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Abstract

In this paper we review a series of developments over the last 15 years in which a
general method for the approximative solution of finite discrete time optimal stopping
and selection problems has been developed. This method also enables us to deal
with multiple stopping and selection problems and to deal with stopping or selection
problems for some classes of dependent sequences.

The basic assumption of this approach is that the sequence of normalized ob-
servations when embedded in the plane converges in distribution to a Poisson or to
a cluster process. For various classes of examples the method leads to explicit or
numerically accessible solutions.
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1 Introduction

Optimal stopping and best choice problems are a classical subject in probability theory
whose theory is expounded in a series of by now classical text books, such as Chow,
Robbins, and Siegmund (1971), Neveu (1975), Shiryaev (1978) or Ferguson (2007). The
optimal stopping problem for a discrete time sequence X1, X2, . . . , Xn, n ≤ ∞ is to
determine

V n = sup
τ∈γn

EXτ ,

the optimal stopping value as well as optimal stopping times τ ∈ γn. Classical examples
of this problem are e. g., the optimal choice problem, the parking problem, the house
selling problem or the (Sn/n)-problem with applications to deriving prophet (and other)
inequalities.

Some basic methods for finding solutions are the martingale approach based on Snell’s
envelope, the Markovian approach based on super-harmonic dominating functions and in
continuous time relations to free boundary problems resp. approximations using Brownian
motions or extremal processes.

In particular, the method of backward induction for n < ∞ allows in principle to
determine optimal stopping times and the optimal stopping value. Defining by backward
induction the sequence,

Wn := Xn, Wi := Xi ∨ E(Wi+1 | Fi), i = n− 1, . . . , 0,
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in reverse time, then the optimal stopping time is given by

τ∗ = min{1 ≤ i ≤ n; Xi ≥Wi}.

A problem however arises with the calculation of (Wi). In many cases, this prevents the
use of backward induction in order to get explicit solutions.

In a series of papers it has been noticed in the literature that optimal stopping prob-
lems are easier to solve in a Poisson context. This was observed for the house selling
problem by Karlin (1962), Elfving (1967) and Siegmund (1967). Finite intensity of the
Poisson process enables us to treat such a problem as a stationary Markov case and to
derive a differential equation for the optimal boundary. Flatau and Irle (1984) used em-
bedding of max sequences in extremal processes to derive asymptotics and Bruss and
Rogers (1991) as well as Saario and Sakaguchi (1992), Gnedin and Sakaguchi (1992)
and Gnedin (1996) embedded optimal selection problems for the i. i. d. case in Poisson
processes in the plane (with stationary intensity), and identified the asymptotic value of
solutions with the value of optimal selection (stopping) in homogeneous Poisson processes.
Also, approximations for optimal stopping for the Sn/n problem have been established
by stopping Brownian motion.

In this paper we describe a general approximation method for the optimal stopping
of sequences by the optimal stopping of a continuous time point process. The idea of
developing the method of approximation using optimal stopping resp. selection in limiting
point processes in the plane is founded on a basic paradigm used in asymptotic statistics.
After a normalization (Xn,i)1≤i≤n of the underlying sequence as e. g. of the form Xn,i =
(Xi − bn)/an, the analysis is based on the following scheme:

statistical experiment → limiting experiment
↑ ↓

asymptotic optimal optimal statistical
procedure ← procedure

In the case of optimal stopping resp. selection problems this program amounts to the
following 4 steps:

1) Convergence of the embedded point processes

Nn =
n∑
i=1

ε( i
n
,Xn,i)

D−−→ N =

{
P(µ),

cluster process.

This step determines the limiting experiment.

2) Solving the optimal stopping problem in the limit model.

3) Approximation of the stopping problem.
This step amounts to the convergence of the statistical experiment.

4) Construction of asymptotically optimal stopping times.

While in a series of papers in the literature point process convergence has been used
as a tool to derive asymptotics of stopping time distributions and values, the aim of our
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method is to systematically use the analysis of the limit process to derive approximately
optimal stopping times. Some examples in the literature in which this has been done
by embedding techniques were mentioned before. This approach has been described in a
series of papers in Kühne and Rüschendorf (1998–2003) and in Faller and Rüschendorf
(2011–2013).

Particularly influential for developing this approach were some papers of Kennedy
and Kertz (1990–1992) considering the stopping of an i. i. d. sequence X1, . . . , Xn. The
backward induction then amounts to

vn−1 = EXn, vn−k = E(Xn−k+1 ∨ vn−k+1), k = 2, . . . , n− 1,

with optimal stopping times

τ∗n =

{
min{k < n; Xk ≥ vk} if 6= ∅,
n else.

Kennedy and Kertz obtained the asymptotics of vn by approximating the corresponding
functional of X1, . . . , Xn by the functional of the limiting Poisson process using point
process convergence. However, they did not base their asymptotics on an analysis of the
limiting Poisson process model. The challenge and innovation involved in our approach
comes from the fact that the limit Poisson process or cluster process model typically
has infinite intensity on a lower boundary curve, which was not the case considered in
previous approaches.

In the following, we go through the four steps of our general scheme and then discuss
various applications and extensions, such as e. g. to multiple stopping resp. best choice
problems. A fascinating consequence of this approach is the possibility to obtain, under
quite general conditions, explicit or numerically tractable approximations for optimal
stopping/choice problems. Details for the following results, along with several further
extensions and examples, are given in the papers Kühne and Rüschendorf resp. Faller
and Rüschendorf as cited above, as well as in the dissertations of Kühne (1997) and Faller
(2009).

2 Approximation of point processes

The basic assumption of the approach in this paper is convergence of the embedded point
processes

Nn =
n∑
i=1

ε( i
n
,Xn,i)

D−−→ N =

{
P(µ),

cluster process.
(2.1)

There are several relevant constraints and classes of examples ensuring condition (2.1).

2.1 Extreme value distributions for i. i. d. sequences

The classical maximum central limit theorem of Fisher, Tippett and Gnedenko for i. i. d.
sequences states that only three types of limiting distributions – the extreme value distri-
butions – arise as limits of normalized maximaMn := maxi≤nXi, i. e. for some sequences
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(an) and (bn) one has

Mn − bn
an

D−−→ G, G ∈ {Λ,Φα,Ψα}, (2.2)

where F ∈ D(G), i. e., F is in the domain of G, and

Λ(x) = e−e
−x
, x ∈ R,

Φα(x) = exp(−x−α), x ≥ 0, α > 0, and
Ψα(x) = exp((−x)α), x < 0, α > 0

are the Gumbel, Fréchet, and Weibull distributions respectively. This convergence result
is closely connected with convergence of the embedded point processes in (2.1) for Xn,i =
(Xi − bn)/an to a Poisson point process P(µ), where the normalizations an, bn are from
the max CLT in (2.2). More precisely (see Resnick (1987)), the following holds:

Nn
D−−→ N

d
= P(µ) with intensity measure µ = λ[0,1] ⊗ ν, (2.3)

where for

G = Λ, ν(x,∞] = e−x, x ∈ (−∞,∞],

G = Φα, ν(x,∞] = x−α, x ∈ (0,∞],

G = Ψα, ν[x,∞] = (−x)α, x ∈ (−∞, 0].

As a result, the limiting Poisson process has infinite intensity at the lower boundary (see
Figure 2.1).

normalizationδ

0 t 1

N

Figure 2.1 Infinite intensity at lower boundary

The limit result in (2.1) can be extended to several inhomogeneous cases as, such to
the case Xi = ciYi + di with discounting and observation costs. Under some stabilization
conditions on the costs ci and di, such as e. g. (c[nt])/cn → γt and dn/(ancn) → b
one obtains point process convergence as in (2.3) to a transformed Poisson process with
modified intensity.
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2.2 Moving average processes

There is a rich variety of convergence results for finite or infinite moving average processes
(and thus also for autoregressive sequences)

Xn =
∞∑
j=1

cjYn−j+1 resp.
k∑
j=1

cjYn−j+1

for some i. i. d. sequence (Yi) see Rootzén (1978), Davis and Resnick (1985, 1988, 1991)).
We just state two special cases.

2.2.1) If, for example,
∑
|cj |δ < ∞ for some 0 < δ < α < 1 and cj ≥ 0, and if

F ∈ D(Φα), then for some normalizations an

Nn =
∑
i

ε
( i
n
,
Xi
an

)

D−−→ N =
∑
k

∑
i:ci 6=0

ε
τk,ciỸk

. (2.4)

N is a cluster process with deterministic clusters and underlying basic Poisson process
Ñ =

∑
ε
(τk,Ỹk)

.

τ
k

τ
l

deterministic

cluster

Figure 2.2

2.2.2) If Xi = Yi + Yi−1 and F ∈ D(Λ) ∩ Sγ(1), i. e. (1− F (x− y))/(1− F (x))→ eγy,
then

Nn
D−−→ N =

∑
k

2∑
i=1

ε
(τk,Ỹk+Zk,i)

, (2.5)

where Zk,i ∼ F are independent. N is a cluster process with random clusters.

2.3 Stationary Markov chains

A point process convergence result of the form (2.3) for the case of stationary Markov
chains is given in Perfekt (1994).
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2.4 General dependent sequences

Under the assumption of asymptotic independence on the compensator, a general con-
vergence result for embedded point processes to a Poisson process was given in Durrett
and Resnick (1978) and Liptser and Shiryaev (2001).

Theorem 2.1 If (Xn,i,An,i)1≤i≤n is a triangular array and µ ∈ M([0, 1] × R) satisfies
µ([0, 1]× {x}) = 0, ∀x, then:

dnte∑
i=1

P (Xn,i > x | An,i−1)
P−−→ µ([0, t]× [x,∞)) and

sup
n
P (Xn,i > x | An,i−1)

P−−→ 0, imply:

Nn =
∑

ε( i
n
,Xn,i)

D−−→ N ∼ P(µ).

3 Optimal stopping of Poisson processes

In this section we consider optimal stopping problems for Poisson processes which arise
as the limits of embedded point processes. The main result is that this problem can be
reduced to a differential equation of first order which can be solved in several classes of
interesting examples. The solution in the case of Poisson processes can be extended to
the class of cluster processes (see the corresponding literature as mentioned above).

We consider a Poisson point process N =
∑

k ε(τk,yk) ∼ P(µ) on Mf = {(t, y) ∈
[0, 1]×R; f(t) < y}, where f is a decreasing function on [0, 1] and µ is a Radon measure
on Mf . In the max stable case we have f ≡ 0 or f ≡ −∞. So the Poisson process
may have infinite intensity on the lower boundary as in the max stable case (2.3), see
Figure 3.1.

t

1
f

Mf

Figure 3.1 Point process with accumulation points at the lower boundary f

A stopping time τ for N is assumed to satisfy

— {τ ≤ t} ∈ At = σ(Ns, s ≤ t) = σ({(τi, yi); τi ≤ t}), ∀ t ≤ 1,
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—
⋃
i
{τ = τi} ∪ {τ = 1} = Ω.

We denote by yτ := sup{yk; τk = τ} the maximal payoff at τ and by Kτ the stopping
index of τ . Let

u(t) = sup{EyKτ ; τ a stopping time ≥ t} (3.1)

denote the optimal stopping curve. For τ = 1 we define the guaranteed value
yKτ = c ≥ f(1) and without loss of generality assume c = f(1). More generally, we
define

u(t, x) = sup{E(yKτ ∨ x); τ a stopping time ≥ t} (3.2)

be the the optimal stopping value after time t with guaranteed value x.

We state three types of assumptions:

(S) Separation Condition
A curve v satisfies the separation condition if v − f ≥ ct > 0 on [0, t] for all t < 1.

(D) Differentiability Condition
µ has a density on Mf , i. e. µ/Mf = hf λ

2
/Mf and

(t, z) −→
∫ ∞
z

∫ ∞
x

hf (t, y)dy dx =

∫ ∞
z

G(t, x)dx

is continuous on Mf . The function G is called the intensity function.

(B) Boundedness condition E sup
k
yk <∞

The following convergence theorem for threshold stopping times is a basic tool in
many of the following results.

Theorem 3.1 (Convergence of threshold stopping times)
Assume that

a) Nn =
∑
ε( i
n
,Xn,i)

D−−→ N =
∑
ε(τi,yi) ∼ P(µ)

b) vn ↓ v, where v satisfies the separation condition (S)

c) Condition (D) for the intensity measure µ

and define the threshold stopping times

Tn = τvnn = inf{i ≤ n; Xn,i ≥ vn( in)}, T = τv = inf{τi; yi ≥ v(τi)}.

Then we have joint convergence of the stopping times and stopping values, i. e.(
Tn
n
,Xn,Tn

)
D−−→ (T, yKT ).

The proof of this theorem makes ample use of the Skorohod Theorem and the contin-
uous mapping theorem. The following result characterizes optimal stopping values and
optimal stopping times using a first order differential equation.
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Theorem 3.2 (Optimal stopping of a Poisson process)
Let N ∼ P(µ), and assume that (B) and (D) hold and c = f(1).

a) If u satisfies condition (S), then T = τu is an optimal stopping time.
If µ({(t, y); y = u(t)}) = 0, then uniqueness holds.

b) If u satisfies condition (S), then u is a solution of the following first order differential
equation u′(t) = −

∫ ∞
u(t)

∫ ∞
x

hf (t, y)dy dx, t < 1,

u(1) = c = f(1).

(3.3)

c) If c > −∞, if v satisfies condition (S) and is a solution of (3.3), then v is an optimal
stopping curve.

d) c = −∞. If (3.3) has a unique solution v, v(t) > −∞, ∀t < 1, then v is a solution of
the optimal stopping problem.

e) If c = −∞ and v solves (3.3), then v(t) ≤ Eyτu(t), i. e. the optimal stopping curve is
the largest solution of (3.3).

Proof: The idea of the proof is as follows:

a) For a dyadic decomposition, define Zn,i := M i−1
2n

, i
2n
, to be the maximum value in the

dyadic interval ((i− 1)/(2n), i/(2n)], then

1) The stopping problem for (Zn,i) majorizes the stopping problem for N , ∀n.
2) Let wn denote the optimal stopping boundary for (Zn,i) extended as a curve on

[0, 1]. Then wn ↓ w ≥ u.
3) We establish point process convergence of the point process Nn :=

∑
ε( i
n
,Zn,i)

to
N , i. e.

Nn :=
∑

ε( i
n
,Zn,i)

D−−→ N.

With T̃n := τwn , T̃ = τw we, therefore, obtain from the threshold convergence
theorem ( T̃n

n
,Z

n,T̃n

)
D−−→ (T̃ , y

KT̃ ).

This implies with the help of Fatou’s theorem.

lim supEZ
n,T̃n
≤ Ey

KT̃ ≤ u(0).

But on the other hand from the majorization property we get:

EZ
n,T̃n

= wn(0) ≥ u(0) and thus w(0) = u(0).

This argument can be extended to show that w(t) = u(t) for all t and thus T̃ = T is
an optimal stopping time.

If T is an optimal stopping time for N , then we find by an improvement argument
that T is identical to the threshold stopping time τu with the optimal stopping curve u
as its threshold function. This step also justifies calling u the optimal stopping curve.
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b) From the definition of τu, the following holds

P (T ≥ t) = P (τu ≥ t) = e−µu([0,t]×R).

This implies using partial integration and the intensity of the Poisson process

u(s) =

∫
yKT/T≥sdP =

∫ 1

s
E(yKT | T = t)dP T (t)

=

∫ 1

s
(u(t) +

∫ ∞
u(t)

K([y,∞), t)dy)
dµ1

dλ
(t)e−µ

1([s,t])dt,where

K([x,∞), t) :=

∫∞
x∨u(t)

dµ
dλ2

(t, y)dy∫∞
u(t)

dµ
dλ2

(t, y)dy
. This implies the differential equation in (3.3).

c), d) One gets uniqueness of the solution of (3.3) for a modification of µ satisfying the
separation condition and then one uses a comparison argument.

e) This point needs a more involved argument. For the details, we refer the reader to
Faller and Rüschendorf (2011a). 2

Solution of the differential equation (3.3) In various cases one obtains explicit or
numerically tractable solutions of equation (3.3) for the optimal boundary curve.

a) If the intensity function G(t, y) = a(t)H(y) is a function in separate variables then
equation (3.3) is of the form

ϕ′(t) = f(t)g(ϕ(t)), where ϕ(1) = y0.

This is a differential equation in separate variables. From classical theory of differential
equations, for g(y) 6= 0, this equation has a unique solution ϕ, which is characterized
as the unique solution of

G(ϕ(t)) = F (t), (3.4)

where G(y) :=
∫ y
y0

1/(g(s))ds and F (x) :=
∫ x
1 f(t)dt. In many cases of interest equa-

tion (3.4) can be solved explicitly or numerically.

b) In several cases of optimal stopping with discounting and observation costs, when the
limit process is a transformed Poisson process, this leads to equations of the form

G(t, y) = H
( y

v(t)

)v′(t)
v(t)

and G(t, y) = H(y − v(t))v′(t).

(3.5)

A detailed solution theory for these classes of equations has been developed in Faller and
Rüschendorf (2011a).
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4 Approximation of optimal stopping problems

In this section we show that the basic assumption

Nn =
∑
i

ε( i
n
,Xn,i)

D−−→ N (4.1)

together with some further integrability assumptions implies convergence of the stop-
ping problems. We first consider the case of independent observations, then dependent
observations and conclude with some examples.

4.1 Approximation for independent sequences

The following example shows that convergence according to (4.1) does in general not
imply convergence of the stopping problems.

Example 4.1 Let (X ′i) be i. i. d., exponentially E(1) distributed and let (Xi) be indepen-
dent random variables with P (Xi ≥ x) = e−x, x ≥ e−i. Further, define a sequence (ai)
such that P (Xi = ai) = 1 − e−e−i where (ai) is choosen such that EX1 = 0, EX2 = a1,
EX3 = a2, . . . As consequence one finds an → −∞.

a i 0 e−i

Figure 4.1

Then N ′n =
∑
ε( i
n
,X′i−logn)

D−−→ N ∼ P(µ), µ = λ[0,1] ⊗ ν, ν([x,∞]) = e−x; also, we
have

Nn =
∑

ε( i
n
,Xi−logn)

D−−→ N ∼ P(µ).

But these problems have different stopping behavior. Tn = 1 is an optimal stopping time
for (Xn) with EXTn = 0, while the optimal stopping time (T ′n) for (X ′n) satisfies the
following:

EX ′T ′n − log n→ c,
T ′n
n

D−−→ T ′,

where T ′ is an optimal stopping time for the limiting Poisson process (see Kennedy and
Kertz (1990, 1991) and Kühne and Rüschendorf (2000b)).

We introduce the following additional integrability assumptions:
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(G) Uniform integrability
{(Mn)+} is uniformly integrable.

(L) Lower curve condition (in the case f(1) = −∞)
For the optimal stopping curve un(s) = un,[ns+1]∧n assume:

limun(1− ε) > −∞, ∀ε > 0.

Then the following approximation result holds:

Theorem 4.2 (Approximation of optimal stopping, independent observations)

Let (Xn,i) be independent and assume condition (G), as well as basic point process con-
vergence

Nn =
∑

ε( i
n
,Xn,i)

D−−→ N = P(µ) on Mf .

Let u denote the optimal stopping curve for N , T = τu the corresponding threshold stop-
ping time, and assume that u satisfies conditions (S) and (D). Then the following holds:

a) If un(1) → c = f(1) ∈ R, then un(s) → u(s), uniformly on [o, t], ∀t < 1. Further-
more, (

Tn
n , Xn,Tn ,Mn,1,Tn−1 ,Mn,Tn+1,n

) D−−→ (T, yKT ,M0,T−,MT+,1) ,

i. e. the stopping problem converges, and u is a solution of the differential equationu
′(t) = −

∫ ∞
u(t)

∫ ∞
x

hf (t, y) dy dx

u(1) = c = f(1)

(4.2)

b) If un(1)→ −∞, and assuming conditions (L), (D), and (S), then for all subsequences
(n′) ⊂ N with un′ → û the following holds: û solves (4.2) with û(1) = −∞.

If (4.2) has a unique solution, then un → u.

c) Under the lower uniform integrability condition (L′) in Theorem 4.4, it also holds in
the case un(1)→ −∞ that un → u.

The proof uses compactness and subsequence arguments, followed by the threshold
convergence theorem and the construction of a comparison stopping time. The lower
uniform integrability condition (L′) will be detailed in the following subsection.

4.2 Approximation for dependent sequences

In such stopping problems the following prediction effect may happen.

Example 4.3 Let (Tn) be a sequence of optimal stopping times for the case of an i. i. d.
sequence (Yi) where Yi ∼ E(1). For nk = 102

k let mk ∈ {nk−1 + 2, . . . , nk} be such that
Ymk = max{Ynk−1+2, . . . , Ynk} and define the dependent sequence

Xi =

{
Yi, i 6= mk − 1,

−1, i = mk − 1.
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Thus observing −1 in the sequence (Xi) allows us to predict that the next observation is
a block maximum. Define

T 0
k = inf{i ∈ (nk−1 + 1, . . . , nk); Xi = −1}+ 1,

to be a stopping time for (Xi)i≤nk . Then

limEXT 0
k
− log nk = lim(EMnk − log nk) = γ > 0,

but limE(YTnk − log nk) = 0.
So both sequences (Xi) and (Yi) have completely different stopping behavior, which is

caused by the prediction effect, even if the induced point processes have the same limit
behavior.

Consider a sequence (Xn,i,An,i)1≤i≤n and a Poisson process N d
= P(µ) with optimal

stopping curve u. We state the following assumptions:

Asymptotic conditional independence

(A) PNn(· ∩([t,1]×R))|An,[nt]−1
D−−→ PN(· ∩([t,1]×R))

(A′) max
s<i/n≤t

Xn
i ∨ f(s)

D−−→ sup
s<τk≤t

yk ∨ f(s), 0 ≤ s < t ≤ 1.

(L′) Integrability assumption
Assume there exists a sequence (un,i) ↓ i such that un,[ns] → u(s), s < 1.
Furthermore, for T ′n := inf{i : Xn,i ≥ un,i} the following holds:

lim
t→1

limnE | Xn,T
′≥[ns]
n

|1{
T
′≥[ns]
n ≥nt

}= 0.

(L) Lower curve condition
For the Snell hull γn,i := max{Xn,i, E(γn,i+1 | Ani)}, the following holds

lim Eγn,[nt] > −∞, 0 ≤ t < 1.

(A) and (A′) are asymptotic independence assumptions, which prevent the prediction
effect and typically are met in our applications. (L′) and (L) are integrability conditions
on the stopping problem.

Then the following approximation holds for dependent sequences.

Theorem 4.4 (Approximation of optimal stopping, dependent observations)
Let Nn =

∑
ε( i
n
,Xn,i)

D−−→ N = P(µ) on Mf and assume conditions (D), (A′), (G), and
(L′). Furthermore, assume that the optimal stopping curve u is the unique solution of the
differential equation (3.3). Then:

un(t, x)
P−→ u(t, x), ∀(t, x) ∈ [0, 1)× [c,∞)

and
(
Tn
n , Xn,Tn

) D−−→ (T, yKT ), EXn,Tn → u(0) = EyKT .

Furthermore, (T ′n) is an asymptotically optimal sequence of stopping times.
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Versions of this result also hold true for cluster processes and without the uniqueness
condition. Also, some examples where conditions on the asymptotic independence do not
hold are dealt with for special types of dependent sequences.

4.3 Examples

We illustrate the results of this section by a sequence of examples. In the case where (Xi)
are i. i. d. with distribution function F ∈ D(G) for a max-stable G, the optimal reward
sequence (vi) satisfies the backward induction (Bellman) equation

vn = EXn, vi−1 = Emax{Xi−1, vi}, i = n, . . . , 2.

The asymptotics of (vi) = (vni ) in this case have been given by Kennedy and Kertz (1990,
1991) based on a point process approximation.

a) Independent sequences with discounting or observation costs
Let Xi = ciYi + di with F ∈ D(G) and assume that

Nn =
∑

ε
( i
n
,
Xi−b̂n
ân

)

D−−→ N
d
= P(µ),

where b̂n = cnbn + dn, ân = ancn and thus

Xi − b̂n
ân

=
ci
cn

Yi − bn
an

− dn
ancn

+
ci − cn
cn

bn
an
.

Assume that uniformly in t : (c[nt])/cn → γt, dn/(ancn)→ d, then γt = tc. All these cases
have been dealt with and lead to explicit results.

We explain these type of results in the particular case where only observation costs
are present, i. e. F ∈ D(Λ), Xi = Yi + di, 0 < di.

If (dn − d[nt])/an → γt, then one finds that γt = −c log t, c ∈ R and b̂n = bn + dn,
ân = an. In consequence, we obtain point process convergence

Nn
D−−→ N = P(µ), with the intensity given by

dµ(· × (y,∞))

dλ
= e−y tc.

Let c > −1, and wn be a (1 − 1/n)-quantile, i. e. n(1 − F (wn)) → 1 and let (Tn) be a
sequence of optimal stopping times, then we get the following asymptotics of the optimal
stopping values and stopping distribution.

1) Optimal stopping values and distribution:
EXTn − b̂n

an
→ − log(1 + c) and

P
(XTn − b̂n

an
≤ x

)
→

{
1− 1

2
e−x

1+c , x ≥ log(1 + c),
1
2e
x(1 + c), x > log(1 + c).

The case c = 0 corresponds to the i. i. d. case. In consequence, we obtain the following:

2) Prophet inequality:
EMn−EXTn

an
→ γ = 0.577 . . . , the Euler constant; the limit being independent of c and

EMn−bn
an

→ EM = γ + log(1 + c).



14 4 Approximation of optimal stopping problems

3) Asymptotic independence and distribution of the optimal stopping time, stop-
ping value and the pre- and the post-maxima. The following convergence result holds:(Tn

n
,
M1,Tn−1 − un,Tn

an
,
XTn − un,Tn

an
,
MTn+1,n − un.Tn

an

)
D−−→ (T,M0,T− − u(T ), yKT − u(T ),MT+,1 − u(T )).

Furthermore, the limiting variables are independent.

4) An asymptotically optimal stopping time sequence is given by

T ′n = inf

{
i ≤ n;

(
i ≥ n− [nε],

Xi − b̂n
an

≥ uc
( i
n

)
− u0

( i
n

)
+
wn−i − bn

an

)
or
(
i < n− [nε],

Xi − b̂n
an

≥ uc
( i
n

))}
.

5) Differential equation for optimal stopping curve:
The optimal stopping curve uc is a solution of the differential equation

u′(t) = −
∫ ∞
u(t)

e−xtcdx = −tce−u(t), t < 1,

u(1) = −∞.

This is an equation in separate variables and has the solution

uc(t) = log
1− t1+c

1 + c
.

As a result, one obtains a complete description of the asymptotic optimal stopping
times, distributions, and stopping values. Similar explicit results have also been ob-
tained for other cases depending on the domain of attraction and the conditions on
the coefficients.

b) Moving averages
As a second class of applications, we consider some examples of moving average processes.

Let F ∈ D(Φα), α > 1, let (Yi) be i. i. d., and consider the moving average sequence

Xi =
∞∑
j=1

cjYi−j+1, with cj ≥ 0,
∞∑
j=1

cδj < ∞ for some 0 < δ < 1. W. l. o. g. assume that

sup ci = 1. Then the embedded point processes Nn converge,

Nn =
∑

ε( i
n
,
Xi
an

) D−−→ N =
∑
k

∑
i:ci 6=0

ε(τk,ciyk).

The limit N is a cluster process based on the Poisson process N ′ =
∑
ε(τk,yk) with

intensity measure µ = λ⊗ ν, ν([x,∞)) = x−α, x > 0.
For this process we can verify the independence condition (A′) and obtain as a con-

sequence of Theorem 4.4 the following optimal stopping result:
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Theorem 4.5 (Optimal stopping of moving averages) Under the conditions above,
the following hold:

a)
EXTn

an
→
(

α

α− 1

)1/α

b) P
(
XTn

an
≤ x

)
→


1− x−α 1

2−1/α , x ≥
(

α
α−1

)1/α
α

2α−1(α−1α )
α−1
α xα−1, 0 < x < ( α

α−1),

0, x ≤ 0

c) T ′n := inf
{
i ≥ w + 1; Xi ≥ an c1cmuα

(
i
n

)
Xi−1 ∨ · · · ∨Xi−w <

1
2an

c1
cm
uα
(
i
n

)}
+m− 1

is an asymptotically optimal sequence of stopping times, where m = index of sup cj and
w = max{i : ci ≥ c1}.

The idea of the construction in c) is to wait until the first crossing of the boundary
and then until a point in the cluster with the greatest coefficient appears. The optimal
stopping curve of the Poisson process N ′ has the following explicit form

uα(t) =
( α

α2 − 1

)1/2
(1− t1+α)1/α.

As a result we thus have an explicit description of the approximative optimal stopping
behavior. Similar explicit results have also been obtained in the other domains under
conditions on the coefficients which lead to a deterministic cluster.

In a limit case with a random cluster (as in Section 2.2) a modification of this
idea works. One compares the observed point in a cluster with the expected value of
future cluster points and with the stopping curve. This leads to an additional estimation
problem to be solved for the expected values of future cluster points (for more details see
Kühne and Rüschendorf (2003a,b)).

c) Chain dependent sequences (hidden Markov chain)
Let (Jn) be an irreducible Markov chain on {1, . . . ,m} with transition probabilities (pi,j)
and stationary distribution (πi). Furthermore, let F1, . . . , Fm be distribution functions.

A sequence (Xn) is called chain dependent (hidden Markov chain) w. r. t. (Jn) if

P (Jn = j,Xn ≤ x | J0, . . . , Jn−1, X1, . . . , Xn−1)

= P (Jn = j,Xn ≤ x | Jn−1) = pJn−1,j FJn−1(x).

For chain dependent sequences, we obtain as a consequence of our approach the fol-
lowing optimal stopping result:

Theorem 4.6 (Optimal stopping of hidden Markov chains)
Let (Xi) be a chain dependent sequence and assume that there exist an and bn such that

n
m∑
i=1

πiF i(anx+ bn)→ ν(x,∞). Then:
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a) Nn
D−−→ N = P(λ⊗ ν), where e−ν(x,∞) is an extreme value distribution function

b) If ν([x,∞)) = e−x
α, α > 1, then

b1)
EXTn

an
→
(

α

α− 1

)1/α

b2) P
(
XTn

an
≤ x

)
→


1− 1

2−1/αx
−α, x ≥

(
α
α−1

)1/α
α

2α−1
(
α−1
α

)α−1
α xα−1, 0 < x < ( α

α−1)1/α

0, x ≤ 0

b3) T ′n := inf

{
i ≤ n : Xi ≥

(
α

α− 1

)1/α(
1− i

n

)1/α
}

is an asymptotically optimal sequence of stopping times.

The proof of a) follows from the general limit theorem for point process convergence
in Theorem 2.1. The optimal stopping curve for a limit Poisson point process is given by:
u(t) = (α/(α− 1))1/α (1− t)1/α.

For this example, the independence condition (A) can be verified and the approxi-
mation theorem for optimal stopping in the case of a dependent sequence, Theorem 4.4
applies and gives the explicit results in b).

d) maxAR(1)-sequence
For an integrable i. i. d. sequence (Yi) with distribution function F ∈ D(Φα), α > 1 and
an independent scaling sequence (Zi), 0 ≤ Zi ≤ 1, define a max AR(1)-sequence (Xi) by

Xi = Zi(Yi ∨Xi−1),

where X0 is a real random variable with EX+
o < ∞. The max in the definition leads

to an increase which however is compensated by the downscaling factors (Zi). Then we
have the following optimal stopping result.

Theorem 4.7 (Optimal stopping of maxAR(1)-sequence)
Assume that 1

n

∑n
i=1EZ

α
i → d and EZαi ≤ β < 1. Then

EXTn

an
→ d

(
α

α− 1

)1/α

and T ′n := inf
{
i ≤ n;Xi ≥ (α/(α− 1))1/α (1− i/n)1/α

}
is an asymptotically optimal se-

quence of stopping times.

The proof of Theorem 4.7 is based on a modification of the approach to deriving
Theorem 4.4. In this example, the point process convergence ofNn is not obvious. Instead,
we use a comparison with the stopping of a related sequence defined by X̃i = ZiYi. Then
the corresponding embedded point processes Ñn can be shown to converge as follows:

Ñn =
∑

ε
( i
n
,
X̃i
an

)

D−−→ N = P(µ).
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The optimal stopping curve of N is given by u(t) = d(α/(α− 1))1/α(1− t)1/α. From the
approximation result in Theorem 4.2 we obtain that the associated sequence

T̃ ′n = inf

{
i; X̃i ≥ anu

(
i

n

)}
of stopping times is asymptotically optimal for the stopping problem w. r. t. (X̃i) and
thus E(X

T̃ ′n
)/an → u(0) = d(α/(α− 1))1/α.

In the next step, we obtain using uniform integrability that

lim
Eγn,1
an

≤ u(0).

This implies that u(0) is identical to the asymptotically optimal stopping value for the
majorizing sequence (X̃i). In the final step, we prove the asymptotic optimality of the
sequence (T ′n) using an appropriate comparison.

5 Approximation of best choice problems

An interesting class of optimal stopping problems are best choice problems. We consider
in this section the best choice problem for independent sequences (Xi), i. e. in the full
information case. The probability of choosing the best observation is given by

vn = P (XTn = Mn) = sup
τ∈γn

P (Xτ = Mn), (5.1)

where Mn = max{X1, . . . , Xn} and γn = {τ stopping time; τ ≤ n}. Let Tn be optimal
stopping times, n ∈ N. Using the normalization Xn,i = (Xi − bn)/an and point process
convergence

Nn =
n∑
i=1

ε( i
n
,Xn,i)

D−−→ N
d
= P(µ), (5.2)

where N is a Poisson process on Mc = [0, 1] × (c,∞) with intensity measure µ, we
approximate the best choice problem for the sequence X1, . . . , Xn by the best choice
problem for the Poisson point process N on Mc.

In the i. i. d. case, a classical result of Gilbert and Mosteller (1966) states that
vn ↓ 0.58016 . . . , see also Bruss and Rogers (1991) and Gnedin (1996). Using a sim-
ple splitting strategy, one gets v2 = 3/4. For the stopping problem without information
(the secretary problem), the classical result states that vn → 1/e.

Before stating a general optimal best choice result, we consider a special case the best
choice problem with discounting, since in this case the basic arguments are simple to
explain. Let (Yi) be an i. i. d. sequence with F ∈ D(Ψα), α > 0, ωF = 0, and let (cn) be
a sequence with c[nt]/cn → t−c, c > −1/α (see Section 4). Define

Xi = ciYi, Mn = max{X1, . . . , Xn} and

Nn =
∑

ε
( i
n
,
Xi
an

)
, an = cnan.

Then we establish the following explicit best choice result.
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Theorem 5.1 (Optimal best choice with discounts)
Under the above conditions the following hold:

a) vn → 0.58016 . . .

b) T ′n = inf

{
i ≤ n;Xi ≥ an

(
b

1−( i
n
)1+cα

)1/α

, Xi = Mi

}
is an asymptotically optimal sequence of stopping times. Here b = 0.804352 . . . is the

solution of
∞∑
i=1

bi/(i! i) = 1.

Idea of the proof: For the proof we use the following steps:

1) Nn
D−−→ N = P(µ), where the intensity measure µ is given by

µ([0, t]× [x,∞)) = (−x)α
t1+cα

1 + cα
, x ≤ 0.

2) p = P (optimal choice in Poisson PP) = 0.5801

The proof is obtained by a transformation to the stationary case

3) lim vn ≤ p

For the proof of this inequality, we obtain from the Bellman equation that the optimal
stopping time is a threshold stopping time. Now we use the threshold convergence
theorem and choose an appropriate subsequence to obtain the stated inequality.

4) We finally check that P (XT ′n = Mn)→ p using point process convergence.

1)–4) imply the result stated in Theorem 5.1.

The following theorem determines approximations to best choice probabilities and
gives approximative optimal stopping times for the case of general independent sequences
with infinite intensity

Theorem 5.2 (Independent sequences, best choice, infinite intensity)
Let Nn

D−−→ N
d
= P(µ) and assume

(I) Intensity condition
∀t ∈ [0, 1] holds: µ((t, 1]× (c,∞)) =∞

Then for the best choice problem for independent sequences X1, . . . , Xn the following
hold:

a) The optimal best choice stopping time T for the Poisson process N is given by

T = inf

{
τk; yk = sup

τj∈[0,τk]
yj , yk > v(τk)

}
,
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where v : [0, 1]→ [c,∞) is a solution of the equation∫ 1

t

∫ ∞
v(t)

eµ((r,1]×(v(t),y])µ(dr, dy) = 1, v(1) = c.

The probability of making the best choice is given by

s1 := P

(
yT = sup

k
yk

)
=

∫ 1

0
e−µ([0,r]×(c,∞])

∫ ∞
v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)

+

∫ 1

0

∫ v(r′)

c

∫ 1

r′
e−µ([0,r]×(y

′,∞])

∫ ∞
y′∨v(r)

e−µ((r,1]×(y,∞])µ(dr, dy)µ(dr′, dy′).

b) Approximation: lim
n→∞

vn = lim
n→∞

P (XTn = Mn) = s1

c) T̂n := min
{

1 ≤ i ≤ n : Xi = Mi, Xi > anv
(
i
n

)
+ bn

}
is an asymptotically optimal

sequence of stopping times.

There also exists a modified version of this result for the case of finite intensity. In
particular, these theorems have been applied to describe, in detail and in explicit form,
the probabilities of making the best choice for i. i. d. sequences (Yi) and for the related
sequences Xi = ciYi + bi with discounting and observation costs for (Yi) in the domain of
attraction of an extreme value distribution under various conditions on the coefficients.

6 Approximative solutions of multi-stopping and
multi-choice problems

The approximation approach has also been applied to approximatively solve several types
of multi-stopping and multi-choice problems. We first consider optimal two-stopping
problems of the form

V (2)(X1, . . . , Xn) = sup{EXT1 ∨XT2 ; T1 < T2 ≤ n stopping times}, (6.1)

where two choices are possible. This case was solved in Kühne and Rüschendorf (2002).
Similar results were also obtained in Assaf, Goldstein, and Samuel-Cahn (2004, 2006) and
Goldstein and Samuel-Cahn (2006).

The solution is based on the following structural result. This result implies that
optimal two-stopping problems can be reduced to an optimal one-stopping problem, but
for a more complicated sequence.

Proposition 6.1 Let uxn,i := V (Xi, . . . , Xn ∨ x) and define the following two stopping
times

T1 = inf{i ≤ n− 1; uXin,i+1 ≥ V
(2)(Xi+1, . . . , Xn)},

T2 = inf

{
i > T1; Xi ≥ u

XT1
n,i+1

}
.
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Then T1 and T2 are optimal stopping times, i. e. solutions of (6.1) and

V (2)(X1, . . . , Xn) = V
(
uX1
n,2, . . . , u

Xn−1
n,n

)
. (6.2)

Based on (6.2), the optimal two-stopping problem for (Xi) is reduced to an optimal
one-stopping problem for the sequence (u

Xi−1

n,i ). In consequence we are able to derive a
solution of the optimal two-stopping problem. As an example, we consider the case where
(Xi) are in the domain of the Gumbel distribution.

Theorem 6.2 (Optimal solution of the two-stopping problem) Let (Xi) be an
i. i. d. sequence with PX1 ∈ D(Λ). Let wn be a sequence such that n(1−F (wn))→ e− 1.
Then

T 1
n = inf{i : Xi ≥ wn−i},

T 2
n = inf

{
i > T 1

n : Xi ≥ an log

(
1 + e

XT 1
n
− bn
an

− i

n

)
+ bn

}
are asymptotically optimal stopping times and

EXT 1
n
∨XT 2

n
− bn

an
→ 0.7649 . . . (6.3)

Remark 6.3 In comparison, as shown in Section 4, to the one-stopping case the limiting
stopping value is zero.

Proof: From the result on the structure of solutions in Proposition 6.1, we have to analyse
the stopping problem for Nn ∼ (Yn,2, . . . , Yn,n) := (uX1

n,2, . . . , u
Xn−1
n,n ).

Since
∑
ε
( i
n
,
Xi−bn
an

)

D−−→ N ′ = P(µ), we obtain from the approximation result for

optimal stopping for an independent sequence in Theorem 4.2, that

V

(
X[nt]∨2 − bn

an
, . . . ,

Xn − bn
an

∨ x
)
→ ux(t),

where ux(t) is a solution of the differential equation d
dtu

x(t) = −e−ux(t), ux(1) = x.
This equation has the solution

ux(t) = log(ex + 1− t).

From the convergence of the stopping boundaries, as a consequence of the point process
convergence defined in (2.3), we obtain

Nn
D−−→ N∗ = P(µ∗), where

dµ∗(· × [x,∞])

dλ1
(t) =

1

ex + t− 1
.

Next we solve the stopping problem for the point process N∗ and verify the conditions
for the approximation theorem, Theorem 4.2. 2
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Similar solutions for optimal stopping problems have also been obtained in the other
domains of max stable distributions. The method of solution for two-stopping problems
has been extended to several types of multi-stopping and multiple best choice problems
in Faller and Rüschendorf (2011–2013), where solutions are obtained in explicit or nu-
merically tractable form.

The multi-stopping problem

E max
1≤i≤m

XTi = sup
1≤τ1<τ2<...<τm≤n

E max
1≤i≤m

Xτi

which allowsm choices has been reduced in the case of dependent sequences to the solution
of a system of m recursive differential equations of first order. In particular, explicit
approximative solutions are given in the i. i. d. case with discounting and observation
costs.

Also, multiple stopping problem with total payoff

E

m∑
i=1

XTi = sup
1≤τ1<τ2<...<τm≤n

E

m∑
i=1

Xτi

has been solved in a similar way. Furthermore, multiple best choice problems of the
form

P
(

max
i≤m

XTi = Mn

)
= sup

1≤τ1<τ2<...<τm≤n
P
(

max
i≤m

Xτi = Mn

)
for independent sequences have been reduced to recursive systems of first order differential
equations, which lead to explicit or numerical solutions in certain cases. For details of
these results we refer the reader to the above mentioned literature.

7 Conclusion

In this review we have described a general approach to approximatively solving some
general classes of optimal stopping and best choice problems for discrete time sequences,
as well as extensions to several versions of multi-stopping and multiple choice problems.
The basic assumption of this approach is the convergence of the embedded point process
to some Poisson or cluster process.

This assumption, together with some kind of integrability conditions, implies that the
stopping problem can be approximated by the stopping problem for the limit process,
which can be reduced to the solution of a differential equation (or a system of differential
equations) of first order. This approach can be applied to several classes of independent
sequences and also to some classes of dependent sequences. In several cases, it leads to
exact or to numerically tractable solutions. For some classes of multi-choice problems,
so far we have results only for independent sequences, due to the complexity of more
general cases. It would be of interest to see if this approach can also be applied to further
interesting classes of stopping problems with alternative criteria, such as expected rank,
or competitive rank selection as considered in Bruss and Ferguson (1993, 1996, 1997),
Bruss and Louchard (1998) or Bruss and Swan (2009).
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