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ABSTRACT

Value-at-Risk bounds for aggregated risks have been derived in
the literature in settings where besides the marginal distributions
of the individual risk factors one-sided bounds for the joint dis-
tribution respectively the copula of the risks are available. In
applications it turns out that these improved standard bounds on
Value-at-Risk tend to be too wide to be relevant for practical ap-
plications, especially when the number of risk factors is large or
when the dependence restriction is not strong enough. In this
paper, we develop a method to compute Value-at-Risk bounds
when besides the marginal distributions of the risk factors, two-
sided dependence information in form of an upper and a lower
bound on the copula of the risk factors is available. The method
is based on a relaxation of the exact dual bounds which we de-
rive by means of the Monge–Kantorovich transportation duality.
In several applications we illustrate that two-sided dependence
information typically leads to strongly improved bounds on the
Value-at-Risk of aggregations.
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1. Introduction

In order to increase the resilience of the financial sector to periods of heightened stress, new
regulatory provisions require the computation of robust risk estimates as a key ingredient in the
determination of capital reserves; see e.g. Board of Governors of the Federal Reserve System
(2011). This in turn calls for new methods to compute risk estimates with partial information
about the distribution of the underlying risk drivers. While the computation of portfolio risk es-
timates from a given model (distribution) for the risk factors poses primarily computational dif-
ficulties, fundamentally different challenges arise once we discard the assumption of completely
specified model for the risks and consider the framework of model ambiguity. Ambiguity in the
Knightian sense occurs whenever uncertainty about the joint law of the risks is introduced. In
practice, such uncertainty may stem e.g. from a shortage of historical data to estimate the possi-
bly high-dimensional distribution of the risk factors, or from risk dynamics that are too volatile
as to be described adequately by a single model. In this situation, practitioners face the challenge
to quantify the portfolio risk in the absence of a completely specified model for the underlying
factors. This typically involves the computation of worst-case estimates that correspond to the
maximal risk over all possible models that are compatible with reliable information or certain
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views about the risk factors. These estimates are considered robust with respect to the class of
admissible models. In this paper, we present a novel approach to compute robust Value-at-Risk
(VaR) estimates for portfolios in the presence of model uncertainty. Thereby, we assume only
partial information about the distribution of the risk factors that is available e.g. in the form of
reliable estimates or expert views. In applications, we show that our approach provides ways to
compute model risk estimates that comply with the five fundamental criteria for robust scenario
aggregation presented in Cambou and Filipović (2015), namely (1) no penalty for conservative
internal models (2) focus on tail loss (3) control over distance from internal model (4) robustness
of capital requirements and (5) tractability.

A significant part of the literature on dependence uncertainty focuses on the marginals-only
case, where merely the marginal distributions of X are known and no information at all about the
dependence structure between its constituents is available. In this case, sharp VaR bounds can be
obtained by the Rearrangement Algorithm (RA) introduced in Puccetti and Rüschendorf (2012a)
and Embrechts, Puccetti, and Rüschendorf (2013). For a presentation of general results in the
marginals-only case see Embrechts et al. (2013). The complete absence of information on the
dependence structure however leads typically to very wide risk bounds that are not sufficiently
informative for practical applications.

This observation has led to a series of papers discussing VaR bounds with additional dependence
information in the form of a one-sided, upper or lower bound on the joint distribution function
of the risks. The associated VaR bounds are in the literature referred to as improved standard
bounds. For the ample literature on this we refer to Williamson and Downs (1990), Denuit,
Genest, and Marceau (1999), Embrechts, Höing, and Juri (2003), Puccetti and Rüschendorf
(2012b), Bignozzi, Puccetti, and Rüschendorf (2015), Bernard and Vanduffel (2015), Puccetti,
Rüschendorf, and Manko (2016) and Lux and Papapantoleon (2016). As a result it has been
found that this kind of information leads to reasonably narrow risk estimates when the one-sided
bounds describe strong enough positive or negative dependence among the risk factors or when
the dimension d is relatively small. In higher dimensions the bounds remain often too wide as
to be of practical relevance.

To obtain improved VaR bounds, we consider in this paper two-sided constraints on the joint
distribution function of the risk vector X. Our main contribution is the development of a method
to incorporate two-sided bounds on the copula of X in order to obtain substantially improved
VaR estimates in comparison to the case where only one-sided information is available. For
the derivation of two-sided bounds on the copula from partial information about the distribution
of the risks we refer to Rachev and Rüschendorf (1994), Nelsen, Quesada-Molina, Rodriguez-
Lallena, and Ubeda-Flores (2001), Nelsen (2006, Sec. 3.2.3), Tankov (2011), Lux and Papapan-
toleon (2015, 2016) and Puccetti et al. (2016).

In the first step we derive an exact dual representation of the VaR bounds over the constrained
class of distributions using the Monge-Kantorovich duality theory. The dual bounds however
are both analytically and numerically intractable. Nevertheless, the dual formulation allows us
to obtain a reduced and tractable optimization scheme for the computation of VaR bounds with
two-sided dependence information. Our scheme corresponds to an optimization over a suitable
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subset of admissible functions for the duals. A similar approach was taken by Embrechts and
Puccetti (2006) who derived a numerical procedure from the dual bounds in the marginals-
only case, i.e. when only the marginal distributions are known and no information about the
dependence structure at all is available. The resulting VaR bounds are no longer sharp in general.
Nevertheless, we show that our reduced scheme yields asymptotically sharp risk bounds in the
certainty limit, i.e. when uncertainty becomes arbitrarily small. Moreover, we illustrate in
numerical examples that our method produces reasonable results also in higher dimensions. In
particular, our VaR estimates are significantly tighter than the improved standard bounds, based
on one-sided information.

The paper is structured as follows: In Section 2, we develop the relevant notions and give a rig-
orous definition of the kind of model risk that we address. Section 3 is devoted to the derivation
of the dual risk bounds and the proof of strong duality. In Section 4, we then present numerical
schemes for the upper and the lower VaR bounds based on the dual form of the risk estimates.
Moreover, we prove asymptotic sharpness of the bounds as uncertainty vanishes. We conclude,
in Section 5, with a graphical illustration of our numerical scheme as well as several examples
highlighting the performance of the improved VaR bounds.

2. Bounds on Value-at-Risk using copula information

In this paper we consider an Rd-valued random vector of risks X = (X1, . . . , Xd) and an
aggregation function ψ : Rd → R. We want to compute the VaR of the aggregation ψ(X). The
VaR of ψ(X) relates to the quantile function in the following way: when ψ(X) ∼ Fψ then the
VaR of ψ(X) for a certain confidence level α ∈ (0, 1) is given by the quantity1

VaRα(ψ(X)) = F−1
ψ (α) = inf{x ∈ R : Fψ(x) > α}.

Typical levels of α are close to 1, assuming that risks (or losses) correspond to the right tail of the
distribution. The most commonly considered aggregation function ψ is the sum of the individual
risks X1 + · · ·+Xd, but also the maximum and minimum of the risks, max{X1, . . . , Xd} and
min{X1, . . . , Xd} are of interest.

We are concerned with the situation of model ambiguity and assume that only partial infor-
mation about the distribution of X is available. Frequently, the univariate distributions of the
constituents X1, ..., Xd are known or can be estimated while the dependence structure between
the individual components is at best partially known. This form of model ambiguity is referred
to as dependence uncertainty. It is assumed that the unknown joint distribution F of X is in the
Fréchet class F(F1, ..., Fd) of d-dimensional distribution functions with marginals F1, ..., Fd.
Then it follows from Sklar’s Theorem that F can be expressed as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all (x1, ..., xd) ∈ Rd, (2.1)

1Sometimes, VaR is defined using ‘≥’ instead of ‘>’ for the definition of the generalized inverse. Our formulation
here guarantees suitable continuity properties of objective functions used in the following sections. For a detailed
discussion of the consequences of either VaR formulation c.f. Embrechts and Hofert (2013).
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for a copula C. This implies that dependence uncertainty is in fact uncertainty about the copula
of X.

When no information about the risk vector besides its marginal distributions is provided, then
every copula yields a possible joint distribution for X via (2.1). In this situation, VaR bounds for
aggregations ψ(X) over the set of all copulas are typically too wide to be relevant in practice. In
addition, it is rarely the case that no information at all about the dependence structure of the risk
vector is available, since partial information such as e.g. Kendall’s tau or correlations between
the risk factors can be estimated or inferred with sufficient accuracy. Such additional information
can be translated into a lower and an upper bound on the copula of X; see e.g. Rachev and
Rüschendorf (1994), Nelsen (2006) and Tankov (2011) for d = 2 or Lux and Papapantoleon
(2015, 2016) and Puccetti et al. (2016) for d > 2. Our approach will allow us to translate these
improved Fréchet–Hoeffding bounds into bounds on VaR for the aggregation ψ(X). In fact,
we consider first a more general problem. Instead of bounding VaR we derive bounds on the
expectation of a general functional ϕ(X) when bounds on the copula of X are available.

In the following let the marginal distributions of the risk vector (X1, ..., Xd) be fixed and de-
noted by F1, ..., Fd. With this specification, we denote the expectation operator for a measurable
ϕ : Rd → R and an Rd-valued random vector X with copula C, by

EC [ϕ] =

∫
Rd

ϕ(x1, ..., xd) dC(F1(x1), ..., Fd(xd)).

Using C ≤ C ′ to refer to the pointwise inequality between d-variate functions, we define the
generalized Fréchet functionals with two-sided constraints by

Pϕ := inf
{
EC [ϕ] : C ∈ Cd, Q ≤ C ≤ Q

}
, (2.2)

Pϕ := sup
{
EC [ϕ] : C ∈ Cd, Q ≤ C ≤ Q

}
, (2.3)

where Cd is the set of all d-copulas and Q,Q are quasi-copulas with Q ≤ Q. The generalized
Fréchet functionals describe the maximal respectively minimal influence of dependence on the
expectation of ϕ in the Fréchet class with two-sided constraints. The notion of quasi-copulas
generalizes the copula concept as follows:

Definition 2.1. A function Q : [0, 1]d → [0, 1] is a d-quasi-copula if the following properties
hold:

(QC1) Q satisfies, for all i ∈ {1, . . . , d}, the boundary conditions

Q(u1, . . . , ui = 0, . . . , ud) = 0 and Q(1, . . . , 1, ui, 1, . . . , 1) = ui.

(QC2) Q is increasing in each argument.

(QC3) Q is Lipschitz continuous, i.e. for all u,v ∈ [0, 1]d

|Q(u1, . . . , ud)−Q(v1, . . . , vd)| ≤
d∑
i=1

|ui − vi|.
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In particular, by allowing quasi-copulas as bounds in the formulation of the generalized Fréchet
functionals, we are able to include the lower Fréchet–Hoeffding bound or improved Fréchet–
Hoeffding bounds which are quasi-copulas but often fail to be proper copulas. Allowing quasi-
copulas as bounds, there might however not exist a copula that complies with the constraints
and so Cb :=

{
C ∈ Cd : Q ≤ C ≤ Q

}
= ∅. Consider e.g. Q = Q = Wd where Wd is the

d-dimensional lower Fréchet–Hoeffding bound, then Cb is empty whenever d > 2. In this case,
we set Pϕ =∞ and Pϕ = −∞.

Remark 2.2. When Q and Q are equal to the lower and upper Fréchet–Hoeffding bound respec-
tively, i.e.

Q(u1, ..., ud) = max

{
0,

d∑
i=1

ui − d+ 1

}
=: Wd(u) and

Q(u1, ..., ud) = min(u1, ..., ud) =: Md

(2.4)

then the optimization corresponds to a standard Fréchet problem where only the marginals are
known and no information about the dependence structure at all is available. �

Remark 2.3. Let us point out that the Lipschitz property (QC3) of the bounds is not a limiting
constraint in applications. Bounds on copulas derived from partial information, that are known
in the literature, are essentially pointwise infima or suprema of sets of copulas, i.e. Q(u) =
inf{C(u) : C ∈ C}, for C being some constrained set of copulas. Hence, they are in particular
Lipschitz continuous. �

In order to compute or approximate the bounds Pϕ and Pϕ we proceed as follows: First, we
derive a dual representation of the generalized Fréchet functionals yielding sharp bounds on
the expectation of ϕ(X) under rather general assumptions on the function ϕ. Based on the
dual representation we then develop a tractable optimization scheme to compute bounds on the
expectation for specific functions ϕ. In particular, the scheme allows us to determine robust VaR
estimates of aggregations using copula bounds.

3. Dual representation of generalized Fréchet functionals with
two-sided bounds on the copula

In this section we establish a dual characterization of the generalized Fréchet functionals Pϕ and
Pϕ and prove strong duality between the two formulations. To this end, we introduce the class

R :=

{
h =

k∑
n=1

αnΛun : k ∈ N, α1, ..., αk ≥ 0,u1, ...,uk ∈ Rd
}
,

where the functions Λu are of the form

Λu : Rd 3 (x1, ..., xd) 7→ 1x1≤u1,...,xd≤ud .
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Here, we convene that the superscript n in un is the index of the sequence u1, ...,uk and does
not refer to the exponentiation of u.

The elements in R are hence positive, linear combinations of indicator functions of rectangles
of the form (−∞, u1] × · · · × (−∞, ud]. Analogously, we denote the lower semicontinuous
version of Λu by

Λ−u : (x1, ..., xd) 7→ 1x1<u1,...,xd<ud ,

and for h =
∑k

n=1 αnΛun ∈ R we define h− :=
∑k

n=1 αnΛ−un .

Note that for a copula C it holds that

EC [Λu] =

∫
Rd

Λu(x1, ..., xd) dC
(
F1(x1), ..., Fd(xd)

)
= C

(
F1(u1), ..., Fd(ud)

)
, (3.1)

and analogously we obtain that EC [Λ−u ] = C(F−1 (u1), ..., F−d (ud)), where F−i is the left-
continuous version of Fi for i = 1, ..., d.

Moreover, we define, for a quasi-copula Q and h =
∑k

n=1 αnΛun ∈ R,

Q(h) :=
k∑

n=1

αnQ
(
F1(un1 ), ..., Fd(u

n
d )
)
; Q(h−) :=

k∑
n=1

αnQ
(
F−1 (un1 ), ..., F−d (und )

)
.

If Q = C for a copula C, we have that Q(h) = EQ[h] as well as Q(h−) = EQ[h−].

We then guess a dual form of the generalized Fréchet functional Pϕ and prove in Theorem 3.5
below that it is in fact an alternative formulation of Pϕ, i.e. there is no duality gap. The intuition
behind the dual characterization is that we seek to maximize the expectation over all objective
functions which are dominated by ϕ and whose expectation can be computed with certainty
from available information. This leads us to the following dual form of the generalized Fréchet
functional Pϕ:

Dϕ = sup

{
Q(h)−Q(g−) +

d∑
i=1

Ei[fi] : fi ∈ L(Fi), i = 1, ..., d;

h, g ∈ R s.t. h− g− +
d∑
i=1

fi ≤ ϕ
}
,

(3.2)

where Ei[fi] =
∫
fi dFi and L(Fi) is the class of Fi-integrable functions fi, i.e. Ei[|fi|] < ∞,

for i = 1, ..., d. Analogously, for the upper bound Pϕ, the corresponding dual is given by

Dϕ = inf

{
Q(h−)−Q(g) +

d∑
i=1

Ei[fi] : fi ∈ L(Fi), i = 1, ..., d;

h, g ∈ R s.t. h− − g +
d∑
i=1

fi ≥ ϕ
}
.

(3.3)
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Note, that the roles of Q and Q are reversed in Dϕ, i.e. we subtract the sum w.r.t. Q from
the sum w.r.t. Q in the formulation of Dϕ and vice versa for Dϕ. In the remainder of this
section, we show that strong duality between the generalized Fréchet functionals and the dual
characterization holds under mild assumptions on the function ϕ, so that:

Pϕ = Dϕ and Pϕ = Dϕ.

Several approaches to proving duality results of this type have been established in the literature.
Rüschendorf (1981) and Gaffke and Rüschendorf (1981) establish duality results for functionals
of multivariate random variables with given marginals using a Hahn-Banach separation argu-
ment. This method was also extended to some cases with additional or relaxed constraints. A
more general duality result, based on a different method, was given in Kellerer (1984). A du-
ality result for the martingale optimal transport problem was established by Beiglböck, Henry-
Labordère, and Penkner (2013), using the Kantorovich Duality Theorem combined with a min-
imax argument. Bartl, Cheredito, Kupper, and Tangpi (2015) derive a general duality result for
convex functionals with countably many marginal constraints using the Daniell-Stone Theorem.
An account of the history of the Monge-Kantorovich duality theory and associated references
can be found in the survey by Rüschendorf (2007) or in the book by Villani (2009).

The proof of our duality theorem 3.2 for the generalized Fréchet functionals is based on the
following copula-version of the Kantorovich duality: Let ϕ : Rd → R be lower semicontinuous
and such that for some gi ∈ L(Fi), i = 1, ..., d we have

d∑
i=1

gi(xi) ≥ |ϕ(x1, ..., xd)| for all (x1, ..., xd) ∈ Rd,

then it holds that

inf
{
EC [ϕ] : C ∈ Cd

}
= sup

{
d∑
i=1

Ei[fi] : fi ∈ L(Fi), i = 1, ..., d,

d∑
i=1

fi ≤ ϕ

}
. (3.4)

Equation (3.4) follows immediately from the duality result in Villani (2009, Ch. 5). We remark
that more general versions of the Kantorovich duality, e.g. for ϕ being merely a Baire-function
or product-measurable, exist in the literature; see e.g. Rachev and Rüschendorf (1998, Ch. 2).

Moreover, we will make use of the classical Minimax Theorem of Ky-Fan.

Lemma 3.1 (Minimax Theorem). Let B1 be a compact convex subset of a topological vector
space V1 and B2 be a convex subset of a vector space V2. If f : B1 ×B2 → R is such that

1. f(·, b2) is lower semicontinuous and convex on B1 for all b2 ∈ B2,

2. f(b1, ·) is concave on B2 for all b1 ∈ B1,

then
inf
b1∈B1

sup
b2∈B2

f(b1, b2) = sup
b2∈B2

inf
b1∈B1

f(b1, b2).
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With these results, we are now in the position to establish our main duality theorem.

Theorem 3.2 (Dual bounds with two-sided dependence information). Let ϕ : Rd → R be
such that

d∑
i=1

gi(xi) ≥ |ϕ(x1, ..., xd)| for all (x1, ..., xd) ∈ Rd, (3.5)

for some elements gi ∈ L(Fi), i = 1, ..., d. Moreover, assume that there exists a copula C ∈ Cd
with Q ≤ C ≤ Q. Then if ϕ is lower semicontinuous the following duality holds:

Pϕ = Dϕ.

When ϕ is upper semicontinuous the following duality holds:

Pϕ = Dϕ.

Moreover, there exist copulas C,C such that EC [ϕ] = Pϕ and EC [ϕ] = Pϕ.

Proof. We show that the statement holds for the lower bound, i.e. Dϕ = Pϕ. The proof for the
upper bound can be derived by applying analogous arguments to the function −ϕ.

First, assume that ϕ is bounded and continuous. By fi we refer to functions in L(Fi). It follows
that

Dϕ = sup
h,g∈R

sup
f1,...,fd

h−g−+
∑d
i=1 fi≤ϕ

{
Q(h)−Q(g−) +

d∑
i=1

Ei[fi]
}

(3.6)

= sup
h,g∈R

sup
f1,...,fd∑d

i=1 fi≤ϕ−h+g−

{
Q(h)−Q(g−) +

d∑
i=1

Ei[fi]
}

(3.7)

= sup
h,g∈R

inf
C∈Cd

{
Q(h)−Q(g−) + EC [ϕ− h+ g−]

}
(3.8)

= sup
h,g∈R

inf
C∈Cd

{(
Q(h)− C(h)

)
−
(
Q(g−)− C(g−)

)
+ EC [ϕ]

}
(3.9)

= inf
C∈Cd

{
sup
h,g∈R

{(
Q(h)− C(h)

)
−
(
Q(g−)− C(g−)

)}
+ EC [ϕ]

}
(3.10)

= inf
C∈Cd

Q(h)≤C(h)≤Q(h), ∀h∈R

EC [ϕ] (3.11)

= inf
Q≤C≤Q

EC [ϕ] = Pϕ. (3.12)

Equation (3.8) follows from an application of the Kantorovich Duality Theorem to the function
ϕ′ := ϕ− h+ g−; see equation (3.4). Note, that the application of the theorem is justified since
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ϕ′ is lower semicontinuous being the sum of the lower semicontinuous functions ϕ, −h and g−.
Moreover, since h and g are of the form

h =

k∑
n=1

αnΛun , g =

m∑
n=1

βnΛvn

for α1, ..., αk, β1, ..., βm ∈ R+, we obtain

|(ϕ+ h− g−)(x1, ..., xd)| ≤
d∑
i=1

gi(xi) +
k∑

n=1

αn +
m∑
n=1

βn.

Equation (3.9) then follows by rearranging the terms, using the linearity of the expectation and
the definition of the operator C(h) for h ∈ R. Now, applying the Minimax Theorem 3.1 to the
function

f : Cd ×R2 3
(
C, (h, g)

)
7→
(
Q(h)− C(h)

)
−
(
Q(g−)− C(g−)

)
+ EC [ϕ]

yields equation (3.10). Note, that the requirements of Theorem 3.1 are satisfied, since

Cb =
{
C ∈ Cd : Q ≤ C ≤ Q

}
is a closed, bounded and equicontinuous subset of the topological space of all continuous func-
tions on [0, 1]d, equipped with the uniform metric. Hence, it follows from the Arzelà-Ascoli
Theorem that Cb is compact. Moreover, Cb and R2 are convex sets. On the other hand, for all
h, g ∈ R the map f

(
· , (h, g)

)
is continuous w.r.t. the uniform convergence of copulas since

we assume ϕ to be bounded and continuous. Furthermore, we have that f
(
· , (h, g)

)
is convex

on Cd. Also, for all C ∈ Cd it holds that f(C, ·) is linear on R2. To verify (3.11), assume that
Q(h) ≤ C(h) ≤ Q(h) does not hold for one h ∈ R, i.e. let w.l.o.g. C(h) < Q(h), then for
each α > 0 it follows that(

Q(αh)− C(αh)
)

= α
(
Q(h)− C(h)

)
> 0

and thus, by scaling α, the supremum is∞ and C can be disregarded in the infimum in (3.10).
Hence, it holds that

Q(h) ≤ C(h) ≤ Q(h), for all h ∈ R.

This entails that Q(h) − C(h) ≤ 0 and −(Q(g) − C(g)) ≤ 0 for all (g, h) ∈ R2 and thus the
supremum is attained for h, g ≡ 0. Finally, (3.12) holds due to the fact that Q(h) ≤ C(h) ≤
Q(h) for all h ∈ R implies

Q(F1(x1), ..., Fd(xd)) ≤ C(F1(x1), ..., Fd(xd)) ≤ Q(F1(x1), ..., Fd(xd))

for all (x1, ..., xd) ∈ Rd and EC [ϕ] = EC′ [ϕ] for all copulasC andC ′ withC(F1(x1), ..., Fd(xd)) =
C ′(F1(x1), ..., Fd(xd)).
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We proceed by relaxing the condition of ϕ being bounded and continuous. So let ϕ merely
be lower semicontinuous. We can w.l.o.g. assume that ϕ ≥ 0 as otherwise there exist, due to
condition (3.5), functions g1, ...gd with ϕ+

∑d
i=1 gi ≥ 0 and

Pϕ = Pϕ+
∑d
i=1 gi

−
d∑
i=1

Ei[gi].

Now, since ϕ is lower semicontinuous there exists a sequence of positive, bounded, continuous
functions ϕ1 ≤ ϕ2 ≤ · · · with ϕ = limn ϕn pointwise and Pϕn ≤ Pϕ. Furthermore, due to the
compactness of Cb there exist optimizers C1, C2, ... of Pϕ1

, Pϕ2
, ... and we can, by passing to a

subsequence, assume that C1, C2, ... converges to some C∗ ∈ Cb. Then it follows by monotone
convergence that

Pϕ ≤ EC∗ [ϕ] = lim
n

EC∗ [ϕn] = lim
n

lim
j

ECj [ϕn] ≤ lim
j

ECj [ϕj ] = lim
j
Pϕj = lim

j
Dϕj = Dϕ,

where the last equality is due to Dϕj ≤ Dϕ ≤ Pϕ for j ∈ N.

Lastly, we note that the optimizers for the generalized Fréchet functionals are attained due to the
compactness of Cb which completes the proof. �

Remark 3.3. Assuming the existence of a copula C ∈ Cd with Q ≤ C ≤ Q in Theorem 3.2
rules out the degenerate situation where no probabilistic model exists which is compatible with
the prescribed information. Verifying this assumption however is a delicate task in general. The
existence of a copula C with Q ≤ C follows immediately from the fact that the upper Fréchet–
Hoeffding boundMd is a copula and henceQ ≤Md. The difficulty thus lies in verifyingC ≤ Q
which fails e.g. when Q = Wd and d > 2, where Wd is the lower Fréchet–Hoeffding bound
given in (2.4). Nevertheless, when Q and Q are improved Fréchet–Hoeffding bounds it is often
straight-forward to verify that {C ∈ Cd : Q ≤ C ≤ Q} is not empty. �

Remark 3.4. The duality result with additional dependence information in Theorem 3.2 was
also developed, in parallel and using a completely different proof, in Bartl, Kupper, Lux, and
Papapantoleon (2017, Theorem 2.2). �

The following counter-example shows that the dual optimizers are not attained in general.

Example 3.5. Consider the case d = 2 and let F1 and F2 be uniform marginal distribution on
[0, 1]. Moreover, let Q(u1, u2) = Q(u1, u2) = Π(u1, u2) = u1u2 for all (u1, u2) ∈ [0, 1]2

and consider ϕ : R2 → R : (u1, u2) 7→ 1ψ(u1,u2)<1 where ψ(u1, u2) =
√
u2

1 + u2
2, i.e. ϕ is

the indicator function of the circular segment of the unit circle on [0, 1]2. It then follows from
Q = Q = Π, that

Pϕ = Pϕ =

∫
[0,1]2

1√
u21+u22<1

du1du2 =
π

4
.
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Now, assume the dual optimizer for Dϕ is attained. Then it is of the form

f∗ := h− g + f1 + f2 =
k∑

n=1

αnΛun +
m∑
n=1

−βnΛvn + f1 + f2

and since f∗(u1, u2) ≤ 1ψ(u1,u2)<1 for all (u1, u2) ∈ [0, 1]2 and EΠ[f∗] = π
4 , we have that

f∗(u1, u2) = (h− g + f1 + f2)(u1, u2) = 1ψ(u1,u2)<1 λ-a.s. (3.13)

Moreover, we can assume w.l.o.g. that f1 ≡ f2 ≡ 0 λ-a.s. since it follows from equation (3.13)
that

(h− g)(u1, 1) = 1ψ(u1,1)<1 − f1(u1)− f2(1) = −f1(u1)− c λ-a.s.

where the last equality is due to 1ψ(u1,1)<1 = 0 λ-a.s. and f2(1) =: c. Now, by the same
argument it follows that

(h− g)(1, u2) = −f2(u2)− c′ λ-a.s.,

and thus we obtain

(h− g)(u1, ud) =

( k∑
n=1

αnΛun +

m∑
n=1

−βnΛvn

)
(u1, u2) = 1ψ(u1,u2)<1 λ-a.s.

This however, corresponds to a construction of the indicator function of the circular segment
by a finite number of rectangular indicator functions which contradicts the impossibility of the
squaring of the circle. ♦

4. A reduction scheme to compute bounds on the Value-at-Risk

The dual characterizations of Pϕ and Pϕ in Section 3 lend themselves to the development of a
scheme to compute VaR estimates, accounting for an upper and a lower bound on the copula of
the risks. In general, the dual problems do not admit closed form solutions except when Q =

Wd, Q = Md with homogeneous marginals F1 = · · · = Fd fulfilling additional constraints;
c.f. Wang and Wang (2011) and Puccetti and Rüschendorf (2013). We therefore develop in
this section a scheme that corresponds to an optimization over a tractable subset of admissible
functions for the duals Dϕ and Dϕ that produces narrow VaR bounds. Furthermore, we show
that the scheme produces asymptotically sharp bounds in the certainty limit, i.e. when Q and Q
converge to some copula C.

4.1. A reduction scheme for Dϕ

Consider the function ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for componentwise increasing ψ : Rd → R
and recall from (2.2) that our generalized Fréchet functional of interest reads

Pϕ := inf
{
EC [ϕ] : C ∈ Cd, Q ≤ C ≤ Q

}
,
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for quasi-copulas Q and Q, whereas the corresponding dual problem is given in (3.2) by

Dϕ = sup

{
Q(h)−Q(g−) +

d∑
i=1

Ei[fi] : fi ∈ L(Fi), i = 1, ..., d,

h, g ∈ R s.t. h− g− +
d∑
i=1

fi ≤ ϕ
}
.

In the following, we identify admissible functions for the dual Dϕ by (d+ 2)-tuples in the class

A :=

{
(h, g, f1, ..., fd) : fi ∈ L(Fi), i = 1, ..., d, h, g ∈ R s.t. h− g− +

d∑
i=1

fi ≤ ϕ
}

and for each admissible tuple the corresponding value of the objective function amounts to

Q(h)−Q(g−) +

d∑
i=1

Ei[fi].

Regarding the improved standard bounds in Embrechts et al. (2003) and Embrechts and Puccetti
(2006), we note that when the copula C of X is bounded from below by Q, i.e. Q ≤ C, then the
lower improved standard bound is given by

EC [1ψ(X)<s] ≥ sup
u1,...,ud−1∈R

Q
(
F1(u1), . . . , Fd−1(ud−1), F−d (ψ∗u−d(s))

)
= mQ,ψ(s),

where ψ∗u−d(s) = sup{u ∈ R : u1 + · · · + ud−1 + u < s}. The bound on the expectation
corresponds, in the case of continuous marginals, to the maximization of Q(h) over functions
h = Λu ∈ R with u ∈

{(
u1, ..., ud−1, ψ

∗
u−d

(s)
)

: (u1, ...ud−1) ∈ Rd−1
}

. Hence, mQ,ψ(s) can
be viewed as an optimization over a – rather small – subset of admissible elements in A, i.e.
tuples of the form (h, 0, ..., 0) ∈ A.

Leveraging this observation, we develop an optimization scheme over a larger subset of admis-
sible functions. To this end, let us first consider admissible (h, g, f1, ..., fd) with

(A1) f1, ..., fd ≡ 0,

(A2) h, g ∈ Rr, where

Rr :=

{ k∑
n=1

Λun : k ∈ N,u1, ...,uk ∈ Uψ(s)

}
,

and Uψ(s) = {(x1, ..., xd) ∈ Rd : ψ(x1, ..., xd) < s}. We thus obtain a set of admissible
functions given by

Ar :=
{

(h, g) : h, g ∈ Rr s.t. h− g− ≤ ϕ
}
.

12



Note, that – by abuse of terminology – Ar can be viewed as a subset of A, where elements
(h, g) ∈ Ar are identified with (h, g, 0, ..., 0) ∈ A for h, g ∈ Rr. The optimization over the
subset Ar remains however intractable due to the constraint h − g− ≤ ϕ. Moreover, since Rr
consists of sums of the form

∑k
n=1 Λun for k ∈ N, optimizing over Ar requires a truncation of

the variable k. An appropriate choice for such a truncation is not obvious. We therefore proceed
with the development of an unconstrained optimization scheme over a finite number of elements
in Uψ(s). An informal description and illustration of the scheme and the idea of the proof is
provided in Section 5. For notational ease, we introduce the notion of multisets (c.f. Definition
2 in Syropoulos (2001)).

Definition 4.1. Let B be some set. A multiset over B is a pair 〈B, f〉 where f : B → N and f is
called multiplicity function.

Remark 4.2. Multisets generalize the notion of a set so as to allow for finite but multiple occur-
rences of elements. By the conventional notion of a set we have that B := {1, 1, 2} = {1, 2}.
Using the notion multisets we refer to {1, 1, 2} as 〈B, f〉 with f(1) = 2 and f(2) = 1. The
multiplicity function f hence counts the number of occurences of each element of B. �

Our scheme is based on the following inclusion-exclusion principle for multisets.

Lemma 4.3 (Multiset inclusion-exclusion principle). LetB1, ..., Bk ⊂ Rd and define form =
1, ..., k the multisets

〈Bo, fo〉, Bo := {Bi1 ∩ · · · ∩Bim : 1 ≤ i1 < · · · < im ≤ k, m odd}
〈Be, fe〉, Be := {Bi1 ∩ · · · ∩Bim : 1 ≤ i1 < · · · < im ≤ k, m even}

(4.1)

where

fo(B) = |{(i1, ..., im) : 0 ≤ i1 < · · · < im ≤ k, m odd, B = Bi1 ∩ · · · ∩Bim}|,

for B ∈ Bo and fe is defined analogously. Then

1B1∪···∪Bk =
∑
B∈Bo

(
fo(B)− fe(B)

)+
1B −

∑
B∈Be

(
fe(B)− fo(B)

)+
1B.

Proof. Applying the classical inclusion-exclusion principle (see e.g. Loera, Hemmecke, and
Köppe (2013, Lemma 6.1.2)) to 1B1∪···∪Bk yields

1B1∪···∪Bk =
∑
B∈Bo

fo(B) 1B −
∑
B∈Be

fe(B) 1B.

Then, by rearranging the terms and using the fact that fe(B) = 0 when B ∈ Bo \ Be and
fo(B) = 0 when B ∈ Be \ Bo we obtain∑

B∈Bo
fo(B) 1B −

∑
B∈Be

fe(B)1B =
∑

B∈Bo\Be
fo(B) 1B −

∑
B∈Be\Bo

fe(B) 1B

+
∑

B∈Bo∩Be

(
fo(B)− fe(B)

)
1B

13



The statement then follows from(
fo(B)− fe(B)

)
=
(
fo(B)− fe(B)

)+ − (fe(B)− fo(B)
)+
.

which completes the proof. �

Remark 4.4. Lemma 4.3 establishes a non-redundant version of the classical inclusion-exclusion
principle. To illustrate this, consider B1, B2, B3 ∈ Rd such that B1 ∩ B2 ∩ B3 = B1 ∩ B2 and
B1 6= B2. Then applying the classical inclusion-exclusion principle to B1 ∪B2 ∪B3 yields

1B1∪B2∪B3 =1B1 + 1B2 + 1B3 − 1B1∩B2 − 1B1∩B3 − 1B2∩B3 + 1B1∩B2∩B3 ,

where the terms−1B1∩B2 and +1B1∩B2∩B3 cancel each other out. This superfluous subtraction
and addition of terms is avoided using the multisets 〈Bo, fo〉 and 〈Be, fe〉 as in Lemma 4.3. Due
to fo(B1 ∩B2) = fe(B1 ∩B2 ∩B3) we then obtain

1B1∪B2∪B3 = 1B1 + 1B2 + 1B3 − 1B1∩B3 − 1B2∩B3 ,

and thus a more parsimonious representation of 1B1∪B2∪B3 . This is a relevant improvement
of the usual inclusion-exclusion principle when two-sided bounds on the distribution are avail-
able. �

In the following we denote the componentwise minimum of vectors u1, ...,uk ∈ Rd by

min(u1, ...,uk) =
(

min
n=1,...,k

{un1}, ..., min
n=1,...,k

{und}
)
.

Moreover, we define the sets

Mo(u1, ...,uk) := {min(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k m odd}
Me(u1, ...,uk) := {min(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k m even}.

(4.2)

We refer to the multiplicity function

lo(u) := |{(i1, ..., im) : 0 ≤ i1 < · · · < im ≤ k, m odd, u = min(ui1 , ...,uim)}|

for u ∈Mo(u1, ...,uk) as the multiplicity function associated toMo(u1, ...,uk) and define the
multiplicity function associated toMe(u1, ...,uk), denoted by le, analogously. The normaliza-
tion of a vector u ∈ Rd by the marginals F1, ..., Fd is denoted by F (u) :=

(
F1(u1), ..., Fd(ud)

)
as well as the left-continuous version F−(u) :=

(
F−1 (u1), ..., F−d (ud)

)
. Finally, for εεε :=

(ε, ..., ε) ∈ Rd and u ∈ Rd we denote u + εεε = (u1 + ε, ..., ud + ε).

Lemma 4.5. Let k ∈ N and u1, ...,uk ∈ Uψ(s). Define the functions

h :=
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu; gεεε :=

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Λu+εεε,
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for lo and le being the multiplicity functions associated toMo(u1, ...,uk) andMe(u1, ...,uk)
respectively. Then for every εεε > 0 it holds that (h, gεεε) is admissible for the dual problem Dϕ,
i.e. (h, gεεε) ∈ Ar, and the value of the objective function is given by∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u + εεε)

)
.

Proof. It suffices to show that h − g−εεε ≤ ϕ for any εεε > 0. Recalling the notion of the sublevel
set

Uψ(s) =
{

(u1, ...ud) ∈ Rd : ψ(u1, ..., ud) < s
}
,

we have for every (u1, ..., ud) ∈ Uψ(s) that{
(x1, ..., xd) ∈ Rd : x1 ≤ u1, ..., xd ≤ ud

}
⊂
{

(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s
}
,

due to the fact that ψ is increasing in each coordinate.

Hence, for u1, ...,uk ∈ Uψ(s) and Bn :=
{

(x1, ..., xd) ∈ Rd : x1 ≤ un1 , ..., xd ≤ und
}

for
n = 1, ..., k we have that

k⋃
n=1

Bn ⊂
{

(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s
}
.

Now applying the inclusion-exclusion principle for multisets (Lemma 4.3) to
⋃k
n=1Bn we ob-

tain
1B1∪···∪Bk =

∑
B∈Bo

(
fo(B)− fe(B)

)+
1B −

∑
B∈Be

(
fe(B)− fo(B)

)+
1B,

where Bo and Be are as in (4.1) and fo, fe are the respective multiplicity functions. Moreover,
we have for

⋂m
l=1Bnl ∈ Bo ∪ Be that

m⋂
l=1

Bnl =

m⋂
l=1

{
(x1, ..., xd) ∈ Rd : x1 ≤ unl1 , ..., xd ≤ u

nl
d

}
=
{

(x1, ..., xd) ∈ Rd : x1 ≤ min(un1
1 , ..., unm1 ), ..., xd ≤ min(un1

d , ..., u
nm
d )
}

= {x ∈ Rd : x ≤ min(un1 , ...,unm)},

and thus 1Bn1∩···∩Bnm = Λmin(un1 ,...,unm ) for min(un1 , ...,unm) ∈ Mo ∪Me. Also, if B =⋂m
l=1Bnl ∈ Bo we have that

fo(B) = lo(min(un1 , ...,unm))

and fe(B) = le(min(un1 , ...,unm)) for B =
⋂m
l=1Bnl ∈ Be. In particular, it follows for any
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εεε > 0 that

h(x)− g−εεε (x) ≤ h(x)− g0(x)

≤
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu(x)−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Λu(x)

=
∑
B∈Bo

(
fo(B)− fe(B)

)+
1B(x)−

∑
B∈Be

(
fe(B)− fo(B)

)+
1B(x)

= 1B1∪···∪Bk(x) ≤ 1ψ(x)<s = ϕ(x)

for all x ∈ Rd and so (h, gεεε) ∈ Ar which completes the proof. �

We are now in the position to state the reduced optimization problem for Dϕ.

Theorem 4.6 (Reduced lower dual bound with two-sided dependence information). Let
ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s where ψ : Rd → R is increasing in each coordinate and let

Dϕ(k) := sup

{ ∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}
,

(4.3)

where lo and le are the canonical multiplicity functions associated toMo(u1, ...,uk) and
Me(u1, ...,uk) respectively. Then

Dϕ(k) ≤ Dϕ(k + 1) ≤ ... ≤ Dϕ.

Proof. We first show that Dϕ(k) ≤ Dϕ(k + 1) for k ∈ N. Therefore note that when uk =

uk+1 ∈ Uψ(s) it follows that

Mo(u1, ...,uk+1) ∪Me(u1, ...,uk+1) =Mo(u1, ...,uk) ∪Me(u1, ...,uk)

and defining

Mo| im−1 6=k,im=k+1 := {min(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k + 1, im−1 6= k,

im = k + 1, m odd}
Mo| im−1=k,im=k+1 := {min(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k + 1 im−1 = k,

im = k + 1, m odd},

it holds

Mo(u1, ...,uk+1) =Mo(u1, ...,uk) ∪Mo| im−1 6=k,im=k+1 ∪Mo| im−1=k,im=k+1.
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Moreover, noting thatMo| im−1 6=k,im=k+1 =Mo| im−1=k,im=k+1 and

Mo| im−1 6=k,im=k+1 = {min(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k + 1 im−1 = k,

im = k + 1, m even}
Mo| im−1=k,im=k+1 = {min(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k + 1 im−1 6= k,

im = k + 1, m even},

it follows, by straight forward computation, that

(lok+1(u)− lek+1(u))+ = (lok(u)− lek(u))+, for all u ∈Mo| im−1 6=k,im=k+1,

where loj , l
e
j are the canonical multiplicity functions associated toMo(u1, ...,uj) and

Me(u1, ...,uj) respectively for j = k, k+1. Applying a similar argument to the setMe(u1, ...,uk+1)
yields that∑
u∈Mo(u1,...,uk+1)

(
lok+1(u)− lek+1(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk+1)

(
lek+1(u)− lok+1(u)

)+
Q
(
F (u)

)
=

∑
u∈Mo(u1,...,uk)

(
lok(u)− lek(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
lek(u)− lok(u)

)+
Q
(
F (u)

)
.

This implies that the values of the objective functions coincide when uk = uk+1 and hence it
follows in particular that Dϕ(k) ≤ Dϕ(k + 1) for all k ∈ N.

Furthermore, the inequality Dϕ(k) ≤ Dϕ for all k ∈ N follows by an application of Lemma 4.5
to (h, gεεε) where εεε > 0 and

h =
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu; gεεε =

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Λu+εεε.

This yields that (h, gεεε) ∈ Ar and the respective value of the objective function is given by∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u + εεε)

)
.

In particular, we have for all k ∈ N that

sup

{ ∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u + εεε)

)
: εεε > 0; u1, ...,uk ∈ Uψ(s)

}
=: c∗ ≤ Dϕ.

(4.4)
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Moreover, it holds for all εεε > 0 that∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F−(u + εεε)

)
≤

∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)

as well as limεεε→0Q
(
F−(u + εεε)

)
= Q

(
F (u)

)
due to the Lipschitz continuity of Q. Hence

using (4.4) it follows that

c∗ = sup

{ ∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}
which completes the proof. �

Theorem 4.6 establishes a tractable optimization problem to compute a lower bound on Dϕ and
thus also on Pϕ. The optimization takes place over vectors in the sublevel set Uψ(s) and the
trade-off between the computational effort and the quality of the bound is moderated by the
variable k. For fixed k, Dϕ(k) amounts to a k · d dimensional optimization that can be solved
with standard optimization packages. Note, that most mathematical programming environments
also provide efficient built-in procedures to compute the multiplicity functions lo and lk2.

Remark 4.7. From Theorem 4.6 it is evident that the complexity of the maximization in (4.3)
can be further reduced by restricting the optimization in a suitable way to a smaller subset of
vectors in Uψ(s). This observation is key to the development of heuristics to compute bounds
in large dimensions. The development of heuristics which reduce complexity while still provid-
ing reasonably narrow bounds on the expectation in high dimensions is subject to our ongoing
research. �

4.2. A reduction scheme for Dϕ

We proceed with the development of a similar reduction scheme based on the dual Dϕ. Recall
from (3.3) that

Dϕ = inf

{
Q(h−)−Q(g) +

d∑
i=1

Ei[fi] : fi ∈ L(Fi), i = 1, ..., d,

h, g ∈ R s.t. h− − g +

d∑
i=1

fi ≥ ϕ
}
.

2The programming language MATLAB provides e.g. the functions nchoosek to generate the index set used in the
definition ofMo andMe and duplicate vectors can be removed using the matrix command unique
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We refer to the class of admissible functions for Dϕ by

A :=

{
(h, g, f1, ..., fd) : fi ∈ L(Fi), i = 1, ..., d, h, g ∈ R s.t. h− − g +

d∑
i=1

fi ≥ ϕ
}

and for each admissible function the corresponding value of the objective function is given by

Q(h−)−Q(g) +
d∑
i=1

Ei[fi].

Again, for our reduction scheme, we consider a subclass of admissible pairs (h, g) such that
h, g ∈ Rr, i.e.

Ar :=
{

(h, g) : h, g ∈ Rr s.t. h− − g ≥ ϕ
}

We now turn to the formal construction of admissible functions in Ar with an auxiliary version
of the multiset inclusion-exclusion principle for intersections.

Lemma 4.8. Let Bn
1 , ..., B

n
d ⊂ Rd for n = 1, ..., k and k ∈ N and define

G(i1,...,ik) := (B1
i1 ∩ · · · ∩B

k
ik

) for (i1, ..., ik) ∈ {1, ..., d}k, and B =

k⋂
n=1

d⋃
l=1

Bn
l .

Moreover, for an enumeration {i1, ..., idk} of the set {1, ..., d}k define the multisets

〈Go, fo〉, Go := {Gin1 ∩ · · · ∩Ginm : 1 ≤ n1 < · · · < nm ≤ k, m odd} (4.5)

〈Ge, fe〉, Ge := {Gin1 ∩ · · · ∩Ginm : 1 ≤ n1 < · · · < nm ≤ k, m even} (4.6)

where

fo(G) = |{(in1 , ..., inm) : 0 ≤ n1 < · · · < nm ≤ k, m odd, G = Gin1 ∩ · · · ∩Ginm}|

and fe is defined analogously. Then it holds that

1B =
∑
G∈Go

(
fo(G)− fe(G)

)+
1G −

∑
G∈Ge

(
fe(G)− fo(G)

)+
1G.

Proof. Since the union and the intersection of sets commute we have that B = Gi1 ∪ · · · ∪ Gikd
and hence the statement follows by a straight-forward application of Lemma 4.3. �

We are now ready to establish an explicit construction of admissible pairs (h, g) ∈ Ar. To this
end, let us denote for u1, ...,uk ∈ Rd and an enumeration {i1, ..., idk} of {1, ..., d}k

Uin := min(pri1(u1), ...,prik(uk)) for (i1, ..., ik) = in, n = 1, ..., dk,
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where pri(u) := (∞, ...,∞, ui,∞, ...,∞) for i ∈ {1, ..., d}. Moreover, we define

Wo(u1, ...,uk) := {min(Uin1 , ...,Uinm ) : 1 ≤ n1 < · · · < nm ≤ k m odd}
=Mo(Ui1 , ...,Uidk)

We(u1, ...,uk) := {min(Uin1 , ...,Uinm ) : 1 ≤ n1 < · · · < nm ≤ k m even}
=Me(Ui1 , ...,Uidk).

(4.7)

Finally, we write u < v for vectors u,v ∈ Rd such that ui < vi for i = 1, ..., d.

Lemma 4.9. Let k ∈ N and u1, ...,uk ∈ Ucψ(s). Define the functions

hεεε :=
∑

u∈Wo(u1,...,uk)

Λu−εεε; g :=
∑

u∈Wo(u1,...,uk)

Λu,

for lo and le being the multiplicity functions associated to Wo(u1, ...,uk) and We(u1, ...,uk)
respectively. Then for every εεε > 0 it holds that (hεεε, g) is admissible for the dual problem Dϕ,
i.e. (hεεε, g) ∈ Ar, and the value of the objective function is given by∑
u∈Wo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F−(u + εεε)

)
−

∑
u∈We(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
.

Proof. We need to show that h−εεε − g ≥ ϕ. Note, that for every (u1, ..., ud) ∈ Ucψ(s) we have
that{

(x1, ..., xd) ∈ Rd : x1 ≥ u1, ..., xd ≥ ud
}c ⊃ {(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s

}
,

due to the fact that ψ is increasing in each coordinate. Hence, for u1, ...,uk ∈ Ucψ(s) and
Bn :=

{
(x1, ..., xd) ∈ Rd : x1 ≥ un1 , ..., xd ≥ und

}
for n = 1, ..., k it follows that

k⋂
n=1

Bc
n ⊃

{
(x1, ..., xd) ∈ Rd : ψ(x1, · · · , xd) < s

}
. (4.8)

Moreover, for n = 1, ..., k we have that

Bc
n =

d⋃
i=1

{
(x1, ..., xd) ∈ Rd : x < pri(u

n)
}
,

which follows from{
(x1, ..., xd) ∈ Rd : x1 ≥ u1, ..., xd ≥ ud

}c
=
(
[u1,∞)× · · · × [ud,∞)

)c
=

d⋃
i=1

R× · · · × R× (−∞, ui)× R× · · · × R

=
d⋃
i=1

{
(x1, ..., xd) ∈ Rd : x < pr(un)i

}
.
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Hence, we obtain

k⋂
n=1

Bc
n =

k⋂
n=1

d⋃
i=1

{
(x1, ..., xd) ∈ Rd : x < pri(u

n)
}
. (4.9)

Now, defining

Hn
i :=

{
(x1, ..., xd) ∈ Rd : x < pr(un)i)

}
, for i = 1, ..., d, n = 1, ..., k and

G(i1,...,ik) := H1
i1 ∩ · · · ∩H

k
ik
, (i1, ..., ik) ∈ {1, ..., d}k,

and applying Lemma 4.8 to equation (4.9) we arrive at

1Bc1∩···∩Bck =
∑
G∈Go

(
fo(G)− fe(G)

)+
1G −

∑
G∈Ge

(
fe(G)− fo(G)

)+
1G,

where Go,Ge and fo, fe are defined in 4.5. Finally, note that for 1 ≤ n1 ≤ · · · ≤ nm ≤ dk

G(i1,...,ik) =
{

(x1, ..., xd) ∈ Rd : x < min
(

pri1(u1), ...,prik(uk)
)}
,

so that with the definition of Ui for i ∈ {1, ..., d}k it follows for every 1 ≤ n1, ..., nm ≤ dk that

m⋂
l=1

Ginl =
m⋂
l=1

{
(x1, ..., xd) ∈ Rd : x < Uinl

}
=
{

(x1, ..., xd) ∈ Rd : x < min(Uin1 , ...,Uinm )
}
,

and thus 1Gin1∩···∩Ginm = Λ−min(Uin1 ,...,Uinm ) for min(Uin1 , ...,Uinm ) ∈ Wo(u1, ...,uk) ∪
We(u1, ...,uk). In particular, using equation (4.8) and the fact that

lo(min(Uin1 , ...,Uinm )) = fo(G)

for G =
⋂m
l=1Ginl ∈ Go and vice versa for le, we conclude that

h−εεε (x)− g(x) ≥ h−0 (x)− g−(x) = 1Bc1∩···∩Bck(x) ≥ 1ψ(x)<s = ϕ(x)

for all x ∈ Rd, which completes the proof. �

We are now in the position to establish our reduction scheme based on Dϕ. The proof of the
following theorem is analogous to the proof of Theorem 4.6 and therefore omitted.

Theorem 4.10. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s where ψ : Rd → R is increasing in each
coordinate and let

Dϕ(k) := inf

{ ∑
u∈Wo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Wo(u1,...,uk)

(
le(u)− lo(u)

)+
Q
(
F (u)

)
: u1, ...,uk ∈ Ucψ(s)

}
,

(4.10)
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where lo and le are the canonical multiplicity functions associated toWo(u1, ...,uk) andWe(u1, ...,uk)
respectively. Then

Dϕ(k) ≥ Dϕ(k + 1) ≥ ... ≥ Dϕ.

Remark 4.11. Note that since ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s is not upper semicontinuous, strong
duality as in Theorem 3.2 is not guaranteed. Nevertheless, Dϕ(k) is an upper bound on the
generalized Fréchet functional Pϕ. �

4.3. Sharp asymptotic bounds in the certainty limit

In general, the schemes Dϕ(k) and Dϕ(k) do not approximate the dual bounds Dϕ and Dϕ

respectively for k → ∞. In the homogeneous, complete dependence uncertainty case, i.e.
F1 = · · · = Fd = F and Q = Wd and Q = Md, Puccetti and Rüschendorf (2013) derived an
explicit solution to the dual Dϕ under additional requirements on the marginals. They showed,
that the optimizer is of the form d · f for a piecewise linear function f ∈ L(F ) which cannot be
represented by the linear combinations inR.

The counterpart to the situation of complete dependence uncertainty is the case of certainty, i.e.
the limit when Q and Q converge from below and above respectively to a copula C. A natural
feature of any bound on the expectation of ϕ using the information from Q and Q should be
that it converges to EC [ϕ] as Q,Q → C. The following theorem shows that for k → ∞ the
reduced boundsDϕ(k) andDϕ(k) indeed converge to the desired object in the certainty limit. In
order to make the dependence on the copula bounds explicit, we define for k ∈ N the functions[
Dϕ(k)

]
(Q,Q) := Dϕ(k) and

[
Dϕ(k)

]
(Q,Q) := Dϕ(k) where Dϕ(k), Dϕ(k) depend on the

lower bound Q and the upper bound Q.

Theorem 4.12. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each co-
ordinate. Then it holds for any copula C and sequences of quasi-copulas

(
Qj
)
j=1,2...

and(
Q
j)
j=1,2...

with Qj ≤ C ≤ Qj for all j ∈ N and Qj , Qj →j C pointwise, that

lim
j

sup
k

[
Dϕ(k)

]
(Qj , Q

j
) = PC(ψ(X1, ..., Xd) < s),

when ψ is upper semicontinuous and

lim
j

inf
k

[
Dϕ(k)

]
(Qj , Q

j
) = PC(ψ(X1, ..., Xd) < s),

when ψ is lower semicontinuous.

Proof. We show that

lim
j

sup
k

[
Dϕ(k)

]
(Qj , Q

j
) = PC(ψ(X1, ..., Xd) < s).
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The proof for Dϕ(k) follows along similar lines.

First, note that for each ε > 0 there exists a sequence u1, ...,uk ∈ Uψ(s), such that for

hk :=
∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Λu; g−k :=

∑
u∈Me(u1,...,uk)

(
le(u)−lo(u)

)+
Λ−u ,

whereMo(u1, ...,uk) andMe(u1, ...,uk) are the multisets defined in (4.2), we have that∣∣PC(ψ(X1, ..., Xd) < s)− EC
[
hk − g−k

]∣∣ < ε

2
(4.11)

with PC(ψ(X1, ..., Xd) < s) = EC [ϕ]. To verify the existence of such a sequence one can
choosem ∈ N such that PC

(
Uψ(s)

)
−PC

(
Uψ(s)∩ [−m,m]d

)
< ε

4 and (un)n=1,...,k can be any
discretization of the set Uψ(s) ∩ [−m,m]d, whose mesh converges to zero for k →∞. Since ψ
is upper semicontinuous, Uψ(s) is an open set and we can chose k such that∣∣PC(Uψ(s) ∩ [−m,m]d

)
− EC

[
hk − g−k

]∣∣ < ε

4
.

It follows that∣∣PC(ψ(X1, ..., Xd) < s)− PC
(
Uψ(s) ∩ [−m,m]d

)
+ PC

(
Uψ(s) ∩ [−m,m]d

)
− EC

[
hk − g−k

]∣∣
≤
∣∣PC(ψ(X1, ..., Xd) < s)− PC

(
Uψ(s) ∩ [−m,m]d

)∣∣
+
∣∣PC(Uψ(s) ∩ [−m,m]d

)
− EC

[
hk − g−k

]∣∣ < ε

4
+
ε

4
=
ε

2
.

Moreover, from the fact that u1, ...,uk ∈ Uψ(s) and the proof of Lemma 4.5 it follows that
hk − g−k ≤ ϕ for all k ∈ N, and the corresponding value of the objective function is given by∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Q
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)−lo(u)

)+
Q
(
F−(u)

)
≤
[
Dϕ(k)

]
(Qj , Q

j
).

(4.12)

We proceed by showing that the convergence

lim
j

sup
k

[
Dϕ(k)

]
(Qj , Q

j
) = PC(ψ(X1, ..., Xd) < s)

holds. To this end, fix an arbitrary ε > 0 and a corresponding sequence u1, ...,uk ∈ Uψ(s) as in
(4.11). Moreover, the fact that quasi-copulas are Lipschitz continuous yields, by an application
of the Arzelà-Ascoli Theorem, that Qj →j C and Qj →j C uniformly. Thus, for

p :=
∑

u∈Mou1,...,uk)

lo(u) +
∑

u∈Me(u1,...,uk)

le(u)
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we can choose an j ∈ N so that

‖C −Qj‖∞ + ‖C −Qj‖∞ <
ε

2p
. (4.13)

With this choice of k and j we arrive at∣∣PC(ψ(X1, ..., Xd) < s)−
[
Dϕ(k)

]
(Qj , Q

j
)
∣∣

≤
∣∣PC(ψ(X1, ..., Xd) < s)− EC

[
hk − g−k

]
+ EC

[
hk − g−k

]
−
[
Dϕ(k)

]
(Qj , Q

j
)
∣∣

≤
∣∣PC(ψ(X1, ..., Xd) < s)− EC

[
hk − g−k

]∣∣
+
∣∣∣EC[hk − g−k ]− ( ∑

u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+
Qj
(
F (u)

)
−

∑
u∈Me(u1,...,uk)

(
le(u)− lo(u)

)+
Q
j(
F−(u)

))∣∣∣
<
ε

2
+
∣∣∣ ∑
u∈Mo(u1,...,uk)

(
lo(u)− le(u)

)+(
C(F (u))−Qj(F (u))

)
−

∑
u∈Me(u1,...,uk)

(
lo(u)− le(u)

)+(
C(F−(u))−Qj(F−(u))

)∣∣∣
<
ε

2
+ p
(
‖C −Qj‖∞ + ‖C −Qj‖∞

)
<
ε

2
+ p

ε

2p
= ε.

The second inequality is a consequence of equation (4.12) and the fact that EC [hk − g−k ] ≥[
Dϕ(k)

]
(Qj , Q

j
). The third inequality follows from equation (4.11) and last inequality holds

due to equation (4.13).

Finally, since ε was arbitrary we have shown that

lim
j

sup
k

[
Dϕ(k)

]
(Qj , Q

j
) = PC(ψ(X1, ..., Xd) < s)

holds and hence the proof is complete. �

5. Illustrations and numerical examples

In this section we provide an informal description of the reduction schemes in Sections 4.1
and 4.2 in order to illustrate the underlying idea. Furthermore, we provide several numerical
examples comparing the performance of our reduction scheme to the improved standard bounds
given e.g. in Embrechts et al. (2003).

A graphical illustration of Dϕ(k)

For a graphical illustration of the schemeDϕ(k) let us consider ψ(x1, x2) = x1 +x2 and F1, F2

uniform distributions on [0, 1]. Due to assumption (A1) and (A2), we consider admissible
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functions which are sums of indicator functions of rectangular regions in Uψ(s), as in

h− g =
k∑

n=1

Λuk −
m∑
n=1

Λvn ≤ 1x1+x2<s

for u1, ...,uk,v1, ...,vm ∈ Uψ(s) and k,m ∈ N.The corresponding value of the objective
function to be maximized is given by Q(h) − Q(g−) for each pair h, g ∈ Rr. Note that due to
the continuity of the marginal distributions it holds that Q(g−) = Q(g). Figure 1 illustrates the
structure of admissible functions of this type that we shall consider.

Figure 1: Constrained set of admissible functions

The gray triangular region in Figure 1, corresponds to the area

Uψ(s) = {(u1, u2) ∈ [0, 1]2 : u1 + u2 < s}
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for s = 0.8. The upper LHS simply depicts the region Uψ(s). The green area in the upper RHS
figure corresponds to the rectangle [0, 0.4]2 ⊂ Uψ(s) as induced by the function h = Λ(0.4,0.4),
i.e. Λ(0.4,0.4)(u1, u2) = ϕ(u1, u2) = 1 for all (u1, u2) ∈ [0, 0.4]2. The value of the objective
function h is given by

Q(Λ(0.4,0.4)) = Q(F1(0.4), F2(0.4)) = Q(0.4, 0.4).

Similarly, the lower LHS represents the rectangles [0, 0.2]×[0, 0.6] and [0, 0.6]×[0, 0.2] induced
by Λ(0.2,0.6) and Λ(0.6,0.2). The red area corresponds to [0, 0.2]×[0, 0.2] where an overlap occurs
due to

h(u) = Λ(0.2,0.6)(u) + Λ(0.6,0.2)(u) = 2 > ϕ(u) for all u ∈ [0, 0.2]× [0, 0.2].

This overlap is then compensated by applying the inclusion-exclusion principle and subtracting
g = Λ(0.2,0.2), yielding the admissible function

h− g = Λ(0.2,0.6) + Λ(0.6,0.2) − Λ(0.2,0.2).

The respective value of the objective function is equal toQ(0.2, 0.6)+Q(0.6, 0.2)−Q(0.2, 0.2).
Finally, the lower RHS represents the function constructed by

h = Λ(0.2,0.6) + Λ(0.45,0.2) + Λ(0.6,0.05)

and an appropriate compensation of the overlap by g = Λ(0.2,0.2)+Λ(0.45,0.05) so that (h, g) ∈ A
and the corresponding value of the objective function is equal to

Q(0.2, 0.6) +Q(0.45, 0.2) +Q(0.6, 0.05)−Q(0.2, 0.2)−Q(0.45, 0.05).

Note, that the construction of (h, g) depends entirely on the choice u1, ...,uk ∈ Rd. In particular,
maximizing over all (h, g) that are constructed in this way amounts to an optimization over
u1, ...,uk ∈ Uψ(s).

Lemma 4.5 formalizes this construction of admissible (h, g) whereas Theorem 4.6 establishes
the optimization over such (h, g) yielding bounds on Dϕ.

A graphical illustration of Dϕ(k)

Using again ψ(x1, x2) = x1 + x2 and F1, F2 uniform distributions on [0, 1] let us illustrate the
idea of the scheme Dϕ(k). This time, (h, g) with h, g ∈ Rr are admissible when

h− g =

k∑
n=1

Λuk −
m∑
n=1

Λvn ≥ 1x1+x2<s.
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Figure 2: Constrained set of admissible functions

Figure 1 illustrates two possible constructions of admissible pairs (h, g). Again the green area
corresponds to {x ∈ [0, 1]2 : h(x) = 1} whereas the red shaded area marks overlaps (h(x) > 1)
which we compensate using the inclusion exclusion principle. The LHS corresponds to

h− g = Λ(0.8,0.4) + Λ(0.4,0.8) − Λ(0.4,0.4) ∈ A

and the respective value of the objective function amounts toQ(0.8, 0.4)+Q(0.4, 0.8)−Q(0.4, 0.4).
The RHS represents the admissible function given by h− g for

h = Λ(0.8,0.2) + Λ(0.2,0.8) + Λ(0.6,0.6); g = Λ(0.2,0.6) + Λ(0.6,0.2)

with corresponding value of the objective function

Q(0.8, 0.2) +Q(0.2, 0.8)−Q(0.6, 0.6)−Q(0.2, 0.6)−Q(0.6, 0.2).

Note, that in contrast to Dϕ(k) it does not suffice to consider h =
∑k

n=1 u
k for u1, ...,uk ∈

Uψ(s). A construction of admissible functions in the spirit of Section 4.1 is however possible if
we formulate it in terms of indicator functions of upper level sets of the form

{(x1, x2) : x1 ≥ u1, x2 ≥ u2},

for u in the complement Ucψ(s). Returning to the LHS of Figure 2 we then note that the region

{x ∈ R2 : Λ(0.8,0.4)(x) + Λ(0.4,0.8)(x)− Λ(0.4,0.4)(x) = 1}

can be expressed in terms of complements of upper level sets via(
[0.4, 1]× [0.4, 1]

)c ∩ ([0, 1]× [0.8, 1]
)c ∩ ([0.8, 1]× [0, 1]

)c
,
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and a similar representation holds for the RHS. Moreover, we can represent the complements
via (

[u1, 1]× [u2, 1]
)c

= ([0, u1]× [0, 1]) ∪ ([0, 1]× [0, u2]),

where the right-hand side of the equation is the union of sets that can be evaluated by means
of the quasi-copulas Q,Q. This construction is made rigorous in Lemma 4.9 and the resulting
optimization is provided in Theorem 4.10.

The following numerical examples show, how the reduction schemes can be applied in order to
account for copula information in the computation of VaR estimates. Our results are compared
to the improved standard bounds using the same information.

Example 5.1. Consider an R5-valued risk vector (X1, ..., X5) with copula C and Pareto2-mar-
ginals. We assume that the copula C lies in the vicinity of a reference copula C∗ as measured
by the Kolmogorov–Smirnov distance, i.e.

‖C − C∗‖∞ ≤ δ

for some δ > 0. This situation typically occurs when estimating copulas from empirical data.
In this case, one can think of C∗ as being the empirical copula obtained from the available data,
while C is an estimator from a parametric family of copulas so as to minimize some distance to
C∗. In this case δ corresponds the residual error resulting from the estimation procedure.

Theorem 5.4 in Lux and Papapantoleon (2016) establishes pointwise upper and lower bounds
on the set of copulas in the δ-neighborhood of C∗, for a large class of distances satisfying some
monotonicity requirements. In particular, using the explicit representation of these bounds given
in Lux and Papapantoleon (2016, Lemma 5.7) we obtain that

Q‖·‖∞,δ(u) := max{C∗(u)− δ,W5(u)} ≤ C(u)

≤ min{C∗(u) + δ,M5(u)} =: Q
‖·‖∞,δ

(u),
(5.1)

for all u ∈ I5. Furthermore, in order to compare our results to the improved standard bounds on
VaR, we assume that the survival copula Ĉ is such that

‖Ĉ − Ĉ∗‖∞ ≤ δ.

Hence, from Lux and Papapantoleon (2016, Corollary 5.8) we obtain similar bounds Q̂
‖·‖∞,δ

and Q̂
‖·‖∞,δ

on the survival copula of (X1, ..., X5) such that

Q̂
‖·‖∞,δ ≤ Ĉ ≤ Q̂

‖·‖∞,δ
. (5.2)

We then translate the bounds in (5.1) and the corresponding bounds on the survival copula into
estimates on the VaR of the sum X1 + · · · + X5 by means the reduction schemes presented
in Section 4 and Appendix A. These estimates are compared to the improved standard bounds,
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which are given by the inverses of the following bounds on the distribution function of X1 +
· · ·+X5, along the variable s:

P(X1 + · · ·+X5 < s) ≥ sup
x1+···+x5<s

Q‖·‖∞,δ
(
F1(x1), ..., F5(x5)

)
P(X1 + · · ·+X5 < s) ≤ inf

x1+···+x5≥s
1− Q̂

‖·‖∞,δ(
F1(x1), ..., F5(x5)

)
.

The following tables show the improved standard bounds usingQ‖·‖∞,δ and Q̂
‖·‖∞,δ for different

levels of the confidence threshold α, as well as the bounds obtained by inverting Dϕ(k), D̂ϕ(k)

and Dϕ(k), D̂ϕ(k), for k = 6 and ϕ(x1, ..., x5) = 1x1+···x5<s, along the variable s. We thus
obtain two lower and two upper VaR estimates via the reduction schemes for each α, of which the
largest lower bound and the lowest upper bound respectively are reported in each of the tables.
For the computation we assume that the reference copula C∗ is Gaussian with equicorrelation
matrix and correlation coefficient ρ. The bounds consistently improve for increasing k = 1, ..., 6
while for k ≥ 7 no further improvement was obtained. For the sake of legibility, the results
are rounded to one decimal place. Table 1 shows the VaR estimates for different levels of the
correlation of the reference copula and δ = 0.0001 and different thresholds for the distance δ.
Note, that in order to derive informative bounds on the tail of the distribution of the sum the
seemingly small choice of the threshold δ is appropriate.

δ = 0.0001

ρ = −0.1 ρ = 0.4 ρ = 0.8

α
i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

0.95 3.5 : 44.8 8.8 : 24.0 63% 3.7 : 41.2 8.0 : 26.7 50% 7.8 : 31.3 9.6 : 24.8 35%
0.99 9.0 : 106.3 19.9 : 44.8 74% 9.1 : 102.7 19.0 : 62.5 54% 17.8 : 82.0 21.5 : 64.5 33%
0.995 13.3 : 152.1 27.0 : 60.8 76% 13.3 : 149.4 25.8 : 90.5 52% 24.3 : 119.0 28.5 : 91.6 33%

δ = 0.0005

0.95 3.4 : 45.0 8.2 : 24.8 60% 3.6 : 41.2 7.2 : 28.1 44% 7.8 : 31.4 9.2 : 26.2 28%
0.99 9.0 : 106.2 15.9 : 56.7 58% 9.0 : 105.3 14.9 : 80.8 32% 17.4 : 84.9 18.6 : 82.2 6%
0.995 13.3 : 153.0 19.0 : 90.0 49% 13.3 : 153.0 18.0 : 153.0 3% 23.4 : 126.0 22.8 : 125.0 0%

Table 1: Improved standard bounds on VaR of X1 + · · · + X5 and VaR estimates via reduction
schemes for different correlation parameters ρ and distance thresholds δ.

For δ = 0.0001, the improvement obtained by including two-sided information via the reduction
scheme ranges from 33% in the case of high positive correlation to 76% in the case of weak
negative correlation. Overall, the improvement is more pronounced when weak or negative
correlation is prescribed. Note, that in all cases the bounds improve the sharp unconstrained
bounds, i.e. the sharp VaR bounds when no dependence information at all is available, which
can be approximated by means of the Rearrangement Algorithm; see Embrechts et al. (2013).
The unconstrained bounds amount to 3.2–39.6 for α = 0.95, 4–94.8 when α = 0.99 and 4.3–
136 for α = 0.995. For δ = 0.0005, the improvement is – as expected – considerably weaker,
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especially when the correlation or the confidence threshold α are high and no improvement over
the standard bounds is obtained for ρ = 0.8 and α = 0.995. ♦

Remark 5.2. Example 5.1 illustrates how the methods developed in Section 4 can be used to
evaluate model risk in ways that comply with the five fundamental criteria for coherent risk
aggregation stated in Cambou and Filipović (2015). For instance, an institution may consider
the reference copula C∗ or the corresponding survival copula as internal dependence models
for their risk exposures and penalties apply when the internal model yields VaR estimates that
are too far from the robust bounds obtained via the reduction schemes. Then it holds that our
method

1. leads to lower penalties for conservative models, i.e. low penalty is applied to a reference
copula (internal model) that yields an aggregated VaR close to the robust (worst-case)
estimate.

2. By choosing a suitable distance (not necessarily Komogorov–Smirnov) focus can be placed
on tail dependence. Note, that Lux and Papapantoleon (2016, Lemma 5.7) provides im-
proved Fréchet–Hoeffding bounds for a large class of distances.

3. The distance to the internal model can be controlled easily.

4. Capital requirements derived from the robust VaR bounds are in turn robust to model risk
as long as the underlying assumptions are met.

5. The bounds are tractable and numerically computable. �

Example 5.3. We now consider an R4-valued risk vector (X1, X2, X3, X4) with copula C and
Pareto2-marginals. Moreover, we assume that

CΣ ≤ C ≤ CΣ

where CΣ and CΣ denote 4-dimensional Gaussian copulas with correlation matrices Σ =
(ρ
ij

)i,j=1,...,4 and Σ = (ρij)i,j=1,...,4 respectively. Also, we assume that ρ
ij
≤ ρij for i, j =

1, ..., 4, which by Slepian’s Lemma guarantees non-degeneracy in the sense that CΣ ≤ CΣ; c.f.
Gupta, Eaton, Olkin, Perlman, Savage, and Sobel (1972, Theorem 5.1).

This corresponds to a situation of correlation uncertainty which occurs naturally in applications.
Whenever correlation is estimated from data one obtains, rather than an exact estimate, a confi-
dence interval for the pairwise correlations (ρ

ij
, ρij) ⊂ [−1, 1], in which the parameters lie with

high probability. Moreover, we assume that bounds on the survival function Ĉ are given by the
respective survival functions of CΣ and CΣ, i.e.

CΣ(1− ·) ≤ Ĉ ≤ CΣ(1− ·).

We then relate the bounds on C and Ĉ respectively to the VaR of X1 + · · · + X4, using our
reduction schemes and again we compare the results to the improved standard bounds obtained
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from CΣ and CΣ(1 − ·). Table 2 shows the results for different confidence levels α, assuming
that Σ and Σ are equicorrelation matrices with correlation parameters ρ and ρ respectively. The

VaR estimates were obtained by inverting Dϕ(k) and Dϕ(k) as well as D̂ϕ(k) and D̂ϕ(k) for
ϕ(x1, ..., x4) = 1x1+···+x4<s and k = 5 along the variable s. Thus, we obtain two upper
and two lower VaR estimates of which the largest lower bound and the lowest upper bound are
reported. The bounds consistently improve for increasing k = 1, ..., 5 while for k ≥ 6 no further
improvement was obtained.. For the sake of legibility the results are rounded to full integers.

ρ = −0.1, ρ = 0.2 ρ = 0.3, ρ = 0.5

α
i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

0.95 3 : 32 8 : 26 38 1 : 30 7 : 29 24
0.99 9 : 74 20 : 52 51 2 : 74 18 : 63 37
0.995 13 : 104 26 : 70 52 3 : 104 25 : 86 40

Table 2: Improved standard bounds on VaR of X1 + · · ·+X4 and VaR estimates computed via
reduction schemes using CΣ and CΣ.

The improvement of the spread ranges from 24% in the case of moderate positive correlation up
to 52% in the case of low correlation. Moreover, the improvement is particularly pronounced
for high levels of the confidence threshold α. Moreover, all bounds are narrower than the un-
constrained VaR bounds without dependence information which amount to 3–31 for α = 0.95,
3–74 for α = 0.99 and 3–109 when α = 0.995. ♦

Example 5.4. In this example we consider a situation where the joint laws of lower dimensional
subgroups of the risk vector are available. This relates to the results and applications considered
in Bignozzi et al. (2015), Puccetti, Rüschendorf, Small, and Vanduffel (2017) and Rüschendorf
and Witting (2017). Specifically, we consider a 16-dimensional homogeneous risk vector X =
(X1, ..., X16) having log-normally distributed marginals F = F1, ..., F16 with mean µ = 0 and
standard deviation σ = 1. We decompose the risk vector intom smaller subgroups by means of a
partition I1, ..., Im of the index set {1, ..., 16}, i.e.

⋃m
j=1 Ij = {1, ..., 16}. Define the subvectors

of X by XIj := (Xi)i∈Ij for j = 1, ...,m. We assume that the joint law of each subvector is
given. Similar to Bignozzi et al. (2015), we suppose that the subgroups are comonotonic so that
their copula is equal to the upper Fréchet-Hoeffding bound, hence

P
( ⋂
i∈Ij

{Xi ≤ xi}
)

= min
i∈Ij
{F (xi)}.

Due to the homogeneity of the marginals and the assumption of comonotonicity within the
groups, we obtain an explicit distribution for the sum

∑
i∈Ij Xi =: X ′Ij , i.e.

P
(∑
i∈Ij

Xi ≤ x
)

= F
( x

|Ij |

)
=: F ′j(x) for all x ∈ R, j = 1, ...,m.
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Moreover, we assume that model ambiguity is prevalent in form of an unknown copula between
the individual subgroups. Along with the above argument this is equivalent to the copula Cm of
(X ′I1 , ..., X

′
Im

) being unknown. Specifically, we assume that Cm and the corresponding survival
copula Ĉm lie between two Frank copulas, i.e.

Cθ1 ≤ Cm ≤ Cθ2 and Ĉθ1 ≤ Ĉm ≤ Ĉθ2 ,

for θ1 < θ2, where Cθ denotes the Frank copula with parameter θ. Recall that the Frank copula
is positively ordered w.r.t. θ and thus Cθ1 ≤ Cθ2 which guarantees that the problem is not
degenerate.

In practice, this setting is suitable to aggregate e.g. the total risk of a financial institution consist-
ing of multiple branches, some of which are strongly positively dependent while the dependence
between several groups of branches is unknown; for details see also Bignozzi et al. (2015).

We then analyse the effect of different groups sizes on the improved VaR bounds for the aggre-
gation X1 + · · ·+X16. To this end, we consider three different decompositions, each consisting
of a partition of the index set {1, ..., 16} into groups of equal size with m = 2, 4, 8 constituents.
We then use the available information on the subgroups as well as on the copula Cm and Ĉm to
compute upper and lower bounds on the VaR of the sum X1 + · · ·X16, i.e. bounds on the dis-
tribution function P

(∑16
i=1Xi ≤ x

)
= P

(∑m
j=1X

′
Ij
≤ x

)
. Therefore we use our reduction

schemes in conjunction with the upper and lower copula bounds Cθ1 , Cθ2 and Ĉθ1 , Ĉθ2 as well
as the marginals F ′j for j = 1, ...,m. The following table shows the improved standard bounds
for different levels of the confidence threshold α along with the tightest bounds obtained by
inverting Dϕ(k), D̂ϕ(k) and Dϕ(k), D̂ϕ(k), for k = m + 1 and ϕ(x1, ..., xm) = 1x1+···xm<s,
along the variable s. For the computation we assume that the parameters of the Frank copula
amount to θ1 = 0 which is equivalent to the assumption of independence between the groups
and θ2 = 1 which corresponds to weak positive dependence between the subgroups. For the
sake of legibility, the results are rounded to integers.

m = 8 m = 4 m = 2

α
i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

i. standard
(low : up)

scheme
(low : up)

impr.
%

0.95 42 : 113 59 : 86 62% 22 : 150 39 : 112 43% 12 : 193 28 : 150 33%
0.99 82 : 210 108 : 147 70% 42 : 264 67 : 175 51% 21 : 329 42 : 218 43%
0.995 105 : 266 135 : 180 72% 53 : 329 83 : 206 55% 43 : 403 51 : 252 44%

Table 3: Improved standard bounds and VaR estimates via reduction schemes forX1 + · · ·+X16

given distributions of subgroups.

We identify a considerable improvement, ranging from 33% in the case of 8 groups consisting
of m = 2 risks and α = 0.95 to 72% for 2 groups with m = 8 risk factors. Note, that
the improvement deteriorates as the number of subgroups increases. This implies that, with
this configuration, a decline in the number of subgroups and the associated decrease in model
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uncertainty results in narrower risk bounds. Except for the case α = 0.95 and m = 2, all of the
bounds computed via our reduction scheme improve the unconstrained bounds in the marginals-
only case which amount to 20–136 when α = 0.95, 24–244 for α = 0.99 and 25–303 for
α = 0.995. ♦
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A. Using information on the survival copula

In this section we show that the reduction schemes in Section 4.1 and 4.2 can be applied similarly
when information on the survival copula is provided. Specifically, we assume that the copula of
X is such that Q̂ ≤ Ĉ ≤ Q̂ where Ĉ is the survival-function of C and Q̂, Q̂ are quasi-survival
functions. We hence consider the generalized Fréchet functionals

P̂ϕ := inf
{
EC [ϕ] : C ∈ Cd, Q̂ ≤ Ĉ ≤ Q̂

}
, (A.1)

P̂ϕ := sup
{
EC [ϕ] : C ∈ Cd, Q̂ ≤ Ĉ ≤ Q̂

}
. (A.2)

Note that due to

Ĉ(F1(u1), ..., Fd(ud)) = P(X1 > u1, ..., Xd > ud) = P(−X1 < −u1, ...,−Xd < −ud),

for all u ∈ Id, the condition Q̂ ≤ Ĉ ≤ Q̂ is equivalent to Q ≤ C−X ≤ Q, where Q(u) :=

Q̂(1 − u), Q(u) := Q̂(1 − u) and C−X is the copula of −X. In particular, since Q and Q are
quasi-copulas it follows from our duality theorem 3.2 and a transformation of variables that the
sharp dual bound corresponding to P̂ϕ is given by

P̂ϕ = D̂ϕ = sup

{
Q̂(h)− Q̂(g−) +

d∑
i=1

Ei[fi] : (h, g, f1, ..., fd) ∈ Â
}
, (A.3)

where

Â :=

{
(h, g, f1, ..., fd) : fi ∈ L(Fi), i = 1, ..., d, h, g ∈ R̂ s.t. h− g− +

d∑
i=1

fi ≤ ϕ
}
.

and

R̂ :=

{
h =

k∑
n=1

αnΛ̂un : k ∈ N, α1, ..., αk ≥ 0,u1, ...,uk ∈ Rd
}
,

for Λ̂u of the form
Λ̂u : Rd 3 (x1, ..., xd) 7→ 1x1≥u1,...,xd≥ud .

Moreover, we denote Λ̂−u (x1, ..., xd) := 1x1>u1,...,xd>ud and h− for h ∈ R̂ is defined accord-
ingly. Finally, for quasi-survival functions Q̂ and h =

∑k
n=1 αnΛ̂un ∈ R ∈ R̂ we define,

Q(h) :=

k∑
n=1

αnQ̂
(
F1(un1 ), ..., Fd(u

n
d )
)
; Q(h−) :=

k∑
n=1

αnQ̂
(
F−1 (un1 ), ..., F−d (und )

)
.

Analogously, the sharp dual bound associated to P̂ϕ is equal to

P̂ϕ = D̂ϕ = inf

{
Q̂(h−)− Q̂(g) +

d∑
i=1

Ei[fi] : (h, g, f1, ..., fd) ∈ Â
}
, (A.4)
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where

Â :=

{
(h, g, f1, ..., fd) : fi ∈ L(Fi), i = 1, ..., d, h, g ∈ R̂ s.t. h− − g +

d∑
i=1

fi ≥ ϕ
}
.

Based on these dual characterizations the following corollaries establish the corresponding re-
duction schemes. Using the fact that

P(ψ(X1, ..., Xd) < s) = 1− P(ψ(X1, ..., Xd) ≥ s),

the proofs involve similar arguments as the proofs of Theorem 4.6 and Theorem 4.10 and there-
fore they are omitted. We denote the componentwise maximum of vectors u1, ...,uk ∈ Rd
by

max(u1, ...,uk) =
(

max
n=1,...,k

{un1}, ..., max
n=1,...,k

{und}
)
.

Corollary A.1. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each coordi-
nate and let

D̂ϕ(k) := inf

{
1−

∑
u∈M̂o(u1,...,uk)

(
lo(u)− le(u)

)+
Q̂
(
F (u)

)
−

∑
u∈M̂e(u1,...,uk)

(
le(u)− lo(u)

)+
Q̂
(
F (u)

)
: u1, ...,uk ∈ Ucψ(s)

}
,

(A.5)

where

M̂o(u1, ...,uk) := {max(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k m odd},

M̂e(u1, ...,uk) := {max(ui1 , ...,uim) : 1 ≤ i1 < · · · < im ≤ k m even}.

and

lo(u) := |{(i1, ..., im) : 0 ≤ i1 < · · · < im ≤ k, m odd,u = max(ui1 , ...,uim)}|,
le(u) := |{(i1, ..., im) : 0 ≤ i1 < · · · < im ≤ k, m odd,u = max(ui1 , ...,uim)}|,

(A.6)

for u ∈ M̂o(u1, ...,uk) and u ∈ M̂e(u1, ...,uk) respectively. Then it holds that

D̂ϕ(k) ≥ D̂ϕ(k + 1) ≥ ... ≥ D̂ϕ.

Remark A.2. Corollary A.1 extends the upper improved standard in the sense that

inf
h∈R̂

1− Q̂(h) = inf
u∈Ucψ(s)

1− Q̂(F (u)) = M
Q̂,ψ

(s).

The following corollary establishes a similar reduction scheme for D̂. To this end, let us denote
for u1, ...,uk ∈ Rd and an enumeration {i1, ..., idk} of {1, ..., d}k

Ûin := max(p̂ri1(u1), ..., p̂rik(uk)) for (i1, ..., ik) = in, n = 1, ..., dk,

where p̂ri(u) := (−∞, ...,−∞, ui,−∞, ...,−∞) for i ∈ {1, ..., d}.
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Corollary A.3. Let ϕ(x1, ..., xd) = 1ψ(x1,...,xd)<s for ψ : Rd → R increasing in each coordi-
nate and let

D̂ϕ(k) := sup

{
1−

∑
u∈Ŵo(u1,...,uk)

(
lo(u)− le(u)

)+
Q̂
(
F (u)

)
−

∑
u∈Ŵo(u1,...,uk)

(
le(u)− lo(u)

)+
Q̂
(
F (u)

)
: u1, ...,uk ∈ Uψ(s)

}
,

(A.7)

where

Ŵo(u1, ...,uk) := M̂o(Ûi1 , ..., Ûidk),

Ŵe(u1, ...,uk) := M̂e(Ûi1 , ..., Ûidk),
(A.8)

for an enumeration {i1, ..., idk} of {1, ..., d}k and lo, le are given in (A.6). Then it holds that

D̂ϕ(k) ≥ D̂ϕ(k + 1) ≥ ... ≥ D̂ϕ.
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