identical to ≤.

Proof. 1. The proof follows by direct veri�cation.

2. By de�nition, we have

x ≤r y ⇔ δx �st δy ⇔ 1B(x) ≤ 1B(y),∀B ∈ I(E)

⇔ [x ∈ B ⇒ y ∈ B, ∀B ∈ I(E)]. (3.5)

In particular, restricted to principal up-sets B = {z}↑, the implication (3.5) be-
comes

x ≥ z ⇒ y ≥ z, for all z ∈ E,

which is equivalent to x ≤ y. Therefore, x ≤r y ⇒ x ≤ y. Conversely, if x ≤ y,
(3.5) is satis�ed, by de�nition of an up-set.

Remark 3.2. For a closed partial order ≤ on a Polish space E, the result follows directly
from Strassen's Theorem (see Example 2.3).

Analogously, we can also extend and restrict in a consistent way the discrete one-sided
hemi-metric (2.6) of Example 2.1 into the risk excess measure of Example 2.3.

Lemma 3.3 (Extension and restriction of discrete hemi-metrics).

1. If D+ is an risk excess measure on (M1(E),�), then

dr+(x, y) := D+(δx, δy)

de�nes a one sided hemi-metric on (E,≤r), called the restriction of D+ on E.

2. If d≤+ is the discrete hemi-metric on (E,≤) of (2.6) , then Dst
+ is an extension of

d≤+ into an risk excess measure on (M1(E),�st) such that the restriction dr+ of Dst
+

is equal to d≤+.

Proof. 1. The proof follows by direct veri�cation and Lemma 3.2.
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2. Recall the de�nition of Dst
+ in (2.20):

Dst
+ (Q,P ) = sup{(Q(B)− P (B))+ ;B ∈ I(E)}.

Its restriction to E is

dr+(x, y) := Dst
+ (δx, δy) = sup{(1B(x)− 1B(y))+ ;B ∈ I(E)},

which is {0, 1} valued and a one-sided hemi-metric on E by Lemma 3.3 part 1).
By Lemma 3.2 part 2),

dr+(x, y) = 0⇔ x ≤r y ⇔ x ≤ y.

Therefore, dr+(x, y) = 1x�y = d≤+(x, y).

Remark 3.3. The construction of the previous lemma, based on the Dst
+ of Example 2.3,

which encodes the order ≤ into �st, is consistent w.r.t. the order ≤, in the sense that
the restriction of Dst

+ is the discrete one-sided hemi-metric dr+ = d≤+, which encodes the
original order ≤. However, for a one-sided hemi-metric d+ on (E,≤) di�erent from the
discrete one, the extention Dst

+ is in general inconsistent w.r.t. the hemi-metric d+, in
the sense that the restriction of the risk excess measure Dst

+ is not the original d+ but is

again the discrete one-sided hemi-metric d≤+. This is illustrated in the following diagram:
The question of consistently extending/restricting a one-sided hemi-metric d+ into an

(E,≤) (M1(E),�)

d+ d≤+ Dst
+

x 7→δx

≤r

dr+

risk excess measure D+, according to the diagram, will be treated by mass transportation

(E,≤) (M1(E),�)

d+ D+

x 7→δx

≤r

dr+

in Section 4.

It is interesting to observe that in general there may exist many extensions of a one-
sided hemi-metric on E to an risk excess measure on M1(E), as seen in the following
example. We will discuss some general extensions in Section 4.
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Example 3.1 (Positive orthant ordering). On E = Rd, consider the class Fuo of upper
orthant indicators,

Fuo := {1[z,∞), z ∈ Rd} = {1{z}↑ , z ∈ Rd}.

Fuo induces onM1(E) the upper orthant ordering �uo de�ned by

Q �uo P ⇔ F (z) ≤ G(z),∀z ∈ Rd,

where F (z) = Q([z,∞)) and G(z) = P ([z,∞)) stand for the survival functions of Q and
P . So it will be easier for Q to be less risky than P for this order than for the stochastic
order, where the comparison has to be made for all increasing sets. The Fuo-induced risk
excess measure DFuo+ is given by

Duo
+ (Q,P ) := DFuo+ (Q,P ) = sup

z∈Rd
(F (z)−G(z))+.

Note that the restriction ≤uo on E = Rd of the partial order �uo in the sense of Lemma
3.2 is identical to the usual componentwise ordering, i.e. ≤uo=≤. The restriction duo+ of
the risk excess measure Duo

+ in the sense of Lemma 3.3 is the discrete one-sided hemi-

metric d≤+ (see Example 2.1 and (2.6)):

duo+ (x,y) := Duo
+ (δx, δy) =

{
0 if x ≤ y

1 if x � y
= d≤+(x,y).

As a consequence, both risk excess measures Duo
+ and Dst

+ of Example 2.3 induce
the same componentwise ordering ≤ on E = Rd and also induce the same restriction
as hemi-metric on E. Duo

+ and Dst
+ are both extensions of the same discrete one-sided

hemi-metric d≤+ on E from Example 2.1 (a), as is illustrated in the diagram below:

(M1(E),�uo) (E,≤) (M1(E),�st)

Duo
+ d≤+ Dst

+

≤r

x 7→δx
x7→δx

≤r

dr+

dr+

Example 3.2 (Increasing convex ordering). On E = R, consider the class of excess
functions Ficx := {πt, t ∈ R}, with πt(x) := (x− t)+. Then, on the class of distributions
M1

1 with �nite �rst moment, the induced ordering �Ficx is identical to the increasing
convex order,

�Ficx=�icx . (3.6)

For X ∼ Q and Y ∼ P inM1
1, the generated risk excess measure DFicx+ is given by

Dicx
+ (Q,P ) := DFicx+ (Q,P ) = sup

t∈R
(ΠX(t)−ΠY (t))+ (3.7)

12



where ΠX(t) := E(X−t)+ = Eπt(X),ΠY (t) := E(Y −t)+ = Eπt(Y ) are the mean excess
functions. Dicx

+ measures the risk excess of Q w.r.t. P in terms of the corresponding
mean excess functions. When restricted to the class of probability measures with identical
�rst moments, �Ficx is also identical to the convex ordering,

�Ficx=�icx=�cx .

In this example, the restriction dicx+ of Dicx
+ is

dicx+ (x, y) := Dicx
+ (δx, δy) = sup

t∈R
(πt(x)− πt(y))+ (3.8)

On the one hand,

dicx+ (x, y) = 0 ⇔ πt(x) ≤ πt(y),∀t ∈ R
⇔ [x ≥ t⇒ y ≥ t],∀t ∈ R
⇔ x ≤ y

On the other hand, if x > y, then dicx+ (x, y) = supt∈R (πt(x)− πt(y)). By considering all
cases, t ≤ y, y ≤ t ≤ x, and x ≤ t, one sees that the supremum takes the value x − y.
Hence, the restriction dicx+ of Dicx

+ is given by

dicx+ (x, y) = (x− y)+ = db+(x, y),

which is the basic one-sided hemi-metric of (2.7).

(R,≤) (M1(R),�icx)

db+ Dicx
+

x 7→δx

≤r

dr+

4. Risk excess measures for random variables and minimal extension by mass

transportation

4.1. Compound risk excess measures

So far we have considered risk excess measures as one-sided hemi-metrics on the space
of probability distributions, i.e. as a mapping D+ :M×M 7→ [0,∞], forM⊂M1(E),
acting on a pair (Q,P ) of probability measures on E. Like for risk measures ρ : X 7→ R
de�ned on a space of random variables X ⊂ L0

E = L0
E(Ω,A, µ) := {X : Ω→ E} (see e.g.

[10]), it is natural to de�ne risk excess measures D+ : X × X 7→ R, also on a space X of
random variables.

This allows to consider the risk of a random element X ∈ E as a relative property:
there is a joint modeling of the vector (X,Y ) ∈ X2, de�ned on a common probability
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space (Ω,A, µ), so that the risk of X : Ω 7→ E can be considered in relation to the random
element Y : Ω 7→ E, regarded as a benchmark. In the context of insurance and �nancial
mathematics, Y can stand for the value of an alternative portfolio, of a hedge, of a market
indicator, or the wealth of an insurer. For example, an insurer, facing the prospect of
loosing a claim amount X, may wish to evaluate its perceived risk with respect to its
reserve capital Y : the �risk� X has not the same potential consequences whether Y is
small or large compared to X. In the same vein of reasoning, because of the �uctuating
and (usually) in�ating nature of �at money in the post-1973, petro-dollar based, current
monetary system, one may be interested in evaluating the value of a �nancial asset X
w.r.t. the price of a commodity Y considered as a standard, like gold or oil, whose supply
is limited by essence.

For X ⊂ L0
E = L0

E(Ω,A, µ) a set of random variables on (Ω,A, µ) with values in
(E,≤), we consider the pointwise ordering on X induced by ≤. We identify random
elements in L0

E which are identical a.s. and similarly X ≤ Y means that X(ω) ≤ Y (ω)
µ-a.s.

De�nition 4.1 (Risk excess measure on X). For X ⊂ L0
E, a risk excess measure D+ on

X is a one-sided hemi-metric on X.

De�nition 4.2 (Compound risk excess measure on X). A risk excess measure Dc
+ on X

is called a compound risk excess measure on X if Dc
+(X,Y ) depends only on the joint

distribution µ(X,Y ) of (X,Y ).

Example 4.1. 1. An example of a risk excess measure on X which is not compound
is

D+(X,Y ) := sup
ω∈Ω

(X(ω)− Y (ω))+

However, since random elements in L0
E which are identical µ-a.s are identi�ed, it is

natural to consider only compound risk excess measure, e.g. the essential supremum
version

D+(X,Y ) := esssupµ(X − Y )+

instead.
2. On (Ω,A, µ), let A0 ∈ A, with 0 < µ(A0) < 1, be a class of scenarios considered as

�low risk�, while its complement A1 := Ω \ A0 is considered as �high risk�. Then,
for some safety coe�cient α > 1,

D+(X,Y ) := esssupµ,A0
(X − Y )+ + α esssupµ,A1

(X − Y )+,

with esssupµ,A(X − Y )+ := inf{c ∈ R;µ((X − Y )+ ≥ c) ∩A) = 0}, or

D+(X,Y ) :=

∫
A0

(X − Y )+dµ+ α

∫
A1

(X − Y )+dµ,

de�ne non-compound risk excess measures, which values α times more the risk
excess (X − Y )+ for the high risk scenarios than for the low risk ones.

Remark 4.1. 1. The notation Dc
+ in De�nition 4.2 stresses that Dc

+ depends on the

joint distribution µ(X,Y ) and not solely on the marginals µX , µY of (X,Y ), as is
the case in De�nition 2.3. See also [30], [19] for the similar notion of compound
probability metric. For risk measures ρ(X) on X, there is the analog notion of law-
invariant risk measures which depend only on the law µX of the random variable.
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2. There are two main reasons why compound risk measures on X are of particu-
lar importance. Firstly, they allow to de�ne extensions as excess risk measures
D+ : M×M → [0,∞] on subclasses M ⊂ M1(E) de�ned by the induced set of
distributions of elements of X (see Section 4.3). Secondly, the fact that they depend
only on the joint distribution µ(X,Y ) induces the possibility of statistical estimation
of the risk excess D+(X,Y ) by their empirical analogues. This property is most
relevant for the application of risk excess measures.

3. Like in the case of probability metrics it is also possible to describe compound risk
excess measures formally on the subclassM(2) of bivariate laws µ(X,Y ) for X,Y ∈
X. For details in the case of probability metrics, see [19].

4.2. Construction of a compound risk excess measure from a one-sided hemi-metric d+

on E

There is a natural way to construct such a compound risk excess measures on a set
X of r.v. in (E,≤): let d+ be a one-sided hemi-metric on (E,≤), and let X be the set of
random variables X s.t. there exists x, y ∈ E s.t. Ed+(X,x) <∞ and Ed+(y,X) <∞.
The notion of excess risk of Y w.r.t. X is measured by the d+(X,Y ). The latter can be
turned into a deterministic value, e.g. by taking its expectation, so that one obtains a
hemi-metric on X,

Dc
+(X,Y ) := Ed+(X,Y ). (4.1)

Note that (4.1) depends only on the joint distribution of (X,Y ): it is indeed a compound
risk excess measures de�ned on a space X of random variables.

Indeed, one has:

Lemma 4.3. For any measurable one-sided hemi-metric d+ on (E,≤), (4.1) de�nes a
�nite one sided compound risk excess measure on X.

Proof. For all X,Y ∈ X, there exists x, y ∈ E s.t. Ed+(X,x) <∞ and Ed+(y, Y ) <∞.
Hence, by the triangle inequality,

Ed+(X,Y ) ≤ Ed+(X,x) + d+(x, y) + Ed+(y, Y ) <∞.

(4.1) is therefore well-de�ned and is obviously a compound risk excess measure. For
the one-sidedness property: if X ≤ Y a.s., since d+ is one-sided on (E,≤), one has
d+(X,Y ) = 0 a.s. and then Dc

+(X,Y ) = 0.
Conversely, if Dc

+(X,Y ) = 0, then by the Markov inequality,

P (d+(X,Y ) ≥ ε) = 0, for all ε > 0.

Taking a sequence εn ↓ 0 gives d+(X,Y ) = 0 a.s. and since d+ is a one-sided hemi-metric
on (E,≤), this entails X ≤ Y a.s.

Remark 4.2. Formula (4.1) gives a natural way to obtain a compound excess risk mea-
sure from a one sided hemi-metric d+ on the ambient space E. Note that not all compound
excess risk measure can be written in this form. For example, let (d+,i)i∈I be a countable
family of one-sided hemi-metrics on E, then

Dc
+(X,Y ) := sup

i∈I
Ed+,i(X,Y )

de�nes a compound excess risk measure which can not be written as in (4.1) for some
d+.
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4.3. Minimal extension of a compound risk excess measure

A compound risk excess measure Dc
+, depending on the joint distribution µ(X,Y ), can

be turned by mass transportation into a risk excess measure onM1(E), i.e. depending
only on the pair of marginals µX , µY , where M1(E) is supplied with the stochastic
ordering �st consistent with the underlying order ≤ on X.

De�nition 4.4. Let Dc
+ a compound excess risk excess measure. The minimal extension

Dinf
+ onM1(E) of Dc

+ by mass transportation is given by

Dinf
+ (Q,P ) := inf

X,Y ∈X,X∼Q,Y∼P
Dc

+(X,Y ). (4.2)

The fact that Dinf
+ is indeed a one-sided risk excess measure on the space of proba-

bility measures is given in the following lemma:

Lemma 4.5. 1. If (E,≤) is a Polish space with a closed partial order, and if Dc
+ is

weakly lower-semicontinuous, in the sense that

(Xn, Yn)
d→ (X,Y )⇒ Dc

+(X,Y ) ≤ lim inf Dc
+(Xn, Yn) (4.3)

then Dinf
+ is a one sided risk excess measure on (M1(E),�st), where �st is the

stochastic order.

2. If Dc
+(X,Y ) = Ed+(X,Y ), as in (4.1), for d+ a lower semi continuous one-

sided hemi-metric on (E,≤), then Dinf
+ is a one sided risk excess measure on

(M1(E),�st).

Proof. 1. (A1) is obvious. (A2) follows from the fact that Dc
+ satisfy (A2): forX ∼ Q,

0 ≤ Dinf
+ (Q,Q) ≤ Dc

+(X,X) = 0. Regarding (A3), since E is Polish and for
(Ω,A, µ) a non-atomic probability space, any bivariate measure α ∈ M1(E2) can
be obtained as the image measure of µ for some measurable mapping, see e.g. [2].
Therefore, for all ε > 0, there exists random variables (X,Y1) ∼ α = αQP , where
α ∈ M1(E2) has marginals Q,P and there exists random variables (Y2, Z) ∼ β =
βPR with marginals P,R s.t.

Dinf
+ (Q,P ) +

ε

2
≥ Dc

+(X,Y1), and Dinf
+ (P,R) +

ε

2
≥ Dc

+(Y2, Z)

By the gluing lemma, see e.g. [29] p. 208, there exists a trivariate measure γ =
γQPR s.t. its projection on the �rst two marginals is α and its projection on the
last two marginals is β and which can be obtained as the image measure of µ for
some measurable mapping. In other words, there exists a joint construction of a

random vector (X̃, Ỹ , Z̃) on the probability space (Ω,A, µ) s.t. µX̃,Ỹ ,Z̃ = γ and

Dinf
+ (Q,P ) +

ε

2
≥ Dc

+(µX̃,Ỹ ), and Dinf
+ (P,R) +

ε

2
≥ Dc

+(µỸ ,Z̃). (4.4)

By (A3) for the compound risk excess Dc
+,

Dc
+(µX̃Z̃) ≤ Dc

+(µX̃Ỹ ) +Dc
+(µỸ Z̃)
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which gives with (4.4),

Dinf
+ (Q,R) ≤ Dc

+(µX̃Z̃) ≤ Dinf
+ (Q,P ) +Dinf

+ (P,R) + ε

Letting ε ↓ 0 gives (A3) for Dinf
+ .

For the one-sidedness property (A4), if Dinf
+ (Q,P ) = 0, then there exists a se-

quence (Xn, Yn) of random variables on (Ω,A, µ), all with �xed marginals Q,P ,
s.t. Dc

+(Xn, Yn) → 0. Since M1(Q,P ) the set of probability measures on E × E
with marginals Q,P is weakly compact inM1(E2), one can extract a subsequence

n′ s.t. (Xn′ , Yn′)
d→ (X,Y ) for some (X,Y ) with marginals Q,P . By the assump-

tion on Dc
+,

Dc
+(X,Y ) ≤ lim inf Dc

+(Xn, Yn) = 0

which entails X ≤ Y , µ-a.s. by (A4'). The latter is equivalent to Q �st P by
Strassen's Theorem (see Theorem 1.18 in [26]). The converse is obvious.

2. if (Xn, Yn)
d→ (X,Y ), by Skorohod's representation Theorem, there exists (X̃n, Ỹn)

a.s.→
(X̃, Ỹ ), with (X̃n, Ỹn)

d
= (Xn, Yn), (X̃, Ỹ )

d
= (X,Y ). Therefore, lower semi-

continuity of d+ and Fatou's lemma entails,

Dc
+(X,Y ) = Ed+(X̃, Ỹ ) ≤ E[lim inf d+(X̃n, Ỹn)]

≤ lim inf Ed+(X̃n, Ỹn) = lim inf Dc
+(Xn, Yn),

i.e. (4.3) is satis�ed.

4.4. Dual representations of minimal extensions

De�ne L1 := L1({P,Q}) as the set of functions f : E → R integrable w.r.t. P and
Q, Cb as the set of bounded continuous functions f : E → R, and Lip1 = Lip1(E, d+) as
the set of 1−Lipschitz functions f : E → R w.r.t. d+, i.e. s.t. for all x, y ∈ E,

f(y)− f(x) ≤ d+(y, x)

holds. Note that for f ∈ Lip1(E, d+) and y ≤ x, we have f(y) − f(x) ≤ d+(y, x) = 0,
i.e. f is increasing w.r.t. the order induced by d+ on E. Hence, Lip1(E, d+) is a subset
of the set of increasing functions.

For a compound excess risk measure Dc
+ of the kind (4.1), the minimal extension

Dinf
+ onM1(E) of Dc

+ by mass transportation, as in (4.2), admits a representation as a
F-induced risk excess measure, as in (3.2), which is given by the following Kantorovich-
Rubinstein type Theorem for hemi-metrics:

Theorem 4.6 (Kantorovich-Rubinstein Theorem for minimal risk excess measure). On
a Polish space E, supplied with a closed order ≤, and a lower semi-continuous one-
sided hemi-metric d+, the minimal extension Dinf

+ of the compound risk excess measure
Dc

+(X,Y ) = Ed+(X,Y ) has the dual form

Dinf
+ (Q,P ) = sup

f∈Lip1∩L1

(∫
fd(Q− P )

)
+

(4.5)

= sup
f∈Lip1∩Cb

(∫
fd(Q− P )

)
+

.
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In other words, Dinf
+ is identical to a F-induced risk excess measure DF+ of (3.2),

with F = Lip1
b , the class of bounded Lipschitz functions w.r.t. d+.

Proof. The proof is similar to the method used to prove the Kantorovich-Rubinstein
Theorem for metric spaces, see e.g. [21], [29], with some slight modi�cations. Let
M1(Q,P ) be the set of probability measures π on E × E with marginals Q,P . For
(f, g) ∈ L1(Q)× L1(P ), set

J(f, g) :=

∫
fdQ+

∫
gdP.

Let

Φd+ := {(f, g) ∈ L1(Q)× L1(P ); f(x) + g(y) ≤ d+(x, y), for all x, y ∈ E} ,

and C2
b be the set of pairs of real valued functions (f, g) which are continuous and

bounded. Set
S(Q,P ) := sup

Φd+

J(f, g). (4.6)

• Step one: One has the easy inequality,

DLip1∩L1

+ (Q,P ) ≤ Dinf
+ (Q,P ), (4.7)

Indeed, for all f ∈ Lip1(d+) ∩ L1 and π ∈M(Q,P ),(∫
f(x)Q(dx)−

∫
f(y)P (dy)

)
+

=

(∫
(f(x)− f(y))π(dx, dy)

)
+

≤
∫
d+(x, y)π(dx, dy).

Taking the inf on the right and the sup on the left entails the stated inequality
(4.7).

• Step two: Kantorovich's duality, Dinf
+ (Q,P ) = S(Q,P ) = supΦd+

J(f, g).

Since d+ ≥ 0 is l.s.c., this follows from [21] Theorem 2.3.1 (b) or [29] Theorem 1.3.

• Step three: in view of the �rst two steps, it remains to show that

D
Lip1∩L1(Q)
+ (Q,P ) ≥ Dinf

+ (Q,P ),

i.e. that

sup
f∈Lip1∩L1(Q)

(∫
fd(Q− P )

)
+

≥ sup
Φd+

J(f, g).

Assume that d+ is bounded.

For f continuous bounded, de�ne the d+− convex conjugate of f by

f∗(y) := inf
x∈E
{d+(x, y)− f(x)}.
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One has obviously f(x) + f∗(y) ≤ d+(x, y), for all x, y ∈ E. Therefore, if x 7→
d+(x, y) is bounded l.s.c and f ∈ Cb, then f∗ is well de�ned and bounded.

Moreover, by the triangle inequality, one has also

d+(x, y)− f(x) ≤ d+(x, y′) + d+(y′, y)− f(x).

Taking the in�mum on x on both sides yields

f∗(y)− f∗(y′) ≤ d+(y′, y) = d−(y, y′),

where d− is the opposite dual hemi-metric de�ned in (2.4): f∗ is d−-Lipschitz.

Notice that if f(x) + g(y) ≤ d+(x, y) for all x, y, then f∗(y) ≥ g(y).

De�ne the double conjugate by

f∗∗(x) := inf
y∈E
{d+(x, y)− f∗(y)}.

One has f∗∗(x) ≥ f(x): by de�nition,

f∗∗(x) = inf
y∈E

sup
x′
{d+(x, y)− d+(x′, y) + f(x′)}

≥ f(x),

by taking x = x′ in the last equation.

Moreover, f∗∗ is this time d+-Lipschitz: the triangle inequality d+(x, y)− f∗(y) ≤
d+(x, x′) +d+(x′, y)−f∗(y) yields, by taking the in�mum on y, f∗∗(x)−f∗∗(x′) ≤
d+(x, x′).

We obtain: f∗∗(x) = infy{d+(x, y) − f∗(y)} ≤ −f∗(x) by taking y = x. On the
other hand, since f∗ is 1-Lipschitz w.r.t. d−, one has

−f∗(x) ≤ d+(x, y)− f∗(y),

which yields −f∗(x) ≤ f∗∗(x). Hence, f∗∗ = −f∗ .
Denoting φ := −f∗, and since f∗ is d−-Lipschitz, φ is d+−Lipschitz (and bounded
thus integrable). In view of all of the above, (f, g) ∈ Φd+ ∩ C2

b implies (f∗∗, f∗) ∈
Φd+ and J(f, g) ≤ J(f∗∗, f∗) = J(φ,−φ). Hence,

sup
Φd+∩C

2
b

J(f, g) ≤ sup
φ∈Lip1∩L1(Q)

J(φ,−φ) ≤ sup
φ∈Lip1∩L1(Q)

(∫
φd(Q− P )

)
+

, (4.8)

which was to be proved.

Combining (4.7) with (4.8), yields the desired result for the case of a bounded
hemi-metric d+.

• Step 4: One can remove the assumption that d+ is bounded. For d+ a general
lsc hemi-metric, one can reason as in [29] Theorem 1.3 step 3 with dn+ = d+/(1 +
n−1d+), so that 0 ≤ dn+ ≤ d+ and dn+ ↑ d+ pointwise.

Remark 4.3. The dual formulation of Theorem 4.6 gives another proof of the second
part of Lemma 4.5, since the set of increasing bounded Lipschitz functions generates the
stochastic order (see the argument in Example 3.2).
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4.5. Examples of minimal risk excess measures

The following propositions give explicit representations of the minimal risk excess
measure for several hemi-metrics. We �rst consider the discrete hemi-metric d≤+:

Proposition 4.7 (Minimal risk excess measure arising from the stochastic order).

1. Let E = Rd be supplied with the (closed) component-wise order ≤. The discrete

hemi-metric d≤+ of (2.6) generates, via Lemma 4.3, the compound risk excess mea-
sure

Dc
+(X,Y ) = µ(X � Y ). (4.9)

This induces, as minimal extension by mass transportation onM1(Rd), the stochas-
tic ordering one-sided risk excess measure of (2.20):

Dinf
+ (Q,P ) = Dst

+ (Q,P ). (4.10)

2. A dual representation of (4.10) is given by

Dinf
+ (Q,P ) = sup

f↑,0≤f≤1

(∫
fd(Q− P )

)
+

. (4.11)

Proof. 1. Since ≤ is a closed order, C := {(x, y) ∈ E × E, x � y} is an open set and

d≤+(x, y) = 1C(x, y) is a 0, 1-valued l.s.c. function. By [13] and [23] Lemma 1, (see
also [29]'s Theorem 1.27),

Dinf
+ (Q,P ) = sup

{
Q(A)− P (AC), A ⊂ E,A closed

}
where AC := {y ∈ E,∃x ∈ A, (x, y) /∈ C} = {y ∈ E,∃x ∈ A, x ≤ y} = A↑. Since
A ⊂ A↑,

Dinf
+ (Q,P ) = sup

{
Q(A)− P (A↑), A ⊂ E,A closed

}
= sup {(Q(A)− P (A))+, A ∈ I(E), A closed} = Dst

+ (Q,P ).

2. By the Kantorovich-Rubinstein Theorem 4.6,

Dinf
+ (Q,P ) = sup

f∈Lip1(Rd,d+)

(∫
fd(Q− P )

)
+

= sup
f↑,0≤f≤1

(∫
fd(Q− P )

)
+

. (4.12)

Note that one can restrict to the set of increasing functions such that 0 ≤ f ≤ 1
by shifting the function by a constant.

Next, we consider, for E = R, the basic one-sided hemi-metric db+(x, y) = (x − y)+,
introduced in (2.7), describing the magnitude of one-sided departure in a quantitative
way. For X = L1(µ) the set of random variables on (Ω,A, µ) with �nite �rst moment,
d+ induces the compound one-sided risk excess measure

Dc
+(X,Y ) = Edb+(X,Y ) = E(X − Y )+ (4.13)
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on X. Note that for t ∈ R,

Dc
+(X, t) = E(X − t)+ = ΠX(t)

is the average risk excess over the threshold t. One has the following result:

Proposition 4.8 (Minimal risk excess arising from mean exceedance). 1. The mini-
mal extension of (4.13) to a risk excess measure onM1(R) by mass transportation
is given by

Dinf
+ (Q,P ) = inf

X∼Q,Y∼P
E(X − Y )+

= sup
f∈Lip1,f↑

(∫
fd(Q− P )

)
+

= DLip1,↑

+ (Q,P ),

where Lip1,↑ the class of increasing, 1−Lipschitz functions (w.r.t. |.|).
The ordering induced by Dinf

+ onM1(R) is the stochastic order �st.
2. One has the following explicit representation:

Dinf
+ (Q,P ) = E(F−1(U)−G−1(U))+ (4.14)

where F,G are the distribution functions of Q,P , and U ∼ U[0,1] is uniformly
distributed on [0, 1].

Proof. 1. With the assumption on X, Kantorovich-Rubinstein's Theorem 4.6 special-
izes to

Dinf
+ (Q,P ) = sup

f∈Lip1(R,db+)

(∫
fd(Q− P )

)
+

. (4.15)

Note that f ∈ Lip1(R, db+) is equivalent to f(y)−f(x) ≤ (y−x)+, i.e. f increasing
and 1-Lipschitz w.r.t. the absolute value |.| norm.

The fact that the order induced by Dinf
+ on M1(R) is the stochastic order �st

follows from Lemma 4.5. Alternatively, a direct proof is as follows: let n ≥ 1 be a
positive integer, X ∼ Q,Y ∼ P . By Markov's inequality,

P (X − Y ≥ n−1) ≤ P ((X − Y )+ ≥ n−1) ≤ nE[(X − Y )+].

Taking the in�mum over X ∼ Q,Y ∼ P yields that Dinf
+ (Q,P ) = 0 implies that

X − Y < n−1 with probability one. Letting n→∞ yields X ≤ Y a.s. Hence,

Dinf
+ (Q,P ) = 0 i� there exists X ∼ Q,Y ∼ P s.t. X ≤ Y a.s.

and the latter is equivalent to Q �st P , by Strassen's Theorem.

2. f(x) = x+ is convex, hence f(x − y) is submodular (or quasi-antitone in the ter-
minology of [4], or supernegative or 2-negative in the terminology of [28]). This
implies (4.14) by results of [4] Theorem 2, or Corollary 2.3 in [28] (see also [26]).
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In risk theory, it is also of interest to compare the expected risks above their distri-
butional α−quantiles: this is the basis for the conditional tail expectation

TCEα(X) := E[X|X ≥ qα(X)], TCEα(Y ) := E[Y |Y ≥ qα(Y )],

where qα(X), qα(Y ) denote the corresponding α−quantiles of X ∼ Q with c.d.f. F ,
Y ∼ P , with c.d.f. G. In order to obtain a coherent risk measure and to generalize
to possibly non-continuous distributions (see [3]), it is useful to consider instead the
expected shortfall: de�ne, for λ ∈ [0, 1], the extended c.d.f.s of F , G as

F (x, λ) := P (X < x) + λP (X = x) = F (x−) + λ(F (x)− F (x−))

G(y, λ) := P (Y < y) + λP (Y = y) = G(y−) + λ(G(y)−G(y−)).

De�ne also the distributional transforms of X and Y as

U1 := F (X,V ), U2 := G(Y, V ), (4.16)

where V ∼ U(0,1) is independent of (X,Y ), see [25]. The expected shortfalls are then
de�ned as

ESα(X) := E[X|U1 ≥ α], ESα(Y ) := E[Y |U2 ≥ α].

For the one-sided comparison of the risk excess of X w.r.t. Y over their α−quantiles,
we therefore consider the excess risk of their expected shortfall de�ned by the following
one-sided compound risk excess measure Dα,c

+ (X,Y )

Dα,c
+ (X,Y ) = E (X1U1≥α − Y 1U2≥α)+ , (4.17)

where U1, U2 are as in (4.16). We obtain the following result:

Proposition 4.9 (Minimal tail risk excess). 1. The minimal extension of (4.17) to
a risk excess measure onM1(R) by mass transportation has the representation

Dα,inf
+ (Q,P ) := inf

X∼Q,Y∼P
EDα,c

+ (X,Y )

= E
[
(F−1(U)−G−1(U))+1U≥α

]
, (4.18)

where U ∼ U[0,1] is uniformly distributed on [0, 1].

2. The ordering �α induced by Dα,inf
+ is given by

Q �α P ⇔ F−1(u) ≤ G−1(u) ∀u ≥ α,

which corresponds to the classical stochastic order restricted to the upper tail.

Proof. 1. Denote by Fα the law of Xα := X1U1≥α = X1F (X,V )≥α and by Gα the law
of Yα := Y 1U2≥α = Y 1G(Y,V )≥α. Then,

Dα,inf
+ (Q,P ) = inf

Xα∼Fα,Yα∼Gα
E(Xα − Yα)+

Since Xα = F−1(U1)1U1≥α with U1 ∼ U[0,1], Fα is the image of the Lebesgue
measure on [0, 1] induced by the transformation u 7→ F−1(u)1u≥α. Similarly, Gα
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is the image of the Lebesgue measure on [0, 1] induced by the transformation u 7→
F−1(u)1u≥α. Therefore, for U ∼ U(0,1), the comonotone pair of random variables

X̃α = F−1(U)1U≥α and Ỹα = G−1(U)1U≥α is admissible for (Fα, Gα).
By submodularity, as in Proposition 4.8,

E(Xα − Yα)+ ≥ E[(F−1(U)−G−1(U))+1U≥α],

which implies the result.

2. Follows from (4.18).

Remark 4.4. It is interesting to note that the expected shortfall of X is given by

ESα(X) =
1

1− α
E[F−1(U)1U≥α]

As expected, the minimal extension risk excess measure dominates the normalized one-
sided di�erence of expected shortfalls:

Dα,inf
+ (Q,P ) ≥ (1− α) (ESα(X)− ESα(Y ))+

where Y ∼ P,X ∼ Q.

5. Weak risk excess measures

5.1. Motivation and de�nition

In view of the mass transportation approach of (4.2), one may inquire whether there
exist other schemes of obtaining a risk excess measures D+(Q,P ), in the sense of De�ni-
tion 2.3, from a compound risk excess measure Dc

+(X,Y ), in the sense of De�nition 4.2.
In particular, it is natural to investigate the following �maximal extension� in the sense
of mass transportation,

Dsup
+ (Q,P ) := sup

X,Y ∈X,X∼Q,Y∼P
Dc

+(X,Y ). (5.1)

Obviously, Dinf
+ (Q,P ) ≤ Dsup

+ (Q,P ).
However, Dsup

+ is not a risk excess measure: although (A1) and (A3) are obviously
satis�ed, (A2) is not. Indeed,

Dsup
+ (Q,Q) = 0⇔ X ∼ Q,Y ∼ Q implies Dc

+(X,Y ) = 0.

This implies that X ≤ Y a.s. for all possible realizations X ∼ Q,Y ∼ Q. But for X,Y
independent with the same law Q, this would require that X ≤ Y a.s. which is only true
for Q being a one point distribution. These considerations imply that Dsup

+ can not be
compatible with a re�exive order relation: axiom (A4) can not be satis�ed either.

Nonetheless, Dsup
+ , as a supremum over all joint constructions of (X,Y ) ∼ (Q,P ),

gives the best possible upper bound on the compound risk excess measure in the sense
of mass transportation,

Dc
+(X,Y ) ≤ Dsup

+ (Q,P ),
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and therefore has a natural interpretation as a worst case comparison, which is appealing
for risk applications.

These considerations motivate the introduction of a weakened notion of risk excess
measure, without axiom (A2) and with axiom (A4) restricted to a strict order ≺, i.e. a
transitive and irre�exive relation. Therefore, we propose the following de�nitions:

De�nition 5.1 (Weak risk excess measure). Let ≺ be a strict order on M1(E). A one-
sided weak risk excess measure Dw

+ on (M1(E),≺) is an application Dw
+ : M1(E) ×

M1(E)→ R which satis�es axioms (A1), (A3), and (A4).

De�nition 5.2 (Maximal extension). Let Dc
+ be a compound excess risk measure. The

maximal extension Dsup
+ onM1(E) of Dc

+ by mass transportation is given by (5.1).

Remark 5.1. 1. The concept of one-sided weak risk excess measure is an asymmetric
analogue of the concept of moment function in the theory of probability metrics, see
[19] Chapter 3.3, or [20] Chapter 3.4. and 8.2. In addition, the adjunction of
axiom (A4) makes it compatible with a notion of order. Obviously, a one-sided risk
excess measure for a preorder � is a one-sided weak risk excess measure for the
strict order ≺ de�ned by

P ≺ Q⇔ P � Q and P 6= Q.

2. The relation between the minimal Dinf
+ and maximal Dsup

+ extensions obtained from
a compound risk excess measure Dc

+, is given in the following improved triangle
inequality:

Dsup
+ (Q,R) ≤ Dinf

+ (Q,P ) +Dsup
+ (P,R),

where P,Q,R are three probability measures on E, see [20] Theorem 3.4.1.

De�ne onM1(E) the following strict order ≺sup by

Q ≺sup P ⇔ sup(supp(Q)) ≤ inf(supp(P )), (5.2)

where supp(.) denotes the support of a distribution. The analogue of Lemma 4.5 for
the maximal extension, which shows that Dsup

+ is indeed a one-sided weak risk excess
measure, is given in the following lemma:

Lemma 5.3. Dsup
+ obtained in (5.1) from a compound excess risk measure Dc

+(X,Y ) =
Ed+(X,Y ) of the form (4.1) is a one-sided weak risk excess measure on (M1(E),≺sup).

Proof. (A1) and (A3) are trivially satis�ed. For (A4), if Dsup
+ (Q,P ) = 0, then for

all X ∼ Q,Y ∼ P , Ed+(X,Y ) = 0. Markov's inequality entails that for all ε > 0,
d+(X,Y ) ≤ ε a.s. Hence, d+(X,Y ) = 0 a.s., i.e X ≤ Y a.s. for all X ∼ Q,Y ∼ P . This
can only holds if the support of Q is completely to the left of the support of P . The
converse direction is trivial: if Q ≺sup P then for all couplings X ∼ Q,Y ∼ P , X ≤ Y
a.s., and thus supX∼Q,Y∼P Ed+(X,Y ) = 0.

5.2. Dual representation of maximal one-sided weak risk excess measure

A dual representation of the maximal one-sided weak risk excess measure Dsup
+ asso-

ciated to the compound risk excess measure Dc
+(X,Y ) = Ed+(X,Y ) of the form (4.1) is

given in the following theorem:
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Theorem 5.4 (Dual Representation). Let E be a Polish space, supplied with the one-
sided hemi-metric d+, and let Dc

+(X,Y ) = Ed+(X,Y ) be the corresponding compound
excess risk measure,

1. if d+ is upper or lower semicontinuous, then duality holds:

Dsup
+ (Q,P ) = inf

Ψd+

{∫
fdQ+

∫
gdP

}
,

where

Ψd+ := { (f, g) ∈ Lip1(d+)× Lip1(d−), f(x) ≥ 0, g(y) ≥ 0,

f(x) + g(y) ≥ d+(x, y), (x, y) ∈ E2}.
2. if d+ is upper semi-continuous, then the supremum is attained for some probability

measure.

Proof. 1. Since a lower or upper semicontinuous function is a supremum or in�mum
of continuous functions, d+ is a Baire function. Hence, the duality Theorem 2.3.8
(a) in [21] applies, since d+ ≥ 0 is obviously majorised from below (i.e. belongs
to Pm(S) in the notation of Theorem 2.3.8 in [21]). Therefore, Theorem 2.3.8 (a)
entails

sup

{∫
d+(x, y)µ(dx, dy)

}
= inf{

∫
fdQ+

∫
gdP}, (5.3)

where the in�mum on the right hand side is taken in

Ψ1 := {f ∈ L1(Q), g ∈ L1(P ), d+(x, y) ≤ f(x) + g(y), (x, y) ∈ E2}.
Let γ1, γ2 two real-valued constants s.t. γ1 + γ2 = 0 and set for (f, g) ∈ Ψ1,
(f̃ := f − γ1, g̃ := g− γ2). Then, (f̃ , g̃) ∈ Ψ1 and J(f, g) =

∫
fdQ+

∫
gdP remains

invariant when one replaces (f, g) by (f̃ , g̃), i.e. J(f, g) = J(f̃ , g̃). Therefore, if
f takes some negative values, then, setting γ1 = inf f(x) entails f̃ ≥ 0 and the
in�mum in (5.3) can be restricted to

Ψ2 := {f ∈ L1(Q), g ∈ L1(P ), f(x) ≥ 0, d+(x, y) ≤ f(x) + g(y), (x, y) ∈ E2}.

By symmetry, the in�mum in (5.3) can further be restricted to

Ψ3 := {f ∈ L1(Q), g ∈ L1(P ), f(x) ≥ 0, g(y) ≥ 0, d+(x, y) ≤ f(x)+g(y), (x, y) ∈ E2}.
Assume d+ is upper bounded. For (f, g) ∈ Ψ3, set f∗(y) := supx(d+(x, y) − f(x))
and f∗∗(x) := supy(d+(x, y)−f∗(y)). Then, (f∗∗, f∗) ∈ Ψ1, g ≥ f∗, f ≥ f∗∗. Hence,
J(f, g) ≥ J(f∗∗, f∗). Moreover, by the triangle inequality,

d+(x, y)− g∗(y) ≤ d+(x, x′) + d(x′, y)− f(y)

and taking the supremum in y yields

f∗∗(x)− f∗∗(x′) ≤ d+(x, x′).

Hence, f∗∗ ∈ Lip1(d+), whereas a similarly calculation shows that f∗ ∈ Lip1(d−).
Therefore, the in�mum in (5.3) can further be restricted to Ψd+ , as claimed.
The general case, for d+ unbounded, proceeds by approximation, as in Theorem
4.6.

2. Follows from Theorem 2.3.10 in [21].
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5.3. Examples of maximal extensions

We discuss for some of the examples in Section 4 the corresponding worst case risk
excess Dsup

+ . First, we consider the discrete one-sided hemi-metric d≤+ of (2.6) on E = Rd,
supplied with the product order ≤. The associated compound risk excess measure is given
by (4.9):

Dc
+(X,Y ) = µ(X � Y ),

for X ∼ Q,Y ∼ P , and its minimal extension (4.11) coincides with the induced risk
excess measure Dst

+ (see (2.20)) compatible with the stochastic order. The maximal
extension is given in the following proposition:

Proposition 5.5 (Maximal Risk excess for stochastic ordering). 1. Let D≤,sup+ be the
one-sided weak risk excess measure on (M1(R),≺sup) obtained by maximal exten-

sion of the discrete compound risk measure Dc
+ in (4.9). D≤,sup+ has the represen-

tation:
D≤,sup+ (Q,P ) = 1− sup

x∈Rd
(F (x)−G(x)), (5.4)

where F,G are the c.d.f.s of Q,P , respectively.
2. The restriction of D≤,sup

+ on E, obtained by setting d<+(x, y) := D≤,sup
+ (δx, δy),

de�nes a weak one-sided hemi-metric compatible with the strict order <, i.e.

d<+(x, y) = 1x≥y,

with d<+ satisfying axioms (A1), (A3), and (A4) for the strict order < associated
with ≤.

Proof. 1. Note that by Strassen's Theorem, (see e.g. Theorem 3.5.1 and 3.5.5 in [21]
or Theorems 4 and 5 in [24]),

D≤,sup+ (Q,P ) = sup
X∼Q,Y∼P

µ(X � Y ) = 1− inf
X∼Q,Y∼P

µ(X ≤ Y )

= 1− sup(Q(B1) + P (B2)− 1),

where the supremum is over all pair of subsets B1, B2 ⊂ E s.t. B1 × B2 ⊂ B :=
{(x, y);x ≤ y}. But for B1 × B2 ⊂ B, it follows that B↓1 × B↑2 ⊂ B, where

B↓1 = {x ∈ Rd : ∃x̄ ∈ B1 s.t. x ≤ x̄} and B↑2 = {y ∈ Rd : ∃ȳ ∈ B2 s.t. y ≥ ȳ} are
the decreasing resp. increasing completions of B1, B2. Then, it is easy to see that
one can enlarge B↓1 , B

↑
2 to intervals of the form (−∞, x], [x,∞). As a result the

maximal extension is given by

D≤,sup+ (Q,P ) = 2− sup
x∈Rd
{F (x) +G(x)}

= 1− sup
x∈Rd
{F (x)−G(x)},

where G(x) = P ([x,∞)).
2. Formula (5.4) yields

D≤,sup+ (δx, δy) = 1− sup
z∈Rd
{1z≥x − 1z≥y} = 1x≥y.
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Remark 5.2. Comparing this result with those of Lemma 3.3 and Example 3.1, one sees
that the discrete one-sided hemi-metric d≤+(x, y) = 1y�x and the corresponding compound

risk excess measure has many extensions onM1(Rd) and in particular we obtain

Duo
+ ≤ Dst

+ ≤ D
≤,sup
+ .

The following diagram illustrate the di�erent embeddings of structures, through their
hemi-metrics:

(E,<) d<+ D≤,sup+ (M(E),≺sup)

(E,≤) d≤+ Dst
+ (M(E),�st)

Duo
+ (M(E),�uo)

dr+

min

sup

dr+

dr+

Next, we investigate the maximal one-sided weak risk excess extension for the basic
hemi-metric (2.7): on E = R, for X ∼ F, Y ∼ G, let Dc

+(X,Y ) = E(X − Y )+ be the av-
erage risk excess as in (4.13). The maximal risk excess extension by mass transportation
is given by the following proposition.

Proposition 5.6 (Risk excess from exceedance in average). Let Db,sup
+ (Q,P ) be the

maximal one-sided weak risk excess extension, obtained by mass transportation of the
compound risk excess measure Dc

+(X,Y ) = E(X − Y )+.One has the representation

Db,sup
+ (Q,P ) = E[

(
F−1(U)−G−1(1− U)

)
+

], (5.5)

where F,G are the c.d.f.s of Q,P , respectively.

Proof. The argument for the maximal risk excess extension is similar to that of the
minimal risk excess extension.

In the previous propositions, the order induced by the maximal extension is very
strong. For insurance applications, in particular for comparing tail risk, it is of interest
to restrict the comparisons to the upper tails of the distributions, see Proposition 4.9
in Section 4. Finally, we give the result for the tail excess compound risk measure
Dc,α

+ (X,Y ) in (4.17), which induces a more interesting order:

Proposition 5.7 (Tail risk excess). 1. Let 0 < α < 1, then the maximal extension
Dα,sup

+ is given by

Dα,sup
+ (Q,P ) = (1− α)Dsup

+ (Qα, Pα), (5.6)

where Qα, Pα are the conditional distributions of Q,P on their upper α−quantiles
intervals [qα(Q),∞), [qα(P ),∞).
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2. Correspondingly, a suitable consistent ordering ≺α onM1 is given by

Q ≺α P ⇔ G−1(u) ≤ F−1(1− u+ α), for all α ≤ u ≤ 1,

where F,G are the c.d.f. of Q,P . For the maximal extension, the random variables
are chosen counter-monotonic in the upper part of the distribution.

Proof. Similar to the proof of Proposition 5.6.

6. Extensions with dependence constraints

6.1. Setup
In Sections 4 and 5, we considered risk excess measures D(Q,P ) obtained as minimal

and maximal extensions obtained by mass transportation of a compound risk excess
measure, i.e. over the class of all dependence structures of (Q,P ). In this section,
we consider a relevant modi�cation of this method by restricting the class of possible
dependence structures. This setup allows to take into consideration some known side
information on the dependence structure of (Q,P ), like various bounds on positive or
negative dependence, see e.g. [26] Chapter 5.

We consider the setup E = R with hemi-metric d+ and the compound excess risk
measure Dc

+(X,Y ) = Ed+(X,Y ) of the kind (4.2), where X,Y ∈ X have marginals Q,P .
If C = CX,Y is a copula of (X,Y ), we also write ECd+(X,Y ) to stress the dependence
on C, and we denote by C the set of all bivariate copula functions. Let D ⊂ C denote a
subclass of copulas which describes the information on the dependence structure. Then,
it is natural to consider the worst and best case extension of Dc

+ over D.
De�nition 6.1 (Minimal and maximal extension with dependence restriction). For a
subclass D ⊂ C,
• the minimal extension with dependence restriction D of Dc

+ is de�ned as

DD,inf+ (Q,P ) := inf{ECd+(X,Y ), X ∼ Q,Y ∼ P,C ∈ D}. (6.1)

• Similarly, the maximal extension with dependence restriction D is de�ned as

DD,sup+ (Q,P ) := sup{ECd+(X,Y ), X ∼ Q,Y ∼ P,C ∈ D}. (6.2)

In the case without dependence restriction, i.e. when D = C, we get the minimal and
maximal extensions Dinf

+ , Dsup
+ of (4.2) and (5.1) considered in Sections 4 and 5.

Remark 6.1. By the previous discussion of Section 4 (see Lemma 4.5), it is clear that

DD,inf+ is a risk excess measure on (M1(E),�st) only in case that D contains the upper
Fréchet boundM , de�ned byM(u, v) = min(u, v), 0 ≤ u, v ≤ 1. So typically the restricted
extensions will not satisfy the properties (A2) and (A4) of a one-sided risk excess measure
on (M1(E),�st).

In spite of that, the extensions (6.1) and (6.2) have a natural motivation as best resp.
worst case excess risk taking into account the dependence restrictions. On the level of
random variables, the class of pairs (X,Y ) with CXY ∈ D and X ≤ Y may be empty

even if Q �st P . Therefore, the unrestricted extensions Dinf
+ , resp. Dsup

+ would under
resp. over estimate the real risk excess. As a consequence, this is a strong indication
for the relevance of the notion of minimal resp. maximal risk excess with dependence
restriction D.
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6.2. Explicit results for extensions with positive and negative dependence restriction

We consider in the following two particular classes of dependence restrictions D which
allow to determine the minimal resp. maximal extensions in explicit form. Denote for
copulas C0, C1 ∈ C by

D≤(C0) := {C ∈ C;C ≤ C0} (6.3)

and by
D≥(C1) := {C ∈ C;C ≥ C1} (6.4)

the class of all copulas which are smaller than C0 resp. bigger than C1 in the lower orthant
ordering �lo (equivalently in the upper orthant ordering �uo). (6.3) describes a negative
dependence restriction, (6.4) a positive dependence restriction: for the case C0 = C1 = Π,
the independence copula Π(u, v) = uv, 0 ≤ u, v ≤ 1, these restrictions correspond
to negatively quadrant dependent (NQD) resp. positively quadrant dependent (PQD)
random variables, as de�ned by [15], see [18] p. 186.

Then, for d+(x, y) = (x− y)+, we obtain the following explicit result.

Proposition 6.2 (Minimal and maximal risk excess with positive/negative dependence
restriction).

1. For D = D≤(C0), we obtain the explicit formula for the minimal risk excess exten-
sion

DD,inf+ (Q,P ) = EC0
(X0 − Y 0)+, (6.5)

where X0 ∼ Q,Y 0 ∼ P and CX0,Y 0 = C0.

2. For D = D≥(C1), we obtain the explicit formula for the maximal risk excess exten-
sion

DD,sup+ (Q,P ) = EC1
(X1 − Y 1)+, (6.6)

where X1 ∼ Q,Y 1 ∼ P and CX1,Y 1 = C1.

Proof. 1. For (X,Y ) with X ∼ Q,Y ∼ P and CX,Y = C ≤ C0, it follows from the
submodularity argument as in the proof of Proposition 4.8that

E(X − Y )+ ≥ E(X0 − Y 0)+,

since f(x− y) = (x− y)+ is submodular and (X,Y ) ≤sm (X0, Y 0), with ≤sm the
supermodular ordering. Taking the in�mum yields the result.

2. The argument is similar.

Remark 6.2. • Taking for D the two-sided dependence information

D = D(C0, C1) = {C ∈ C;C1 ≤ C ≤ C0}

we obtain for DD,inf+ the same formula as in (6.5) and for DD,sup+ the same formula
as in (6.6). Thus this information shrinks at the same time the upper and the lower
bound for the risk excess.
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• The concept of minimal resp. maximal risk excess can also be introduced for the
general case (E,≤) and general compound risk excess measures Dc

+. In this case,
D denotes a class of dependence structures of random elements X,Y ∈ E. Even if
Dinf

+ and Dsup
+ do not satisfy on the level of distributions the risk excess measure

axioms (A2) and (A4), they describe the relevant bounds for the risk excess with
dependence information D.
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