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Abstract

The study of worst-case scenarios for risk measures (e.g., quantiles) when
the underlying risk (or portfolio of risks) is not completely specified is a central
topic in the literature on robust risk measurement. For instance, upper bounds
for quantiles and stop-loss premiums under the sole knowledge of some of the
moments of the underlying risk are available in the academic literature. In this
paper, we tackle the open problem of deriving upper bounds for concave dis-
tortion risk measures on moment spaces. Building on results of Rustagi (1957,
1976), we show that in general this problem can be reduced to a parametric
optimization problem. We obtain in explicit form the sharp upper bound when
the first moment and some other higher moment are fixed.
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Introduction

In this paper, we study sharp upper bounds on the risk of a portfolio with respect
to a (strictly) concave distortion risk measure when the underlying risk is not fully
specified in that only some information on its moments is available. This problem
is relevant for various reasons. First, a concave distortion risk measure is coherent
(Artzner, Delbaen, Eber, and Heath (1999)) and thus has all properties that “good”
risk measures are typically expected to have. Moreover, if in addition to the coherency
of a law-invariant risk measure, one also requires comonotone additivity, then con-
cave distortion risk measures are the only ones that are admissible (Kusuoka (2001)).
Second, measuring the risk of portfolios is at the center of insurance activities. When
the marginal distribution functions of the portfolio components as well as their de-
pendence structure is known, the risk of the portfolio can be numerically assessed
by using for instance Monte-Carlo simulation. In most cases, however, it cannot be
expected that full information on the dependence structure is available and various
stakeholders such as investors and regulators could be interested in the worst-case
scenario for the portfolio (i.e., when the risk measure attains its highest value). In
this regard, we note that there is a rich literature on finding bounds for quantiles - also
called Value-at-Risk (VaR) - of a portfolio under the assumption that all marginal
distribution functions are known, but the dependence is (partially) unknown1. In this
paper, however, we do not fix the marginal distribution functions, but derive bounds
under the sole knowledge of some moments of the portfolio loss (for instance based
on portfolio statistics) without specification of the marginal distribution functions.
Moreover, we consider the class of concave distortion risk measures and the VaR does
not belong to this class.

The most well-known concave distortion risk measure is the Tail Value-at-Risk
(TVaR), also called Expected Shortfall in the literature. In fact, TVaR is the small-
est coherent risk measure that is greater than the Value-at-Risk (VaR), which is the
most frequently used risk measure in risk management and supervision practice, but
which fails to be subadditive and thus lacks coherency. Effectively, the VaR is a
particular quantile of the distribution whereas TVaR2 is more focused on the right
tail of the distribution in that it measures the expected loss, conditionally on the loss
being greater than VaR. Moment bounds for VaR (which are intimitely connected to
distributional bounds) and TVaR have already been studied in the insurance litera-
ture by several authors including Kaas and Goovaerts (1986), Denuit et al. (1999b),
De Schepper and Heijnen (2010), Hürlimann (2002, 2008), Bernard et al. (2015, 2016)
and Tian (2008). Specifically, Hürlimann (2002) finds analytical bounds for VaR and
TVaR under knowledge of the mean, variance, skewness and kurtosis. An elementary
derivation of bounds on VaR can be found in Bernard et al. (2016). In this regard,
we point out that one cannot expect that there exists a risk measure (i.e., a single
number) that captures all characteristics of risk and provides a complete picture of

1Papers include Rüschendorf (1982), Denuit et al. (1999a), Wang and Wang (2011), Wang et al.
(2013), Embrechts et al. (2013, 2014, 2015a), Puccetti et al. (2016, 2017), Bernard et al. (2015,
2017b,a), and Rüschendorf and Witting (2017), amongst others.

2There are various proofs that demonstrate subadditivity of TVaR; see Embrechts et al. (2015b)
and the references herein.
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the risky portfolio (i.e., a random variable). For example, Hürlimann (2002) studies
TVaR for various two-parameter distribution functions with fixed mean and variance
by varying the loss probability and argues that TVaR does not always properly reflect
the increase in (tail) risk from one distribution to another. Moreover, risk measures
appear in various contexts such as risk management (McNeil et al. (2015)), pricing
(Wirch and Hardy (1999)), capital allocation (Dhaene et al. (2012)), and supervision
(Danielsson et al. (2001)) and a risk measure that is suitable for one purpose might
be not appropriate in another context; see also Dhaene et al. (2008) for a warning
against the blind use of coherent risk measures as well as Belles-Sampera et al. (2014)
and Frittelli et al. (2014) for recent proposals of risk measures.

In this paper, we study bounds for any strictly concave distortion risk measure
when k, not necessarily consecutive, moments of the underlying risk are known.
Specifically, based on results of Rustagi (1957, 1976) we provide necessary condi-
tions that maximizing distribution functions have to satisfy. As a consequence, the
optimization problem we consider reduces to a problem in which we only need to
perform an optimization with respect to some parameters. The conditions that we
obtain are in general not sufficient to single out the maximizing distribution (sharp
bound). However, when the mean and any other higher moment are known, we show
that the feasible set of maximizing distribution functions becomes a singleton and we
explicitly obtain the maximizing distribution. Interestingly, unlike in the case of VaR
and TVaR, the maximizing distribution is typically not a discrete one.

1 Problem formulation

In this paper, we only consider distribution functions with a bounded support. Hence,
after rescaling, we consider them on the unit interval [0, 1]. Denote by F a set of
distribution functions on [0, 1] for which k ∈ N0 moments are given,

F =

{
F is a cdf

∣∣∣∣ ∫ 1

0

xidF (x) = ci, i ∈ I
}
, (1)

where I ⊂ N0 and card(I) = k. Note that in general F may correspond to a set of
distribution functions with any k moments fixed, not necessarily the first k ones, and
not necessarily starting with the mean. In the remainder of the paper, we assume
that F contains at least two different elements (and hence infinitely many since F is
convex).

A distortion risk measure of a random variable X having cumulative distribution
FX is defined as

Hg(X) =

∫ 1

0

g(1− FX(x))dx, (2)

where g is a distortion function, i.e., an increasing function from [0, 1] to [0, 1] with
g(0) = 0 and g(1) = 1. Note that Hg(X) solely depends on the distribution function
FX (law-invariance) and in what follows we also write Hg(FX) instead of Hg(X).

3



Furthermore, we assume that g is strictly concave and twice differentiable, imply-
ing that Hg is a coherent risk measure; see e.g., Dhaene et al. (2006). The im-
portance of distortion risk measures with concave distortion function (henceforth
called concave disortion risk measures) is highlighted by the fact that this class coin-
cides with the class of coherent risk measures that are law-invariant and comonotone
additive (Kusuoka (2001)). Examples of concave distortion risk measures are the
power distortion risk measure (g(x) = xα, α ∈ (0, 1)), the dual-power distortion risk
measure (g(x) = 1 − (1 − x)β, β ∈ (1,∞)), and the Wang distortion risk measure
(g(x) = Φ(Φ−1(x) + Φ−1(p)), p ∈ (0.5, 1)).

In this paper, we focus on the problem of determining the distribution function
in F that yields maximum (concave) distorted expection, i.e., we consider the opti-
mization problem

sup
F∈F

Hg(F ). (3)

When only one moment is specified, say the i-th one with value ci, it is easy
to show that the solution is obtained by a discrete distribution function F that is
concentrated on 0 and 1 and has i-th moment equal to ci. To see this, observe that
F dominates all other admissible distribution functions in the sense of stop-loss order
(since F crosses all other distribution functions exactly once from above and has the
biggest possible mean, namely ci) and it is well-known that concave distortion risk
measures are consistent with stop-loss order (see e.g., Dhaene et al. (2006)). Hence,
the case k = 1 is not interesting and moreover, since little distributional information
is used in the optimization, this case is not very useful in practice in that it leads to
wide bounds. Therefore, in the remainder of the paper, we only consider the case in
which k > 2.

Problem (3) can be seen as an extended version of an optimization problem con-
sidered in Rustagi (1957, 1976). This author considers the optimization of a certain
integral when the first and second moment are known and provides some necessary
conditions its solution has to satisfy. In this paper, we show that optimization of
concave distortion risk measures is compatible with this integral formulation and
provide, for an arbitrary sequence of moments, the necessary conditions a solution
has to satisfy. Rustagi (1957, 1976) claims that in certain cases the necessary condi-
tions he derives lead to complete specification of the solution, but a proof is missing
and appears to be non-trivial. In this paper, we completely specify the maximizing
distribution function when the mean and a higher moment are known and provide an
algorithm to obtain the solution. For a specific choice of the distortion function we
also obtain an explicit analytical solution.

In what follows, let F− and F+ denote the left and right inverse of the function
F . When F− = F+, we use the standard notation F−1 for the inverse.

4



2 Results

In this section, we provide necessary conditions for the solution, denoted as F ?, to
problem (3). In general, these conditions do not lead to a complete specification of
the solution. However, in the particular (yet important) case where F contains the
distribution functions having a given mean and some other higher order moment, a
complete characterization of a solution F ? is obtained and we provide a constructive
algorithm. Proofs are provided in Section 4.

2.1 k known moments (k > 2)

The following theorem provides necessary conditions that a solution to problem (3)
has to satisfy.

Theorem 2.1 (Necessary conditions). When k > 2, then problem (3) has a unique
solution F ? and F ? is continuous on (0, 1). Moreover, on intervals where it is not
constant, F ? coincides with Fη, which is defined as

Fη(x) =


0 if

∑
i∈I ηix

i−1 < g′(1),

1− (g′)−1
(∑

i∈I ηix
i−1) else,

1 if
∑

i∈I ηix
i−1 > g′(0),

(4)

where η := (η1, . . . , ηk) is such that∫ 1

0

xidF ?(x) = ci, i ∈ I, (5)

and ∫ b

a

[
g′ (1− F ?(x))−

∑
i∈I

ηix
i−1

]
dx = 0 (6)

on intervals [a, b] = [F ?−(c), F ?+(c)] where c ∈ (0, 1).

Theorem 2.1 does not completely characterize the maximizing distribution func-
tion F ?. Specifically, Theorem 2.1 reduces the problem (3) to a parametric optimiza-
tion problem over the parameter set of admissible (η1, η2, ..., ηk) vectors. Since this set
is not readily known, this parametric optimization problem is typically hard to deal
with. However, hereafter we show that when the mean and some other higher order
moment are known, we are able to determine the maximizing distribution function.

In this regard, we note that Rustagi (1957, 1976) claims that in the case that he
considers (first two moments given) the unique solution is given by Fη, as defined in
Theorem 2.1, provided Fη is a distribution function; see page 104 in Rustagi (1976)
and subsequent theorems as well as the corollary on page 318 in Rustagi (1957).
However, there is no proof for this statement and the argument is not obvious since
there could be several admissible distribution functions of the form Fη.
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2.2 Mean and a higher order moment known

Let F = F(c1, ci) be the set of distribution functions with fixed first moment c1 and
fixed i-th moment ci. We formulate the following theorem.

Theorem 2.2 (Characterisation of solution). If F = F(c1, ci) then problem (3) has
a unique solution F ? given as

F ?(x) =


0 if x < max

((
g′(1)−η1

ηi

) 1
i−1

, 0

)
,

1− (g′)−1 (η1 + ηix
i−1) else,

1 if x > min

((
g′(0)−η1

ηi

) 1
i−1

, 1

)
,

(7)

where η1, ηi are such that ηi > 0, η1 ∈ (g′(1)− ηi, g′(0)) and∫ 1

0

xdF ?(x) = c1 and

∫ 1

0

xidF ?(x) = ci. (8)

Pseudocode3 for finding the solution (η1, ηi) for given moments (c1, ci) is given in
Algorithm 1. First, two functions are defined that compute the moments (c1, ci) of
Fη, given (η1, ηi). Then a nonlinear system is solved to find the values of (η1, ηi) for
which the moments are equal to (c1, ci). Due to Theorem 2.2 the solution is then
found.

Algorithm 1 Solve for (η1, ηi)

1: mu1 ← function(eta1, etai)
2: mui ← function(eta1, etai)
3: diffMoments ← function(eta1, etai) {
4: return (mu1(eta1, etai)− c1,mui(eta1, etai)− ci)
5: }
6: (eta1, etai) = solve.system(diffMoments)

Solving problem (3) for a general choice of F appears very difficult. However, from
Theorem 2.2 one also obtains a simple upper bound on the distorted expectation when
F contains all distribution functions with given mean and k − 1 given higher order
moments; we write F = F(c1, (ci)i∈I\{1})

Corollary 2.3. Let F ? be the optimal solution to (3) when F = F(c1, (ci)i∈I\{1}) and
denote by F ?

c1,ci
the solution to (3) when optimizing over the set F(c1, ci), i ∈ I \{1}.

Then
Hg(F

?) 6 min
i∈I\{1}

Hg(F
?
c1,ci

). (9)

3R code is available on https://github.com/cdries/ConcaveDistortionRM. All numerical re-
sults in this paper can be replicated by the code provided.
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Remark 2.4. The bound obtained in Corollary 2.3 cannot be expected to be sharp.
To show this, consider the distortion function g(x) = 1− (1−x)2 (see also Figure 1a)
and consider the optimization problem (3) over F(c1, c2) and F(c1, c3) with c1 = 0.50,
c2 = 0.33 and c3 = 0.24. The maximizing distribution functions can be obtained
numerically using Algorithm 1, and are given as

F ∗c1,c2(x) =


0 if x < 0.0101

−0.0103 + 1.0206x if 0.0101 6 x < 0.9899

1 if x > 0.9899,

(10)

and

F ∗c1,c3(x) =


0 if x < 0

0.1615 + 1.0482x2 if 0 6 x < 0.8944

1 if x > 0.8944,

(11)

respectively; see Figure 1b. The values of the distorted expectation Hg(F
∗
c1,c2

) and
Hg(F

∗
c1,c3

) are equal to 0.6633 and 0.6646, respectively. However, since the first three
moments of these distribution functions are respectively (0.5000, 0.3300, 0.2450) and
(0.5000, 0.3354, 0.2400), both distribution functions are not even admissible with re-
spect to the the optimization problem (3) over the set M(c1, c2, c3). Hence F ∗ can
not coincide with F ∗c1,c2 nor F ∗c1,c3 and Hg(F

∗) is strictly lower than Hg(F
∗
c1,c2

) and
Hg(F

∗
c1,c3

).

Figure 1: Non sharpness of the bound obtained in Corollary 2.3.

(a) Distortion function (b) Maximizing distribution functions

3 Examples

In this section, we use Algorithm 1 to numerically determine the maximizing distribu-
tion function for several concave distortion risk measures. In addition, we also provide
an analytical solution when the distortion function used is given by g(x) = 1−(1−x)2

and the mean and variance of the distribution function are fixed.
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3.1 Maximizing distribution functions for some concave dis-
tortion risk measures

We consider the power distortion function (g(x) = xα) with α = 0.5, 0.2, 0.1, the
dual-power distortion function (g(x) = 1− (1− x)β) with β = 2, 5, 10, and the Wang
distortion function (g(x) = Φ(Φ−1(x) + Φ−1(p))) with p = 0.8, 0.9, 0.95. For the
sake of example, we consider the moments that arise from the uniform distribution
function on [0, 1], i.e. c1 = 1/2, c2 = 1/3, c3 = 1/4 and c4 = 1/5.

For F = F(c1, c2), F = F(c1, c3) and F = F(c1, c4), we determine the maximizing
distribution functions numerically and display the distortion values in Table 1.

Table 1: Maximum value Hg(F
?) for several choices of distortion functions and mo-

ment spaces.

Hg(F
?)

Distortion function F(c1,c2) F(c1,c3) F(c1,c4)

power (α = 0.5) 0.6754 0.6711 0.6693
power (α = 0.2) 0.8450 0.8407 0.8382
power (α = 0.1) 0.9175 0.9148 0.9130
dual-power (β = 2) 0.6667 0.6714 0.6782
dual-power (β = 5) 0.8660 0.8472 0.8366
dual-power (β = 10) 0.9686 0.9540 0.9404
Wang (p = 0.80) 0.7330 0.7276 0.7273
Wang (p = 0.90) 0.8360 0.8270 0.8230
Wang (p = 0.95) 0.9012 0.8923 0.8866

To obtain more insight in the maximizing distribution functions and their link with
the distortion functions, we further focus on the power distortion (g(x) = xα) with
parameter α = 0.2, the dual-power distortion (g(x) = 1 − (1 − x)β) with parameter
β = 5 and the Wang distortion (g(x) = Φ(Φ−1(x) + Φ−1(p))) with p = 0.8. These
distortion functions are displayed in Figure 2a. Figures 2b, 2c and 2d show the
corresponding maximizing distribution functions for some of the cases considered
in Table 1. Interestingly, unlike in the case of VaR and TVaR where maximizing
distribution functions are discrete, the maximizing distribution functions are either
continuous or appear as a mixture of a continuous and a discrete distribution function.

3.2 Analytic solution for the dual-power distortion risk mea-
sure

Moment spaces for distribution functions with a compact support are compact, see
e.g. Karlin and Shapley (1953). However, the set E of all vectors η that are obtained
by solving problem (3) for all possible moments, is not necessarily compact. In
general, it does not seem possible to obtain an analytical description of the maximizing
distribution function. In the case of the dual-power distortion function,

g(x) = 1− (1− x)2, (12)
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Figure 2: Maximizing distribution functions under different distortion risk measures.

(a) Distortion functions
(b) Maximizing distribution functions under
the dual-power distortion function (α = 0.2)

(c) Maximizing distribution functions under
the dual-power distortion function (β = 5)

(d) Maximizing distribution functions under
the Wang distortion function (p = 0.8)

it is however possible to explicitly describe η = (η1, η2)
′ as a function of (c1, c2), see

Figure 3b.

Consider the first two moments c1 and c2. The set of pairs (c1, c2) such that at
least one distribution function with those moments exists, is given by the set (Karlin
and Shapley (1953))

N = {(x, y)|x ∈ [0, 1];x2 6 y 6 x}. (13)

According to Theorem 2.2, the maximizing distribution function is of the following
form:

Fη(x) =


0 if x < max

(
0, −η1

η2

)
,

η1+η2x
2

if else,

1 if x > min
(

1, 2−η1
η2

)
,

(14)

with η2 > 0. This distribution function is uniform on a certain interval (a, b), 0 6 a <
b 6 1, with possible mass points in 0 and 1.
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The moment space N can be divided into four parts, the sets N1, N2, N3 and N4

defined by

N1 =

{
(c1, c2) ∈ N | c2 > max

(
1

3
(4c1 − 1),

2

3
c1

)}
,

N2 =

{
(c1, c2) ∈ N | 1

3
(4c21 − 2c1 + 1) 6 c2 <

1

3
(4c1 − 1)

}
,

N3 =

{
(c1, c2) ∈ N | 4

3
c21 6 c2 <

2

3
c1

}
,

N4 =

{
(c1, c2) ∈ N | c2 < min

(
4

3
c21,

1

3
(4c21 − 2c1 + 1)

)}
.

(15)

These regions are shown in Figure 3a.

In each of the four regions, the values of (η1, η2) in Fη can be determined as a
function of (c1, c2) as follows:

(η1, η2) =



(−8c1 + 6c2 + 2, 12(c1 − c2)) if (c1, c2) ∈ N1,(
8(1−c1)2(1+3c2−4c1)

9(1+c2−2c1)2 , 16(1−c1)3
9(1+c2−2c1)2

)
if (c1, c2) ∈ N2,(

2− 8c21
3c2
,
16c31
9c22

)
if (c1, c2) ∈ N3,(

1− c1√
3(c2−c21)

, 1√
3(c2−c21)

)
if (c1, c2) ∈ N4.

(16)

This transforms the sets N1, N2, N3 and N4 to the sets E1, E2, E3 and E4 defined
by

E1 = {(η1, η2) | η1 ∈ [0, 2); 0 < η2 6 2− η1} ,
E2 = {(η1, η2) | η1 ∈ (−∞, 0); −η1 < η2 6 2− η1} ,
E3 = {(η1, η2) | η1 ∈ [0, 2); 2− η1 < η2} ,
E4 = {(η1, η2) | η1 ∈ (−∞, 0); 2− η1 < η2}

(17)

and shown in Figure 3b. The boundaries of the set E are exactly as prescribed in
Theorem 2.2.

Note that the point (c1, c2) = (1/2, 1/3) lies on the intersection of the four dif-
ferent regions in the moment space. Hence, the corresponding (η1, η2)-values for the
distribution function maximizing the distorted expectation under g as in (12) are
(η1, η2) = (0, 2) and incidentally,

F(0,2)(x) = x, x ∈ [0, 1], (18)

is the distribution function maximizing the distorted expectation (3). The distorted
expectation equals Hg(F(0,2)) = 2/3.

4 Proofs

In the first part of this section we prove some useful lemmas based on adaptations and
extensions of the results presented in Rustagi (1957, 1976). The proofs for Theorem
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Figure 3: Moment space and corresponding set for (η1, η2).

(a) Moment space N
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(b) Set E of possible (η1, η2)-values

2.1 and Theorem 2.2 are presented thereafter.

4.1 Some useful lemmas

In this section, let ϕ be a strictly convex and twice differentiable bounded function
on [0, 1]. The results concern a solution F ? of the optimization problem

F ? = arg min
F∈F

∫ 1

0

ϕ(F (x))dx, (19)

where F is given in (1).

Lemma 4.1 (Unicity). A solution F ? to (19) exists and is unique.

Proof. The existence of a solution follows from Lemma 3.1 and Lemma 3.2 in Rustagi
(1957). Specifically, let I = {i1, . . . , ik} and observe that

∫ 1

0
xijdF (x) = cij if and

only if
∫ 1

0
xij−1F (x)dx = dij for the appropriate dij . Consider the transformation

T : F → R :

T (F ) =

(∫ 1

0

ϕ(F (x))dx,

∫ 1

0

xi1−1F (x)dx, . . . ,

∫ 1

0

xik−1F (x)dx

)
.

(20)

This transformation is continuous and linear in F and since F is convex and compact
in the topology of convergence in distribution it maps F into a convex and compact
set. The imposed moment restrictions on F (x) thus yield a non-empty subset that is
also bounded and closed and hence a solution to (19) exists.

To prove uniqueness assume that F0 6= F1 are two admissible solutions. Let

M =

∫ 1

0

ϕ(F0(x))dx =

∫ 1

0

ϕ(F1(x))dx. (21)

11



Since φ is strictly convex, it holds for any λ ∈ (0, 1) that∫ 1

0

ϕ(λF0(x) + (1− λ)F1(x))dx

< λ

∫ 1

0

ϕ(F0(x))dx+ (1− λ)

∫ 1

0

ϕ(F1(x))dx = M,

(22)

which is a contradiction; see also page 100 in Rustagi (1976).

Define ϕy the derivative of the function ϕ.

Lemma 4.2 (Linearisation). If F ? solves (19), then there exist (ηi)i∈I such that F ?

minimizes over all F ∈ F the function∫ 1

0

[
ϕy(F

?(x)) +
∑
i∈I

ηix
i−1

]
F (x)dx. (23)

Proof. Let F ? be the solution to (19). Lemma 5.3.1 in Rustagi (1976) proves that F ?

minimizes (19) if and only if∫ 1

0

ϕy(F
?(x))F (x)dx >

∫ 1

0

ϕy(F
?(x))F ?(x)dx, F ∈ F . (24)

Denote I = {i1, . . . , ik}. Consider the set Γ of points (ζ0, ζ1, . . . , ζk) equal to(∫ 1

0

ϕy(F
?(x))F (x)dx,

∫ 1

0

xi1−1F (x)dx, . . . ,

∫ 1

0

xik−1F (x)dx

)
, F ∈ F , (25)

where the second until last coordinates are determined by the moments of the distri-
bution function F , obtained by integration by parts. The set Γ is closed, bounded
and convex in k + 1 dimensions. We show this based on Theorem 7.2 in Karlin and
Shapley (1953) and page 313 in Rustagi (1957). Consider the transformation

T : F → Γ :

T (F ) =

(∫ 1

0

ϕy(F
?(x))F (x)dx,

∫ 1

0

xi1−1F (x)dx, . . . ,

∫ 1

0

xik−1F (x)dx

)
.

(26)

The transformation T is continuous and linear in F . Since F is convex and compact
in the topology of convergence in distribution, also its image is convex and compact.

Because the set Γ is closed, bounded and convex, there exists a boundary point
(z0, . . . , zk) of Γ such that F ? corresponds to this boundary point. Therefore, there
exists a supporting hyperplane of Γ at (z0, . . . , zk), i.e. there exist ηi1 , . . . , ηik , η such
that

η0z0 + ηi1z1 + · · ·+ ηikzk + η = 0, (27)

and
η0ζ0 + ηi1ζ1 + · · ·+ ηikζk + η > 0, ∀ζ ∈ Γ. (28)
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Hence, it holds that

η0(ζ0 − z0) + · · ·+ ηik(ζk − zk) > 0, ∀ζ ∈ Γ. (29)

We now show that η0 > 0 by eliminating the other possibilities. Let

Γ? = {(ζ?0 , ζ1, . . . , ζk)|ζ?0 > ζ0; (ζ0, ζ1, . . . , ζk) ∈ Γ}. (30)

The set Γ? is convex and Γ ⊆ Γ?. The value z0 is the minimum of ζ0 subject to
ζ1 = z1, . . . , ζk = zk. Hence (z0, . . . , zk) is also a minimum point of Γ? and thus a
boundary point of Γ?. Therefore there exist (η0, . . . , ηik) 6= (0, . . . , 0) such that

η0(ζ
?
0 − z0) + · · ·+ ηik(ζk − zk) > 0 ∀(ζ?0 , ζ1, . . . , ζk) ∈ Γ?. (31)

Hence, since Γ ⊆ Γ?,

η0(ζ0 − z0) + · · ·+ ηik(ζk − zk) > 0 ∀(ζ0, ζ1, . . . , ζk) ∈ Γ. (32)

Suppose η0 < 0. Since (z0, . . . , zk) is a minimum point of Γ?, there exists some
α > 0 such that (z0 + α, z1, . . . , zk) ∈ Γ?. By Equation (31), η0α > 0 would hold,
which would imply η0 = 0. Next, suppose that η0 = 0. This corresponds to the
boundary points of the set Γ where the supporting hyperplanes are parallel to the
ζ0-axis, and hence (z1, . . . , zk) corresponds to the boundary of the projection of Γ on
the (ζ1, . . . , ζk) hyperplane. But the conditions on F are such that the given point
(z1, . . . , zk) will be interior to the projection set, and hence η0 6= 0.

Thus η0 > 0 and we can normalize it to be one, obtaining for any F ∈ F ,∫ 1

0

[
ϕy(F

?(x)) +
∑
i∈I

ηix
i−1

]
F (x)dx

>
∫ 1

0

[
ϕy(F

?(x)) +
∑
i∈I

ηix
i−1

]
F ?(x)dx.

(33)

Equivalently, F ? minimizes (23).

Next we provide necessary conditions that a solution to (23) should satisfy. In the
next lemma, specifically define

ϕ : [0, 1]→ [0, 1] : ϕ(y) = 1− g(1− y) (34)

for a chosen distortion function g satisfying the required conditions.

Lemma 4.3 (Necessary conditions). Consider the optimization problem

F ? = arg min
F∈F

∫ 1

0

[
ϕy(F

?(x))−
∑
i∈I

ηix
i−1

]
F (x)dx. (35)
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Then F ? is continuous on (0, 1) and on intervals where F ? is not constant it
coincides with Fη defined as

Fη(x) =


0 if z < g′(1),

1− (g′)−1 (z) else,

1 if z > g′(0),

(36)

with z =
∑

i∈I ηix
i−1 and (ηi)i∈I are such that∫ 1

0

xidF ?(x) = ci, i ∈ I, (37)

and ∫ b

a

[
g′ (1− F ?(x))−

∑
i∈I

ηix
i−1

]
dx = 0 (38)

on intervals [a, b] = [F ?−(c), F ?+(c)] for all c ∈ (0, 1).

Proof. Properties of the solution F ? will be described in terms of Gη(x) solving

ϕy(Gη(x))−
∑
i∈I

ηix
i−1 = 0. (39)

Because ϕy is differentiable, this equation readily inverts on some set I to an expres-
sion for Gη(x) in terms of the original distortion function g:

Gη : I → R : Gη(x) = 1− (g′)
−1

(∑
i∈I

ηix
i−1

)
, (40)

with I defined as

I =

{
x ∈ [0, 1]

∣∣∣∣∑
i∈I

ηix
i−1 ∈ [g′(1), g′(0))

}
. (41)

We extend the function Gη to the interval [0, 1] in straightforward fashion:

Fη(x) =


0 if z < g′(1),

1− (g′)−1 (z) if x ∈ I,
1 if z > g′(0),

(42)

with z =
∑

i∈I ηix
i−1

Next, some restrictions on how to transform Fη into a distribution function are
derived. Define the function

A : (0, 1)→ R : A(x) = ϕy(F
?(x))−

∑
i∈I

ηix
i−1 (43)
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and the set
S = {x ∈ (0, 1)|A(x) 6= 0}. (44)

Theorem 5.1 on page 316 of Rustagi (1957) states that if F ? minimizes (23), then the
set S has F ?-measure zero, i.e. F ? is constant when A 6= 0. Hence, F ? coincides with
Fη on (0, 1) when F ? is not constant.

A corollary on page 316 Rustagi (1957) gives restrictions on F ? where it is con-
stant. On intervals [a, b] = [F−(c), F+(c)] where c ∈ (0, 1), it holds that∫ b

a

A(x)dx = 0. (45)

Finally, the continuity of F ? on (0, 1) follows from its right-continuity and the fact
that it has no jumps, as proven in Theorem 5.2 in Rustagi (1957). This concludes
the proof.

4.2 Proof of Theorem 2.1

First, we rewrite the maximization problem (3) as a minimization problem and con-
sider

F ? = arg min
F∈F

∫ 1

0

(1− g(1− F (x))) dx. (46)

Under the assumptions of the theorem, the function ϕ(x) defined as

ϕ : [0, 1]→ [0, 1] : ϕ(y) = 1− g(1− y), (47)

is strictly convex, bounded and twice differentiable. Thus, by Lemma 4.1, there exists
a unique F ? maximizing (3).

By Lemma 4.2 it holds that F ? minimizes over all F ∈ F the function∫ 1

0

[
ϕy(F

?(x)) +
∑
i∈I

ηix
i−1

]
F (x)dx. (48)

Since this optimization problem is similar to the one in Lemma 4.3, the necessary
conditions in Theorem 2.1 are shown.

4.3 Proof of Theorem 2.2

Under the moment conditions it follows that Fη as stated in Theorem 2.1 is monotonic
(as the composition of an increasing function and a linear one). Furthermore, Fη
has then to be increasing, since otherwise F ? would be degenerated and thus not
admissible (F contains at least two elements and the degenerated distribution function
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is unique with respect to its moment sequence). Hence, since F ? is continuous on
(0, 1), it holds that the optimal solution F ? should be of following form:

Fη(x) =


0 if x < max

((
g′(1)−η1

ηi

) 1
i−1

, 0

)
,

1− (g′)−1 (η1 + ηix
i−1) else,

1 if x > min

((
g′(0)−η1

ηi

) 1
i−1

, 1

)
,

(49)

for some η := (η1, ηi) such that ηi > 0 and η1 ∈ (g′(1)− ηi, g′(0)) and

µ1(η) =

∫ 1

0

xdFη(x) = c1 and µi(η) =

∫ 1

0

xidFη(x) = ci. (50)

We aim at showing that there exists only one η? = (η?1, η
?
i ) such that Fη? satisfies

the moment conditions (50).

First, we show that for any ηi > 0 there exists some η1 such that µ1(η1, ηi) = c1.
For any ηi > 0, the function µ1(η1, ηi) is strictly decreasing in η1 on (g′(1)− ηi, g′(0)).
Since limη1→g′(1)−ηi µ1(η1, ηi) = 1 and limη1→g′(0) µ1(η1, ηi) = 0, the full domain of
possible mean values for any distribution function F on [0, 1] can be reached by
varying η1. Hence, there exists unique η1 such that µ1(η1, ηi) = c1, write η1 = η1((ηi)).

Next, we show that there exists a unique η?i > 0 such that µi(η1(ηi), ηi) = ci. To
this end, consider the function

µ̃i : (0,∞)→ [0, 1] : µ̃i(ηi) =

∫ 1

0

xi−1F(η1(ηi),ηi)(x)dx. (51)

. The derivative of µ̃i with respect to ηi (using expression (53)) is given as

dµ̃i(ηi)

dηi
=

∫ 1

0

x2i−2H ′(η1 + ηix
i−1)dx+

(∫ 1

0

xi−1H ′(η1 + ηix
i−1)dx

)
dη1(ηi)

dηi
, (52)

where H ′ is the derivative of H on (0, 1) a.e., where H is defined as

H(y) =


0 if y < max (g′(1), 0) ,

1− (g′)−1 (y) else,

1 if y > min (g′(0), 1) ,

(53)

It holds that the derivative dη1(ηi)/dηi equals

dη1(ηi)

dηi
= −

(∫ 1

0

xi−1H ′(η1 + ηix
i−1)dx

)/(∫ 1

0

H ′(η1 + ηix
i−1)dx

)
. (54)

The latter can be seen by setting the total derivative dµ̃1 equal to zero, since we keep
the mean fixed when varying η1 and ηi accordingly.
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Notice that H ′(η1+ηix
i−1)/

∫ 1

0
H ′(η1+ηix

i−1)dx is a density on (0, 1). Because H ′

is not degenerate, the variance of X i−1 with respect to this density is strictly positive
and hence

dµ̃i(ηi)

dηi
> 0. (55)

Since integration by parts yields the relation iµ̃i(ηi) = 1− µi(η1(ηi), ηi), we thus also
have that

dµi(η1(ηi), ηi)

dηi
< 0. (56)

Thus, if η? exists, it is unique due to strict monotonicity.

Consider now the limits

lim
ηi→0

∫ 1

0

xidF(η1(ηi),ηi)(x) = c1 and lim
ηi→∞

∫ 1

0

xidF(η1(ηi),ηi)(x) = ci1, (57)

which show that the full domain of possible values for the i-th moment can be reached
by varying ηi implying that η?i exists. Hence, η? = (η?1, η

?
i ) exists and is unique. Thus

F ? = Fη? .
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