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Abstract

Dybvig (1988) introduced the interesting problem of how to construct in
the cheapest possible way a terminal wealth with desired distribution. This
idea has induced a series of papers concerning generality, consequences and
applications. As the optimized claims typically follow the trend in the market,
they are not useful for investors who wish to use them to protect an existing
portfolio. For this reason, Bernard et al. (2013a) impose additional state-
dependent constraints as a way of controlling the payoff structure. The present
paper extends this work in various ways.

In order to get optimal claims in general models we allow in this paper
for extended contracts. We deal with general multivariate price processes and
dismiss with several of the regularity assumptions in the previous work (in par-
ticular, we omit any continuity assumption). State-dependence is modeled by
requiring that terminal wealth has a fixed copula with a benchmark wealth. In
this setting, we are able to characterize optimal claims. We apply the theo-
retical results to deal with several hedging and expected utility maximization
problems of interest.
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1 Introduction

We consider optimal investment problems in a financial market given by a market
model S = (St)0≤t≤T in a filtered probability space (Ω,A, (At)0≤t≤T , P ). S may
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consist of several stocks and also bank accounts. Our basic assumption is that state
prices at time t are determined by a pricing process ξ = (ξt)0≤t≤T that is adapted
to the filtration. Typically, ξ will be the (discounted) pricing density process of a
martingale pricing rule. Typical examples include exponential Lévy models in which
one uses an Esscher pricing measure that has pricing process of the form ξt = gt(St)
and note that the case of the multidimensional Black–Scholes market is also covered
herein. But one may also think of a stochastic volatility model in which ξt is a function
of the process (Su)0≤u≤t and some additional volatility process (σu)0≤u≤t.

Let XT be a payoff at time T (i.e., XT is AT -measurable) with payoff distribution
F and cost c(XT ) := EξTXT . The aim of an investor with law invariant (state-
independent)preferences1 is to construct a payoff X∗T with the same payoff distribution
F at lowest possible cost, i.e.

c(X∗T ) = inf{EξTYT ; YT ∼ F}, (1)

where YT ∼ F means that YT has the same payoff distribution F as XT . Note that
problem (1) depends only on the distribution F and not on the specific form of the
payoff XT . Therefore, XT denotes in what follows any generic payoff with distribution
function F .

The optimization problem in (1) represents the static version of the optimal port-
folio problem (He and Pearson (1991a,b)). The optimal payoff can (in a second
step) always be attained by hedging strategies in complete markets. Characteriza-
tions and sufficient conditions for representation of the optimal claims in incomplete
markets by continuous time trading strategies have been established in the literature
and are related to the optional decomposition theorem (see Jacka (1992), Ansel and
Stricker (1994), Delbaen and Schachermayer (1995), Goll and Rüschendorf (2001) and
Rheinländer and Sexton (2011)).

The cost minimization problem in (1) has been stated and solved in various gen-
erality in Dybvig (1988), Bernard, Boyle, and Vanduffel (2014), Carlier and Dana
(2011), Rüschendorf (2012), and others under various assumptions on the distribu-
tions. Several explicit calculations of optimal claims2 have been given in the frame-
work of the Black–Scholes Model (see Bernard et al. (2011,2014) ) and in exponential
Lévy models (see Hammerstein et al. (2013)). In Section 2, we introduce the class of
extended payoffs, which are based on the market information AT up to time T but
also allow for external randomization. We refer to them as randomized payoffs. The
use of randomization allows us to construct optimal claims explicitly without posing
the regularity conditions as in Bernard et al. (2013a). Indeed, we provide a simple
proof showing that optimal claims are only dependent on ξT and possibly on some in-
dependent randomization V . In the particular case of Lévy models this result implies
path-independence of optimal claims, i.e. optimal claims are of the form X∗T = f(ST )
resp. f(ST , V ).

1Examples include lots of classical behavioral theories including mean-variance optimization
(Markovitz (1952)), expected utility theory (von Neumann and Morgenstern (1947)), dual theory
(Yaari (1987)), rank dependent utility theory (Quiggin (1993)), cumulative prospect theory (Tversky
and Kahneman (1992)), and sp/a theory (Shefrin and Statman (1990)).

2We use in this paper the notion of payoffs and claims synonymously.
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Bernard et al. (2014), (2013a) point out that solutions to the cost minimization
problem (1) are not suitable for investors who are exposed to some external risk
that they want to protect against. These investors are prepared to pay more to
obtain a certain distribution, simply because they want the optimal payoff to pay
our more in some desired states. For example, a put option gives its best outcomes
in the worst states of the market and thus allows investors to protect3 the value of
an existing investment portfolio that is long with the market. In other words, two
payoffs with the same distribution do not necessarily present the same “value” for
an investor; see also the discussion in Vanduffel et al. (2012). Therefore, in Section
3, we introduce and discuss, following the development in Bernard et al. (2013a),
additional restrictions on the form of the payoffs. These restrictions are determined
by fixing the desired copula of the claim with a random benchmark AT . This type
of constraint allows to control for the states of the economy in which the investor
wants to receive payments. Note that in the case where AT is deterministic there
is no imposed restriction and we obtain again the optimal payoffs in the classical
context without constraint. As a main result, we determine payoffs with minimal
price and given payoff distribution F under state-dependent constraints in general
markets. In comparison to the results in Bernard et al. (2013a) we obtain with the
extended notion of (randomized) claims optimal solutions that are functions of ξT ,
AT and some independent randomization. This characterization extends the concept
of ‘twins’ as optimal solutions as in Bernard et al. (2013a).

We use this characterization result to deal with several hedging and investment
problems of interest. In Section 4, we provide the optimal claim for an expected utility
maximizer with state-dependent constraints. In Section 5 we solve some optimal
hedging problems and also determine the optimal contract for an expected return
maximizer with constraints on the minimum and maximum desired return.

2 Randomized claims and cost-efficient payoffs

Denote by L(AT ) the class of all AT -measurable claims (payoffs) at time T . For
the construction of optimal claims it will be useful to extend the notion of claims
(payoffs) to randomized claims (randomized payoffs). We generally assume that the
underlying probability space (Ω,AT , P ) is rich enough to allow to construct for each
element YT a random variable V that is independent of YT and uniformly distributed
on (0, 1).

A ‘randomized claim’ is a claim of the form f(YT , V ) involving a randomization
V that is independent of YT . The use of randomized claims is an essential point in
this paper, which allows to solve portfolio optimization problems in general market
models. Under continuity assumptions as used in Bernard et al. (2013a) one can avoid
this additional randomization. At first glance, it may seem strange to an investor to

3The same observation is also at the core of insurance business. People buy a fire insurance
contract and not a cheaper financial contract with identical distribution (“digital option”) because
the insurance contract provides wealth when it is actually needed; see also Bernard and Vanduffel
(2014a).
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use an independent randomization for the construction of an investment. A similar
objection also concerned the use of randomized tests in classical testing theory. As
in testing theory, where one obtains existence of optimal tests only in the class of
randomized tests, one can expect existence of optimal claims only within the more
general class of randomized claims. In some market models it may be possible to use
the market model to construct this independent randomization. This is underlying
the concept of twins in Bernard et al. (2013a), but in general the investor should
be prepared to throw the dice in order to be better off. In what follows we use
randomized claims without further ado.

For a given payoff distribution F a claim X∗T ∈ L(AT ) with payoff distribution F
is called ‘cost-efficient’ if it minimizes the cost c(YT ) over all claims YT with payoff
distribution F , i.e. if X∗T solves (1) (see Bernard et al. (2014)). For the construction
of cost-efficient payoffs we shall make use of the following two classical results:

Hoeffding–Fréchet bounds (Hoeffding (1940) and Fréchet (1940), (1951)): Let
X, Y be random variables with distribution functions F , G and let U ∼ U(0, 1) be
uniformly distributed on (0, 1). Then

EF−1(U)G−1(1− U) ≤ EXY ≤ EF−1(U)G−1(U). (2)

The upper bond is attained only if (X, Y ) ∼ (F−1(U), G−1(U)) (where ∼ refers to
equality in distribution), i.e. X, Y are comonotonic. The lower bound is attained
only if (X, Y ) ∼ (F−1(U), G−1(1− U)), i.e. X, Y are anti-monotonic.

Distributional transform (Rüschendorf (1981, 2009)): For a random variable X ∼
F and a random variable V ∼ U(0, 1) that is independent of X, the ‘distributional
transform’ τX is defined by

τX = F (X, V ), (3)

where (with slight abuse of notation), F (x, λ) := P (X < x) + λP (X = x) and note
that F (x, λ) = F (x) when F is continuous. Then

τX ∼ U(0, 1) and X = F−1(τX) a.s. (4)

The variable τX can thus be seen as a uniformly distributed variable that is associated
to (or, transformed from) X.

For a payoff distribution function F, we denote by K(F ) the class of all claims
that have payoff distribution F :

K(F ) = {YT ∈ L(AT ); YT ∼ F}.

Combining the Hoeffding–Fréchet bounds in (2) and the distributional transform in
(3) allows us to obtain in a straightforward way the following general form of the
cost-efficient claim.

Theorem 2.1 (Cost-efficient claim). For a given payoff distribution F the claim

X∗T = F−1(1− τξT ) (5)

is cost-efficient, i.e.
c(X∗T ) = inf

YT∈K(F )
c(YT ) (6)

4



Proof. The distributional transform τξT = F (ξT , V ) is by (4) uniformly distributed
on (0, 1) and ξT = F−1(τξT ) a.s. This implies that the pair (ξT , X

∗
T ) is anti-monotonic

and thus (6) is a consequence of the Hoeffding–Fréchet lower bound in (2).

Remark 2.2.

1. When FξT is continuous, the additional randomization V can be omitted and
(5) coincides with the classical result on cost-efficient claims (see Dybvig (1988),
Bernard et al. (2014)).

In the case that ξT = gT (ST ) for an appropriate function gT one obtains that

X∗T = h(ST ) (7)

for some function h. Thus any path-dependent option can be improved by a
path-independent option. For this observation, see Bernard et al. (2014).

2. Several explicit results on lookback options, Asian options and related path-
dependent options have been given in the context of Black–Scholes models and
Lévy models in Bernard et al. (2011,2014) and Hammerstein et al. (2013).

3. It is not difficult to see (cf. the proof of Theorem 4.1) that optimal claims
that follow from optimizing a law-invariant objective (e.g. expected utility) at
a given horizon T must be cost-efficient.

3 Payoffs with fixed payoff structure

If ξT is a decreasing function of ST (a property that is predicted by economic theory
and confirmed by many popular pricing models including increasing exponential Lévy
type models) then an optimized payoff X∗T is increasing in ST . The optimal payoff can
thus be quite different from the initial payoff XT and performs poorly when the market
asset ST reaches low levels. These qualitative features do not demonstrate a defect
of the solution, but rather show that portfolio optimization which only considers
distributional properties of terminal wealth is not suitable in all situations. For
example, some investors buy put options to protect their existing portfolio (as a source
of benchmark risk) and they are not interested in the cost-efficient alternatives as
these are long with the market and do no longer offer protection. These observations
let Bernard et al. (2013a) to include constraints in the optimization problem that
allow controlling for the states in which payments are received. In this paper, we
build further on this development. We restrict the class of admissible options in the
portfolio optimization problem by requiring that the admissible claims pay out more
in some desired states (e.g. when ST is low) and less in other states (state-dependence
constraints).

To model the state-dependence constraints we use a random benchmark AT and
we couple the admissible claims YT to the behavior of AT . More precisely, let AT be
some random benchmark such as e.g. AT = ST or AT = (ST − K)+ or some other
available claim in the market and let C denote a copula which describes the wished

5



payoff structure of admissible claims. The copula C is not necessarily the copula of a
given initial claim with the benchmark AT , but it is a tool to describe in which states
of the benchmark the investor wants to receive income (or protection). We consider
a claim YT to be admissible if the copula of the pair (YT , AT ) is C, i.e.

C(YT ,AT ) = C. (8)

The copula C determines how the payoff structure of YT is coupled to the benchmark
AT . in this way we are able to prescribe that payoffs are (approximately) increasing
or decreasing in AT or take place for AT either big or small, as described by the
following examples of copulas.

0 0 0 0

1 1

111

1

1

1

Figure 1: Various dependence prescriptions

The portfolio optimization problem in (1) is now modified to include a fixed payoff
structure, i.e. we determine X∗T ∼ F with copula C(X∗T ,AT ) = C such that

c(X∗T ) = inf{c(YT ); YT ∼ F,C(YT ,AT ) = C}. (9)

Since the joint distribution function G of (YT , AT ) is given by

G = C(F, FAT ), (10)

problem (9) is equivalent to the cost minimization problem when fixing the joint
distribution of (YT , AT ) to be equal to G, i.e.

c(X∗T ) = inf{c(YT ); (YT , AT ) ∼ G}. (11)

For the construction of the solution of the portfolio optimization problem in (9)
resp. (11) we will use the concept of the conditional distributional transform.

Conditional distributional transform: The conditional distributional transform
of X given Y is defined as

τX|Y = FX|Y (X, V ) (12)

where for all y, V is independent of (X|Y = y).

It is clear that by property (4) of the distributional transform,

τX|Y ∼ U(0, 1) and τX|Y is stochastically independent of Y. (13)

In the following theorem we determine the optimal solution of the portfolio opti-
mization problem in (9), (11). Based on the concept of randomized claims it gives
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an extension of Theorem 3.3 in Bernard et al. (2013a) to the case of general mar-
ket models (avoiding the regularity conditions imposed in that paper). Let XT be
a payoff with distribution F and such that (XT , AT ) has copula C, or, equivalently,
(XT , AT ) ∼ G.

Theorem 3.1 (Cost-efficient claim with fixed payoff structure). Let
XT be a claim with (XT , AT ) ∼ G, then

X∗T := F−1
XT |AT (1− τξT |AT ) (14)

is a cost-efficient claim with fixed dependence structure, i.e. X∗T is a solution of the
portfolio optimization problem with fixed payoff structure

c(X∗T ) = inf{c(YT ); (YT , AT ) ∼ G}.

Proof. Let us denote U = τξT |AT . For X∗T = F−1
XT |AT (1− U) holds

(X∗T | AT = a) = (F−1
XT |AT=a(1− U) | AT = a) = F−1

XT |AT=a(1− U)

since U , AT are independent (see (13)). Consequently, we obtain (X∗T , AT ) ∼ (XT , AT )
∼ G and thus X∗T is admissible. Furthermore, since conditionally on AT = a,

((X∗T , ξT ) | AT = a) ∼ ((F−1
XT |AT=a(1− FξT |AT=a(ξT )), ξT ) | AT = a),

we obtain that X∗T , ξT are anti-monotonic conditionally on AT = a. This implies by
the Hoeffding–Fréchet bounds in (2)

EX∗T ξT = EE(X∗T ξT | AT )

≤ EE(XT ξT | AT ) = EXT ξT ,

i.e. X∗T is cost-efficient in the class of portfolios with fixed dependence structure.

Remark 3.2.

1. The proof shows that the cost-efficient claim with fixed dependence structure
is characterized by the property that conditionally on AT it is anti-monotonic
with the state-price ξT . Note that Theorem 3.1 holds true in the case that C
is any copula (not necessarily the copula of a given initial claim XT with AT ).
The construction of X∗T depends only on F , AT and on the copula C, i.e. the
aimed payoff structure.

2. When the state-price ξT = gT (ST ) is a decreasing function of the stock ST ,
as in increasing exponential Lévy models, we obtain that a cost-efficient claim
X∗T is characterized by the property that conditionally on AT , X∗T and ST are
comonotonic.

3. In the case that the independent randomization V can be generated from the
market pair (St, ST ) by a transformation we obtain a cost-efficient claim of the
form f(St, ST ) if AT = ST , resp. f(St, ST , AT ) in the general case. Claims
of this form are called ‘twins’ in Bernard et al. (2013a). It is shown in that
paper that under some conditions cost-efficient payoffs are given by twins. With
the notion of extended payoffs in this paper we obtain that generally optimal
payoffs are of the form f(ST , V ) resp. f(ST , AT , V ) with some independent
randomization V .
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4 Utility optimal payoffs with fixed payoff struc-

ture

The basic optimization problem of maximizing the expected utility of final wealth XT

at a given horizon T with an initial budget w, i.e.

max
c(XT )=w

Eu(XT ) (15)

was solved in various generality in classical papers of Merton (1971), Cox and Huang
(1989) and He and Pearson (1991a,b). The optimal solution for differentiable increas-
ing concave utility functions u on (a, b) is of the form

X∗T = (u′)−1(λξT ), (16)

where λ is such that c(X∗T ) = w. For the existence of λ such that c(X∗T ) = w it is
assumed that u′ is strictly decreasing and u′(a+) =∞, u′(b−) = 0.

An extension of the utility optimization problem to the case with a fixed payoff
structure was introduced in Bernard et al. (2013a) as

max
c(XT )=w

C(XT ,AT )=C

Eu(XT ) (17)

To deal with problem (17), we define

ZT = C−1
1|AT (1− τξT |AT ), (18)

where C1|AT = C1|τAT is the conditional distribution function (w.r.t. C) of the first
component given that the second component is the distributional transform τAT .
Then ZT ∼ U(0, 1), ZT has copula C with AT and the pair (ZT , ξT ) is anti-monotonic
conditionally on AT (see also (13)). Next, we introduce the following condition

(D) HT = E(ξT | ZT ) = ϕ(ZT ) is a decreasing function of ZT .

Condition (D) does not always hold but is natural since ZT , ξT are anti-monotonic
conditionally on AT . In the strict sense it needs however some regularity condition
to be fulfilled.

The following theorem describes the utility optimal payoff with fixed payoff struc-
ture and given budget w under condition (D).

Theorem 4.1 (Utility optimal payoff with given payoff structure). Under
condition (D) the solution of the restricted portfolio optimization problem (17) is
given by

X∗T = (u′)−1(λHT ) (19)

with λ such that c(X∗T ) = w.

Proof. The utility optimal payoff must be a cost-efficient claim with fixed payoff
structure (with cost w) as in Theorem 3.1. Otherwise, it is possible to construct a
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strictly cheaper solution which yields the same utility while respecting the dependence
constraint. Consequently the solution XT (when it exists) is characterized by the
property that conditionally on AT it is anti-monotonic with the state-price ξT and,
therefore,

XT = F−1
XT |AT (1− τξT |AT ). (20)

The payoff F−1
XT

(ZT ) has distribution function FXT , has copula C with AT and is con-
ditionally on AT anti-monotonic with the state-price ξT . By the uniqueness property
of cost-efficient claims this implies that

XT = F−1
XT

(ZT ) a.s.

In particular, the optimal solution is increasing in ZT and the constraint on its
cost can be written as

c(XT ) = EξTF
−1
XT

(ZT ) = EHTF
−1
XT

(ZT ), (21)

where HT = E(ξT | ZT ) = ϕ(ZT ) is decreasing in ZT by assumption (D).

The utility optimization problem of interest can thus be rewritten as

max
EXTHT=w
XT=k(ZT )
k increasing

Eu(XT ). (22)

Considering the relaxed problem

max
EXTHT=w

Eu(XT ) (23)

we obtain an utility optimization problem in standard form with price density HT

instead of ξT . By (16) its solution is given by

X∗T = (u′)−1(λHT ) = (u′)−1(λϕ(ZT )) (24)

where λ > 0 is chosen such that EHTX
∗
T = w. Since ϕ is decreasing by assumption

(D) it follows that X∗T is increasing in ZT and thus it also solves the restricted portfolio
optimization problem (19).

Bernard and Vanduffel (2014b) derive optimal mean-variance efficient portfolios
in presence of a stochastic benchmark (Propositions 5.1 and 5.2). Their results also
follow from Theorem 4.1. An application of Theorem 4.1 in the univariate Black–
Scholes model can be found in Bernard et al. (2013a). These authors use a Gaussian
copula to fix the portfolio structure and verify that condition (D) is satisfied. Note
that this example can be extended to the multivariate Black–Scholes model.

Interestingly, Theorem 4.1 can be extended to the general case without assuming
condition (D). As a result the optimal claim will be slightly more complex. For the
extension we need to project the function ϕ from the representation of HT to the
convex cone of decreasing L2-functions M↓ on [0, 1]

M↓ = {f ∈ L2[0, 1]; f non-increasing}.

Let ϕ ∈ L2[0, 1], supplied with the Lebesgue-measure and the Euclidean norm, and
ϕ̂ = πM↓(ϕ) denotes the projection of ϕ on M↓. Then we obtain
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Theorem 4.2 (Utility optimal payoff). Assume that HT = E(ξT | ZT ) = ϕ(ZT ) with
ϕ ∈ L2[0, 1]. Then the solution to the restricted utility optimization problem (17) is
given by

X∗T = (u′)−1(λĤT ), (25)

where ĤT = ϕ̂(ZT ) and λ is such that c(X∗T ) = w.

Proof. The proof is analogous to the proof of Theorem 5.2 in Bernard et al. (2013a).
It is based on properties of the projection on convex cones which can be found in
Barlow et al. (1972).

Remark 4.3.

1. The projection ϕ̂ of ϕ on M↓ is given as the slope of the smallest concave
majorant SCM(ϕ) of ϕ, i.e. ϕ̂ = (SCM(ϕ))′. Fast algorithms are known to
determine ϕ̂.

2. The condition ϕ ∈ L2[0, 1] is implied by the condition ξT ∈ L2(P ).

5 Optimal hedging and quantile hedging

In this section we use the results of Sections 2–4 to solve various forms of static partial
hedging problems. Let LT be a financial derivative (liability) and let wL = c(LT )
denote the price of LT w.r.t. the underlying pricing measure. If the available budget
w is smaller than wL then it is of interest to find a best possible partial hedge (cover)
of LT with cost w under various optimality criteria. This leads to the following basic
static partial hedging problems.

The quantile (super-)hedging problem is defined as

max
c(XT )=w

P (XT > LT ). (26)

The utility optimal hedging problem is a natural variant of (26) and is stated as

max
c(XT )=w

Eu(XT − LT ), (27)

where u is a given concave utility function defined on R that satisfies the same regu-
larity conditions as in Section 4.

A more general version of the hedging problem in (27) is obtained by replacing
expected utility by some law invariant, convex risk measure Ψ (Ψ monotonic in the
natural order), i.e.

max
c(XT )=w

Ψ(XT − LT ). (28)

We also consider (state-dependent) variants of the partial hedging problems (26)–(28)
in which the excess XT − LT satisfies additional restrictions, allowing us to control
its excess structure. For example, we may want that XT − LT has a certain copula
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C with a benchmark AT , i.e. C(XT−LT ,AT ) = C, or we may impose certain additional
boundedness conditions on XT .

We start with the (unconstrained) optimal hedging problem (27). Its solution is
given in the following proposition.

Proposition 5.1 (Utility optimal hedge). Let LT be a financial claim with price
c(LT ) = wL and let w < wL be the budget available for hedging. Then the optimal
hedge for the utility optimal hedging problem (27) is given by

X∗T = LT + (u′)−1(λξT ), (29)

where λ > 0 is such that
c((u′)−1(λξT )) = w − wL.

Proof. By the classical portfolio optimization result (see (16)) we obtain that the
optimal solution of the utility optimization problem

max
c(XT )=w−wL

Eu(XT ) (30)

is given by
X̂T = (u′)−1(λξT ) (31)

with λ chosen in such a way that c(X̂T ) = EξT X̂T = w−wL. The claimX∗T := X̂T+LT
therefore has price w, c(X∗T ) = w. By definition X∗T solves the utility optimal hedging
problem in (27).

In the following two extensions we fix the joint dependence structure of the excess
XT − LT with a given benchmark AT .

Proposition 5.2 (Utility optimal hedge with dependence restriction on the excess).
Let LT be a financial claim with price c(LT ) = wL, let w < wL be the budget available
for hedging and let AT be a given benchmark. Then the restricted utility optimal
hedging problem

max
c(XT )=w

C(XT−LT ,AT )=C

Eu(XT − LT )

has the solution
X∗T = LT + (u′)−1(λĤT ), (32)

where ĤT = ϕ̂(ZT ) and λ > 0 is such that

c((u′)−1(λĤT )) = w − wL.

Proof. The optimality of X∗T is a consequence of Theorem 4.2 and is based on a simple
replacement strategy as in the proof of Proposition 5.1.

In the following variant of the hedging problem it is our aim to avoid super-hedging
of LT .
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Proposition 5.3 (Utility optimal hedge with negative excess). Let LT be a financial
claim with price c(LT ) = wL and let w < wL be the budget available for hedging. The
optimal hedge with lower bound constraint, i.e. the solution of

max
XT≤LT
c(XT )=w

Eu(LT −XT ) (33)

is given by
X∗T = min(LT , LT + (u′)−1(λξT )), (34)

where λ > 0 is such that
c((u′)−1(λξT )) = w − wL.

Proof. With YT = LT − XT the hedging problem in (33) is reduced to the classical
utility optimization problem in (15) with the additional constraints YT ≥ 0. The
solution of this problem is easily shown to be the classical solution Y ∗T restricted to
this boundary. As consequence we obtain X∗T = min(LT , Y

∗
T + LT ) as in (34).

When there are enough financial resources w > wL available it might be of interest
to obtain the best super-hedge XT ≥ LT . We omit the details of the proof for this
case.

Proposition 5.4 (Utility optimal hedge with boundedness restriction on the excess).
Let LT be a financial claim with price c(LT ) = wL and let w > wL be the budget
available. The optimal super-hedge, i.e. the solution of

max
LT≤XT
c(XT )=w

Eu(XT − LT ) (35)

is given by
X∗T = max(LT , LT + (u′)−1(λξT )), (36)

where λ > 0 is such that
c((u′)−1(λξT )) = w − w0.

The quantile super-hedging problem (26) was introduced in Browne (1999) for
a deterministic target LT in a Black–Scholes model. This result was extended in
Bernard et al. (2013a, Theorem 5.6) to random targets LT > 0 under regularity con-
ditions. The following proposition solves this problem without posing any regularity
conditions.

Proposition 5.5 (Quantile super-hedging). Let LT > 0 be a financial claim with
price c(LT ) = wL and let w ≤ wL be the budget available. Then the solution to the
quantile super-hedging problem in (26), i.e.

max
0≤XT ,
c(XT )=w

P (XT > LT )

is given by
X∗T = LT1{τLT ξT<λ}, (37)

where λ is such that c(X∗T ) = w.
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Proof. The optimal solution X∗T of (26) has a joint distribution G with the ‘bench-
mark’ LT . Thus from Theorem 3.1 we obtain that X∗T is an optimal claim with
fixed payoff structure. Therefore, conditionally on LT , X∗T is anti-monotonic with the
state-price ξT and is of the form X∗T = f(ξT , LT , V ), where V is some independent
randomization.

We define the sets A0 = {f(ξT , LT , V ) = 0} and A1 = {f(ξT , LT , V ) = LT}; then
P (A0∪A1) = 1, since in the other case it would be possible to construct an improved
solution. In consequence we get that f can be represented in the form

f(ξT , LT , V ) = LT1{h(ξT ,LT ,V )∈A}

for some function h and measurable set A. Define λ > 0 such that

P ({h(ξT , LT , V ) ∈ A}) = P ({τLT ξT < λ}).

Then 1{h(ξT ,LT ,V )∈A} and 1{τLT ξT<λ} have the same distribution and further LT ξT and
1{τLT ξT<λ} are anti-monotonic. Thus by the Hoeffding–Fréchet lower bound in (2) we
obtain

c(LT1{τLT ξT<λ}) = ELT ξT1{τLT ξT<λ}

≤ ELT ξT1{h(ξT ,LT ,V )∈A}

and thus LT1{τLT ξT<λ} is optimal.

Remark 5.6. It was pointed out to the authors by a reviewer that the optimization
results in Proposition 5.5 and Proposition 5.8 can be cast in an unconstrained opti-
mization problem in Lagrangian form. For Proposition 5.5 this takes the forms

sup
XT≥0

E(1{XT≥LT } − λξTXT ) + λw. (38)

Under a continuity assumption a solution of (38) is achieved by XT = LT1{λξLT<1}
with λ suitably chosen. The Lagrangian form in case of Proposition 5.8 is similar.

As a last application on hedging problems, we extend Proposition 5.5 by con-
sidering the combined case of a random claim LT that needs to be hedged and the
requirement that the hedging portfolio has some copula C with a random benchmark
AT .

Proposition 5.7 (Quantile hedging with fixed payoff structure). For a
random claim LT > 0, a benchmark AT and a given copula C, the solution to the
restricted hedging problem

max
0≤XT

c(XT )=w
C(XT ,AT )=C

P (XT > LT ) (39)

is given by
X∗T = LT1{ZT>λ}, (40)

where ZT = C−1
1|AT (1− τLT ξT |AT ) and where λ is such that c(X∗T ) = w.
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Proof. Let G be the joint distribution of the optimal claim X∗T with AT , then by the
randomization technique in Section 2 there exists a claim of the form f(ξT , AT , V )
with a randomization V independent of (ξT , AT ), such that

(f(ξT , AT , V ), AT ) ∼ (X∗T , AT ) ∼ G and c(f(ξT , AT , V ), AT ) = c(X∗T ) = w.

Thus also f(ξT , AT , V ) is an optimal claim.

Defining as in the proof of Proposition 5.5 A0 = {f(ξT , AT , V ) = 0}, A1 =
{f(ξT , AT , V ) = LT} we get P (Ao ∪ A1) = 1 and thus there exist a measurable
set A and a function h such that

f(ξT , AT , V ) = LT1{h(ξT ,AT ,V )∈A}.

Defining λ > 0 by the equation

P (h(ST , AT , V ) ∈ A) = P (ZT > λ)

we obtain that 1{h(ξT ,AT ,V )∈A} and 1{ZT>λ} have the same distribution. This implies
by the Hoeffding–Fréchet inequalities in (2) that

c(LT1{ZT>λ}) = EξTLT1{ZT>λ}

≤ c(LT1{h(ξT ,AT )∈A})

since conditionally on AT , ZT is anti-monotonic with ξTLT and thus 1{ZT>λ} is anti-
monotonic with ξTLT . This implies optimality of X∗T .

In the final application we consider the related problem of maximizing expected
return with given cost and target bounds. For given bounds a < b we assume existence
of a claim XT such that a ≤ XT ≤ b and c(XT ) = w.

Proposition 5.8 (Maximizing expected return with given target bounds).
The solution of the expected returns maximization problem

max
a≤XT≤b
c(XT )=w

EXT

is given by the payoff
X∗T = a1{τξT>λ} + b1{τξT≤λ} (41)

with λ such that c(X∗T ) = w.

Proof. Assume that X∗T is not an optimal payoff. Then there exists an admissible
payoff YT such that EYT > EX∗T . We can then also find a strategy Y ∗T of the form

Y ∗T = a1{τξT>d} + b1{τξT≤d}

with d chosen such that EY ∗T = EYT . Since EY ∗T > EX∗T it follows that d > λ and,
therefore,

c(Y ∗T ) = EξTY
∗
T > c(X∗T ) = w.

14



On the other hand, YT is smaller than Y ∗T in convex order ≤cx, i.e.

YT ≤cx Y
∗
T ,

since Y ∗T has the same expectation and shifts all mass to the boundaries. Let ŶT =

F−1
YT

(1 − τξT ) be the random variable with ŶT ∼ YT and such that ŶT , ξT are anti-
monotonic. Then from the Hoeffding inequality and the Lorentz ordering theorem
(see Rüschendorf (2013)) we obtain

c(YT ) = EξTYT > EξT ŶT > EξTY
∗
T = c(Y ∗), (42)

using that ŶT ∼ YT and thus ŶT ≤cx Y
∗
T . This leads to c(YT ) > w and thus YT is not

admissible. This contradiction implies the result.

Illustration of Proposition 5.8 in a Black–Scholes Market: In the n-dimensional
Black–Scholes market there is a (risk-free) bond with price process (S0

t ) = (S0
0e
rt) and

n risky assets S1, S2, . . . , Sn with price processes,

dSit
Sit

= µidt+ σidB
i
t, i = 1, 2, . . . , n,

where the (Bi
t) are (correlated) standard Brownian motions, with constant corre-

lation coefficients ρij := Corr
(
Bi
t, B

j
t+s

)
(t, s > 0; i, j = 1, 2, . . . , n). Let µT =

(µ1, µ2, . . . , µn), (Σ)ij = ρijσiσj and assume there exists i such that µi 6= r. Let
Σ be positive definite. Then the state-price takes the form (see e.g. Bernard et al.
(2011)),

ξt = c

(
St
S0

)−d
, (43)

where c = exp
(
d
(
µ− σ2

2

)
t−
(
r + (µ−r)2

2σ2

)
t
)

and d = µ−r
σ2 . Here, the process (St)

satisfies the SDE
dSt
St

= mdt+ σdBt, (44)

where (Bt) is the standard Brownian motion defined by Bt =
∑n
i=1 πi σi B

i
t√

πT ·Σ·π
, m =

r+ πT · (µ− r 1) , σ2 = πT ·Σ · π and π = Σ−1·(µ−r1)
1T ·Σ−1·(µ−r1)

. The process (St) is the price

process that corresponds to a so-called constant-mix trading strategy (at each time
t > 0 a fixed proportion πi is invested in the i-th risky asset).

We make the (economic appealing) assumption that µ > r. From Proposition 5.8,
since τξT is decreasing in ST , the optimal payoff is of the form

X∗T = a1{ST<α} + b1{ST>α},

with α such that EQ1(ST>α) = werT−a
b−a where dQ

dP
= erT ξT . It follows that α is given as

α = exp
((
r − σ2

2

)
T − σ

√
T Φ−1

(werT − a
b− a

))
.
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