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Abstract

We consider the problem of determining risk bounds for the Value at Risk for
risk vectors X where besides the marginal distributions also information on the
distribution or on the expectation of some functionals Tj(X), 1 6 j 6 m, is available.
In particular this formulation includes the case where information on subgroup sums
or maxima or on the correlations or covariances is available. Based on the method
of dual bounds we obtain improved risk bounds compared to the marginal case. In
some cases we obtain sharp bounds.
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1 Introduction

Besides the marginal information on the risk X = (X1, . . . , Xn) a useful additional source
for reducing dependence uncertainty is to use additional information on some function-
als of the risk vector. This information may be available in insurance type hierarchical
models as information on the aggregation of some branches of the company evaluated
by statistical analysis. F.e. as additional information the distribution of some subgroup
sums

∑
j∈Ii Xj ∼ Qi might be given where Ii ⊂ {1, . . . , n}, 1 6 i 6 m or the worst case

distribution of some subgroups maxj∈Ii Xj ∼ Qi might be known. Alternatively, informa-
tion on (some) correlations τij = Corr(Xi, Xj) or covariances σij = Cov(Xi, Xj) might be
available.

In more general terms let Ti : Rn → R1, i ∈ K, be a class of measurable real functions.
Assume that the distribution Qi of Ti(X) is known for i ∈ K. Under this information our
aim is to derive upper resp. lower risk bounds for the Value at Risk on the aggregated
risk

∑n
i=1Xi. This formulation includes for the case Ti(X) =

∑
j∈Ii Xj resp. Ti(X) =
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maxj∈Ii Xj the situation described above. If we also allow higher dimensional functions
Ti : Rn → Rni , then we can in this way also describe the case where higher dimensional
marginals are known, considering Ti(X) = (Xj)j∈Ii , where E = {Ii, i ∈ K} is a marginal
system and Qi = PXIi are the corresponding higher dimensional marginal distributions.

Deriving risk bounds under additional information on the dependence has been the
subject of several recent papers. In particular we mention information on variance bounds
in Bernard et al. (2015), dependence information in Bignozzi et al. (2015), Puccetti et al.
(2017), Bernard et al. (2017), Rüschendorf and Witting (2017), Lux and Rüschendorf
(2017), Lux and Papapantoleon (2017) and the assumption that the distribution is known
on subsets in Bernard and Vanduffel (2015), Puccetti et al. (2016), Lux and Papapantoleon
(2016). Some survey papers on this subject are available by Rüschendorf (2017a,b).

In this paper we extend the method of dual bounds as described in Puccetti and Rü-
schendorf (2013) and Embrechts et al. (2013) in the context of marginal information to the
case where additional information is available. In several of the above mentioned papers in
a first step exact dual representations of the VaR or max risk bounds have been derived,
which however turn out to be too involved for determining solutions. Based on these results
then in a second step relaxed versions of these duality results have been introduced which
are accessible by analytical or numerical methods. We concentrate in this paper on the
second step of getting usable bounds and do not elaborate on exact duality results. In
this way we obtain a unified approach which yields improved risk bounds depending on
the degree and quality of the additional information. In several cases we even get sharp
bounds.

2 Functionals of the risk vector

Knowing higher order marginals PI , I ∈ E implies that also the distribution of all func-
tionals T (X) = TI(XI) is known. This assumption is in applications often too strong. In
this section we assume that for some real functionals T1, . . . , Tm the distribution of Ti(X),
1 6 i 6 m is known.

We call this the (DF)-assumption for functionals Ti:

Ti(X) ∼ Qi, 1 6 i 6 m (2.1)

We also consider a weaker form of this assumption, the (EF)-assumption

ETi(X) = ai, 1 6 i 6 m, (2.2)

and the corresponding (EF6)-assumption

ETi(X) 6 ai, 1 6 i 6 m. (2.3)

The (DF)- and (EF)-assumptions are quite flexible and widely applicable and allow
a unified derivation of upper and lower tail-risk bounds and, therefore, of reduced upper
and lower VaR-bounds.

Several methods in the literature for VaR-reduction can be subsumed under this kind
of functional assumptions. Assuming that Var(Sn) 6 σ2 as in Bernard et al. (2017) or
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a related higher moment assumptions ESkn 6 ck is exactly of the form (EF6) for one

functional T1(X) = (
∑n

i=1Xi)
2

resp. (
∑n

i=1Xi)
k
. Assuming that the distributions Gr of

the weighted subgroup sums

Yr =
∑
j∈Ir

1

ηj
Xj = Tr(X), 1 6 r 6 m, (2.4)

with ηj := |{r; j ∈ Ir}| and E = {I1, . . . , Im} are known, is of the form (DF) and is a
weakening of the assumption of knowing the multivariate distributions FI of XI for I ∈ E
as in Embrechts and Puccetti (2006), or Puccetti and Rüschendorf (2012). Similarly we
can consider the case

Tr(X) = max
j∈Ir

Xj, 1 6 r 6 m, (2.5)

of knowing the distributions of the subgroup maxima. Assuming knowledge of the covari-
ances or correlations corresponds to (EF) in the case where

Ti,j(X) = XiXj, 1 6 i < j 6 n (2.6)

and ai,j = σi,j + µiµj are the corresponding mixed expectations.

We denote by MDF,mDF resp. MEF,mEF resp. MEF6
,mEF6

the corresponding max-
imal resp. minimal tail risk probabilities and the corresponding VaR bounds by VarMF

α ,
etc. Under the (DF)-assumption we introduce dual problems of the form

UDF(s) = inf
{ n∑

i=1

∫
fidFi +

m∑
j=1

∫
gjdQj; (fi, gj) ∈ A

DF
(s)
}

and IDF(s) = sup
{ n∑

i=1

∫
fidFi +

m∑
j=1

∫
gjdQj; (fi, gi) ∈ ADF(s)

} (2.7)

where A
DF

(s) =
{

(fi, gj);
n∑
i=1

fi(xi) +
m∑
i=1

gi ◦ Tj(x) > 1[s,∞)

( n∑
j=1

Xj

)}
and

ADF(s) =
{

(fi, gj);
n∑
i=1

fi(xi) +
m∑
i=1

gi ◦ Tj(x) 6 1[s,∞)

( n∑
j=1

Xj

)}
, and Fi ∼ Xi.

Under several regularity conditions strong duality theorems for these functionals can
be proved. For some examples see f.e. Rüschendorf (2017a). We formulate the simple
to verify upper and lower bounds properties of these dual functionals and abstain from
discussing the more involved strong duality results.

Proposition 2.1 (Upper and lower bounds under (DF)). Assume that the risk vector
satisfies assumption (DF) in (2.1) for functionals T1, . . . , Tm. Then the following improved
tail risk bounds hold:

MDF(s) 6 UDF(s) and mDF(s) > IDF(s). (2.8)

Proof. By assumption (DF) holds for any (fi, gj) ∈ A
DF

(s),
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i.e.
∑n

i=1 fi(xi) +
∑m

j=1 gj ◦ Tj(x) > 1[s,∞)(
∑n

j=1 xj),

P
( n∑
i=1

Xi > s
)
6 E

n∑
i=1

fi(Xi) +
m∑
j=1

Egj ◦ Tj(X)

=
n∑
i=1

∫
fidFi +

m∑
j=1

∫
gjdQj.

This implies taking sup on the left-hand side and inf on the right-hand side,
MDF(s) 6 UDF(s). The inequality mDF > IDF follows similarly. �

In some cases it may be useful to relax the dual problems by omitting the simple
marginal information, i.e. considering admissible dual functions of the form (0, gj). Define

ŨDF(s) = inf
{ m∑

j=1

∫
gjdQj;

m∑
j=1

gj(x) > 1[s,∞)

( n∑
j=1

xj

)}
and ĨDF(s) = sup

{ m∑
j=1

∫
gjdQj;

m∑
j=1

gj(x) 6 1[s,∞)

( n∑
j=1

xj

)}
.

(2.9)

Corollary 2.2 (Relaxed upper and lower bounds under (DF)). Under assumption (DF)
for T1, . . . , Tm holds:

MDF(s) 6 ŨDF(s) and mDF(s) > ĨDF(s). (2.10)

Proof. Corollary 2.2 follows from Proposition 2.1 noting that by definition of ŨDF and
ĨDF it holds that

UDF(s) 6 ŨDF(s) and IDF(s) > ĨDF(s). �

In some cases the sharpness of the bounds can be seen directly and the dual bounds
in (2.8) and (2.10) can be reduced to simple marginal bounds. We consider the subgroup
sum case in (2.4) for a marginal system E = {I1, . . . , Im} and the weighted sum

Tr(x) =
∑
j∈Ir

1

ηj
Xj =: Yr. (2.11)

Here ηj counts the number of subsets which have j as an element. In the case of non-
overlapping sets {Ir} with

⋃m
r=1 Ir = {1, . . . , n} holds ηj = 1, ∀j and the weighted sum

Yr is identical to the partial sum over subgroup Ir.

Denote Hr = FYr the partial sum distribution of Yr and H = F(H1, . . . , Hm) the
corresponding simple marginal systems. Under assumption (DF) the distributions Hr of
Yr are known and we obtain:

Theorem 2.3 (Upper and lower bounds with partial sum information). Let the risk vector
X satisfy assumption (DF) for the partial sum functionals in (2.11). Then:

a) UDF(s) 6 ŨDF(s) and IDF(s) > ĨDF(s)

4



b) ME(s) 6MDF(s) 6MH(s) = ŨDF(s)

and mE(s) > mDF(s) > mH(s) = ĨDF(s)
(2.12)

c) If the marginal system is non-overlapping, then

ME(s) = MDF(s) = MH(s) = ŨDF(s)

and mE(s) = mDF(s) = mH(s) = ĨDF(s).
(2.13)

Proof. a), b) The proof of a) and b) follows by combining Proposition 2.1 and Corollary
2.2 with the arguments used in the proof of Theorem 3.5 in Puccetti and Rüschendorf
(2012) for the inequality ME(s) 6MH(s). In particular note that

∑n
i=1Xi =

∑m
r=1 Yr and

that by assumption (DF) we have that FYr = Hr. The equality MH(s) = ŨDF (s) is the
classical strong duality for simple marginal systems.

c) From b) we have the inequality

ME(s) 6MH(s).

Conversely, if Y = (Y1, . . . , Ym) is any vector with distribution function FY ∈ H, then by
a classical result on stochastic equations there exist XIr ∼ FIr such that

∑
j∈Ir Xj = Yr

a.s., 1 6 r 6 m. This implies the converse inequality

MH(s) 6ME(s).

Since for the simple marginal system the strong duality theorem holds we obtain

MH(s) = ŨDF(s)

and thus equalities in (2.12) are obtained. The case of the lower bounds is similar. �

In consequence of Theorem 2.3 we only need the weaker assumption (DF) of knowledge
of the distribution of the subgroup sums in order to derive the same bounds as in Theorems
3.3 and 3.5 in Puccetti and Rüschendorf (2012) given there under the stronger assumption
of knowledge of the higher order marginals.

Under the (EF)- resp. (EF6)-assumption for functionals T1, . . . , Tm we similarly to the
(DF)-case introduce dual functionals

UEF(s) = inf
{ n∑

i=1

∫
fidFi +

m∑
j=1

λjaj; (fi, λj) ∈ A
EF

(s)
}

(2.14)

and IEF(s) = sup
{ n∑

i=1

∫
fidFi +

m∑
j=1

λjaj; (fi, λj) ∈ AEF(s)
}

(2.15)

and, similarly, in the inequality case UEF6
, IEF

6
, where

A
EF

(s) =
{

(fi, λj); fi ∈ L1(Fi), λj ∈ R,
n∑
i=1

fi(xi) +
m∑
j=1

λjTj(x) > 1[s,∞)

( n∑
j=1

xj

)}
,

A
EF6

(s) =
{

(fi, λj); fi ∈ L1(Fi), λj ∈ R+,
n∑
i=1

fi(xi) +
m∑
j=1

λjTj(x) 6 1[s,∞)

( n∑
j=1

xj

)}
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and AEF(s) and AEF6
(s) are defined similarly.

Proposition 2.4 (Upper and lower bounds under (EF) resp. (EF6)). Assume that the
risk vector satisfies:

a) Assumption (EF) for the functionals T1, . . . , Tm, then

MEF(s) 6 UEF(s) and mEF(s) > IEF(s). (2.16)

b) Assumption (EF6) for T1, . . . , Tm, then

MEF6
(s) 6 UEF6

(s) and mEF6
(s) > IEF

6
(s). (2.17)

Proof. a) This follows as in Proposition 2.1 using that for (fi, λj) ∈ A
EF

(s)

n∑
i=1

fi(xi) +
m∑
j=1

λjTj(x) > 1[s,∞)

( n∑
i=1

Xi

)
. (2.18)

b) Under (EF6) we have ETj(X) 6 aj and, therefore, since λj > 0 we have EλjTj(X) 6
λjaj and thus the inequality (2.18) implies

P
( n∑
j=1

Xj > s
)
6

n∑
i=1

∫
fidFi +

m∑
j=1

λjaj. �

In some cases it may be useful to omit the marginal information and use relaxed duals
as in (2.9) and Corollary 2.2. Define

M̃EF(s) = inf
{ m∑

j=1

λjaj; λj ∈ R,
m∑
j=1

λjTj(x) > 1[s,∞)

( n∑
i=1

Xi

)}
(2.19)

and, similarly, ĨEF(s), ŨEF6
(s) and ĨEF

6
(s).

Corollary 2.5 (Relaxed upper and lower bounds under (EF) resp. (EF6)).

a) Under assumption (EF) for T1, . . . , Tm holds

MEF(s) 6 ŨEF(s) and mEF(s) > ĨEF(s) (2.20)

b) Under assumption (EF6) for T1, . . . , Tm holds

MEF6
(s) 6 ŨEF6

(s) and mEF6
(s) > ĨEF

6
(s) (2.21)

Remark 2.6. The dual method to derive upper and lower bounds for the tail risks under
the assumptions (EF), (EF6) and (DF) has immediate extensions to derive upper and
lower bounds for the expectation Eϕ(X) of a function ϕ of the risk vector. We just have

to change the admissible class of dual functions f.e. change A
DF

(s) to

A
DF

(ϕ) :=
{

(fi, gj);
n∑
i=1

fi(xi) +
m∑
j=1

gj(Tj(x)) > ϕ(x)
}
. (2.22)
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Denoting the maximal expectation of ϕ under (DF) by MDF(ϕ), we obtain similarly to
Proposition 2.1:

MDF(ϕ) 6 UDF(ϕ) and mDF(ϕ) > IDF(ϕ). (2.23)

Similar bounds are valid under (EF) and (EF6).

We consider some applications of assumption (DF) with maxima or with subgroup
maxima information. Let E = {I1, . . . , Im} be a non-overlapping system with

⋃m
j=1 Ij =

{1, . . . , n} and consider the subgroup maxima

Tr(X) := max
j∈Ir

Xj. (2.24)

Under assumption (DF) for T1, . . . , Tm, i.e. knowing the distribution Gr of the sub-
group maxima

Gr ∼ Tr(X) (2.25)

we obtain improved bounds for the distribution function or the survival function (tail
risk) of the max in comparison to the case of marginal information only, dealt with in
Rüschendorf (1980) (see also Corollary 2.20 in Rüschendorf (2013)).

Theorem 2.7 (Tail risk of max under subgroup max information). Let the risk vector X
satisfy condition (DF) for the subgroup maxima T1, . . . , Tm in (2.24), then( m∑

r=1

Gr(t)− (m− 1)
)
+
6 F max

16i6n
Xi

(t) 6 min
r6m

Gr(t) (2.26)

and the bounds in (2.26) are sharp.

Proof. By definition of the subgroup maxima Tr we have the basic equality

max
16i6n

Xi = max
r=1,...,m

Tr(X) (2.27)

. Since Tr(X) ∼ Gr, we obtain from the Hoeffding-Fréchet bounds that the bounds in
(2.27) are valid. Defining Y1, . . . , Ym as maximally dependent vector with marginal distri-
butions G1, . . . , Gm we obtain (see Rüschendorf (1980))

max
i6m

Yi ∼
( m∑
r=1

Gr(t)− (m− 1)
)
+
. (2.28)

Similarly, considering Z1, . . . , Zm, the comonotonic vector with marginals Gi, the upper
bound is attained

max
i6m

Zi ∼ min
r6m

Gr(t). (2.29)

By a well-known result on stochastic equations it is possible to construct a vector X with
marginals Fi such that a.s. maxj∈Ir Xj = Yr and similarly it is possible to construct a
vector X with marginals Fi such that a.s. maxj∈Ir Xj = Zr. This implies that the bounds
in (2.26) are sharp. �
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Remark 2.8. a) By (2.26) holds for the maximal tail risk Fmax
i6n

Xi
(t):

max
j6m

Gr(t) 6 Fmax
i6n

Xi
(t) 6 min

{(
m−

m∑
r=1

Gr(t)
)
+
, 1}. (2.30)

This is an improvement over the sharp simple marginal bound

max
16i6n

F i(t) 6 Fmax
16n

Xi
(t) 6 min

i6n

(
n−

n∑
i=1

Fi(t), 1
)
. (2.31)

b) Theorem 2.7 also results from an application of the relaxed dual bounds as in Corollary
2.5 based on the inequality

max
16i6n

Xi 6 inf
v∈Rm

m∑
r=1

(
vr + (Tr(X)− vr)+

)
(2.32)

and noting, that the upper bound is attained for the maximally dependent vector Tr(X)
= Yr, 1 6 r 6 m. This gives the lower bound in (2.33) while the upper bound is a
direct consequence of the stochastic ordering result

Tr(X) >st Zr, 1 6 r 6 m. (2.33)

c) For the upper tail risk of the aggregated sum given the assumption (EF) for the subgroup
max functionals Tr(X) = maxj∈Ir Xj by the reduced form of the dual functionals it is
indicated to consider inequalities of the form

n∑
i=1

xi 6
m∑
r=1

αr max
j∈Ir

xj. (2.34)

Assuming that xi > 0 this inequality implies αr > nr = |Ir| and as consequence this
implies the tail risk bound for the sum

MEF(s) 6MH(s), (2.35)

where H = {H1, . . . , Hm}, Hr(t) = Gr

(
t
nr

)
. The upper bound in (2.35) can be eval-

uated by the RA-algorithm but it seems typically to be too rough based on the rough
inequality in (2.34).

The tail risks problem in Remark 2.8 c) with maximal subgroup information seems to
be better dealable with by the method based on knowledge of a distribution function on
a subset as dealt with in Puccetti et al. (2016) and Lux and Papapantoleon (2017). Note
that knowing the distribution Gr of Yr = maxj∈Ir Xj amounts to knowing the distribution
function FXIr

= F (r) on the subset S = {(t, . . . , t); t ∈ R} since

FXIr
((t, . . . , t)) = P (Xj 6 t; j ∈ Ir) = P (max

j∈Ir
Xj 6 t) = Gr(t). (2.36)

This implies by the improved Hoeffding-Fréchet bounds in Puccetti et al. (2017) and Lux
and Papapantoleon (2017) that

F S
r (x) 6 F (r)(x) 6 F

S

r (x), x ∈ RIr , (2.37)
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where

F
S

r (x) = min
(

min
j∈Ir

Fj(xj), inf
t∈R

{
Gr(t) +

∑
j∈Ir

(Fj(xj)− Fj(t))+
})

and F S
r (x) = max

(
0,
∑
j∈Ir

Fj(xj)− (nr − 1), sup
t

{
Gr(t) +

∑
j∈Ir

(Fj(t)− Fj(xj))+
})
.

(2.38)

The bounds in (2.37) imply that the distribution function F = FX of the risk vector is
bounded by

F S(x) :=
( m∑
r=1

F S
r (xIr)− (n− 1)

)
+
6 F (x) 6 min

r=1,...,m
F
S

r (xIr) =: F
S
(x). (2.39)

These estimates allow to apply the method of improved standard bounds. This method
was introduced in Williamson and Downs (1990), Denuit et al. (1999), Embrechts et al.
(2003), Rüschendorf (2005), Embrechts and Puccetti (2006), see also (Puccetti and Rü-
schendorf 2012, Theorem 3.1).

Theorem 2.9 (Tail risk of sum under subgroup max information). Let the risk vector X
satisfy condition (DF) for the subgroup maxima T1, . . . , Tm in (2.24), then

P
( n∑
i=1

Xi 6 s
)
>
∨

F S(s), (2.40)

where
∨

denotes the sup-convolution.

Remark 2.10. Similarly we get a lower bound for the tail risk of the sum. Denoting the
survival function of F (r) by F̂ r and defining

F̂ S
r (x) = max

(
0,
∑
j∈Ir

F j(xj)− (nr − 1), sup
t

(
Gr(t)−

∑
j∈Ir

(
F j(t)− F j(xj)

)
+

))
we obtain

P
( n∑
i=1

Xi > s
)
>
∨

F̂ S
r (s). (2.41)

We next consider an example for the application of the (DF) condition to an opti-
mization problem for stop loss premia.

Example 2.11 (Stop loss premia for a portfolio with additional sum information). As-
sume that X = (X1, X2) is a risk vector with marginals X1 ∼ F1, X2 ∼ F2 and assume
that the distribution of T (X) = X1+X2 is known to be G1, i.e. we make the (DF) assump-
tion for T1 = T . Our aim is to determine under this condition the maximum stop loss
premium for the portfolio 2X1+X2, i.e. to determine MDF(ϕs) for ϕs(x) = (2x1+x2−s)+.
With the mean excess functions defined for a random variable X by πX(t) = E(X − t)+
the problem can be written in the form

π2X1+X2(t) = max (2.42)
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under assumption (DF), as specified above.

Note that for all a1, a2, a3 > 0 with

a1 + a3 = 2 and a2 + a3 = 1 and for all u = (ui) with u1 + u2 + u3 = s (2.43)

we have

(2x1 + x1 − s)+ 6 (a1x1 − u1)+ + (a2x2 − u2)+ + (a3(x1 + x2)− u3)+. (2.44)

This inequality implies taking expectations and infima

MDF(ϕs) = sup{E(2X1 +X2 − s)+; X satisfies (DF)}

6 inf
{
a1πX1

(u1
a1

)
+ a2πX2

(u2
a2

)
+ a3πX1+X2

(u3
a3

)
; a, u satisfying (2.43)

}
(2.45)

By assumption DF for T the excess functions are known. This dual problem can be solved
for distributions with analytical form of the mean excess functions involved.

In the following application for the method of dual bounds we consider the case where
additional to the marginals also the covariances

σij = Cov(Xi, Xj) = EXiXj − µiµj, µi = EXi, (2.46)

are specified. This corresponds to assumption (EF) for Tij(X) = XiXj with sij = EXiXj

= σij +µiµj. From Proposition 2.4 we obtain the improved upper bounds formulated here
for a function ϕ of the risk vector (as in Remark 2.6).

Theorem 2.12 (Risk bound with covariance information). a) Let the risk vector X sat-
isfy additionally the moment information (EF) EXiXj = sij, 1 6 i 6 j 6 n, then for
a risk function ϕ holds

MEF(ϕ) 6 UEF(ϕ) = inf
{ n∑

i=1

∫
fidFi +

n∑
i,j=1

αijsij; fi ∈ L1(Fi), αij ∈ R,

ϕ 6
n∑
i=1

fi(xi) +
∑

αijxixj

} (2.47)

b) Under (EF6) the inequality (2.47) holds with αij ∈ R+.

Remark 2.13. a) For certain classes of functions ϕ the exact duality in (2.47) is stated
in Rüschendorf (2017a).

b) Considering as in Bernard et al. (2015) ϕ = 1{
∑n

i=1 xi>s}, the tail risk of the sum
functional and assuming that besides the marginals Fi it is known that

ES2
n 6 s2 (2.48)

or, equivalently, VarSn 6 α2 = s2 − µ2, µ = ESn, then the dual corresponding to
(2.47) simplifies to the form

UEF6
(s) = inf

{ n∑
i=1

∫
fidFi + αs2; α > 0, fi ∈ L1(Fi),

1{
∑n

i=1Xi>s} 6
n∑
i=1

fi(xi) + α
( n∑
i=1

xi

)2} (2.49)
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In Bernard et al. (2017) good upper bounds for this case are given. In comparison
(2.49) gives theoretical sharp upper bounds which can be evaluated however only in
strongly relaxed form.

c) Model independent price bounds. In a similar way the method of dual bounds in
this chapter also applies to various other types of constraints. For robust model inde-
pendent price bounds in recent years dual representations with martingale constraints
have been developed (see Acciaio et al. (2016) and Beiglböck et al. (2013)). These
constraints are due to the fact that reasonable pricing measures have the martingale
property. The dual method in this chapter can be extended to infinitely many constraints
to deal with the problem of determining robust model independent price bounds i.e. with
model independent price bounds based solely on the martingale constraint additional to
the marginal structure over time.
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C. Bernard, L. Rüschendorf, S. Vanduffel, and R. Wang. Risk bounds for factor models. Finance
and Stochastics, 3:631–659, 2017.
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M. Úbeda Flores et al., editors, Copulas and Dependence Models with Applications, pages
181–202. Springer, 2017a.
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