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Abstract

In this paper we introduce a modification of the free boundary problem
related to optimal stopping problems for diffusion processes. This modifica-
tion allows to apply this PDE method also in cases where the usual regularity
assumptions on the coefficients and on the gain function are not satisfied. We
apply this method to the optimal stopping of integral functionals with expo-
nential discount of the form Ex

∫ τ
0 e−λsf(Xs)ds, λ ≥ 0 for one-dimensional

diffusions X. We prove a general verification theorem which justifies the
modified version of the free boundary problem. In the case of no drift and
discount the free boundary problem allows to give a complete and explicit
discussion of the stopping problem.
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1 Introduction

This paper is concerned with a class of optimal stopping problems for integral func-
tionals with exponential discount Ex

∫ τ

0
e−λsf(Xs)ds for a one-dimensional diffusion

process (Xs). An example is the problem of stopping a Brownian motion as close
as possible to its maximum as it can be reduced to this kind of stopping problem
(see Graversen, Peskir, and Shiryaev (2000) or Peskir and Shiryaev (2006, Ch. 8,
Sec. 3.1)). The literature on optimal stopping problems for diffusion processes is
very rich. An effective method for solving problems of this type is to develop a
connection with some related free boundary problems (of Stefan type). There are

∗ This paper was written while the second author held a research fellowship of the Alexander von
Humboldt Foundation.
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two types of results on this connection. One type of results is based on solving
the related free boundary problem with the smooth fit condition (in certain cases,
the smooth fit condition is replaced by the continuous fit condition, also additional
conditions may be necessary). This allows to find explicit solutions of the initial
optimal stopping problem in certain cases. Many examples of this approach (with
explicit solutions) are presented in the recent comprehensive book of Peskir and
Shiryaev (2006).

Further for some classes of optimal stopping problems for regular diffusion pro-
cesses with smooth coefficients, existence and regularity results for the correspond-
ing free boundary problems have been established under different kinds of smooth-
ness and boundedness conditions on the coefficients of the diffusion and on the gain
function.

On the other hand, starting with the work of Bensoussan and Lions (1973)
general existence and regularity results for solutions of optimal stopping problems
in terms of variational inequalities have been established. These are formulated
with differential operators in weak sense and allow weaker assumptions on the
regularity of the coefficients and on the gain function. We refer to the book of
Friedman (1976) for strong results in this direction (see also Nagai (1978) and
Zabczyk (1984)). Results of this type have led in particular to the development of
some effective numerical solution methods (see, for example, Glowinski, Lions, and
Trémolières (1976) and Zhang (1994)). The method of variational inequalities is
however typically more difficult to use in concrete examples, where one wants to
find explicit solutions, compared to the formulation in terms of the free boundary
PDEs.

In our paper we discuss in detail the optimal stopping of integral functionals
Ex

∫ τ

0
e−λsf(Xs)ds in the case of not necessarily continuous coefficients of the dif-

fusion X and for an interesting class of not necessarily continuous (cumulative)
gain functions f . It is therefore obvious that the classical formulation of the free
boundary problem is not applicable to these stopping problems. In Section 2 a
suitable generalized formulation of the free boundary problem is given, and a ver-
ification theorem together with uniqueness results for this free boundary problem
and for the optimal stopping time (Theorem 2.1) are proved. An important point
to establish this verification theorem is to establish variational inequalities for the
solutions of our generalized free boundary problem (Lemma 2.6).

We would like to mention some related papers of Salminen (1985), Beibel and
Lerche (2000), Dayanik and Karatzas (2003), and Dayanik (2003), where problems
of maximizing Ex[e

−Aτ g(Xτ)I(τ < ∞)] over all stopping times τ are studied (A is
a continuous additive functional of X). These authors use different approaches, ob-
tain some general results, and treat explicitly several examples. Their approaches
are applicable also to diffusions with discontinuous coefficients. Neither of these
approaches is based on the free boundary method — the one we use here. An-
other difference with our paper is that we consider optimal stopping of integral
functionals.
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After finishing this paper we became aware of the work Lamberton and Zervos
(2006), where some interesting results about the value function of the problem
of maximizing Ex[e

−Aτ g(Xτ)I(τ < ∞)] are proved. Neither the function g nor
the coefficients of the diffusion X are supposed to be continuous. Lamberton and
Zervos (2006) prove that the value function V in the problem they consider is
the difference of two convex functions and satisfies a certain variational inequality.
The results in our paper go in the opposite direction. Theorem 2.1 states that the
solution of a certain (modified) free boundary problem is the value function V in
the problem we consider. One of the conditions in this free boundary problem is
that V should be differentiable and V ′ absolutely continuous. The weaker condition
that V is the difference of two convex functions mentioned above is not sufficient
for Theorem 2.1. The free boundary problem loses the uniqueness property and
there appear solutions of the free boundary problem that have nothing to do with
the stopping problem we consider (see Remark (i) after Theorem 2.1). The reason
is that the integral functionals Ex

∫ τ

0
e−λsf(Xs) ds are “more regular” than the

functionals Ex[e
−Aτ g(Xτ)I(τ < ∞)]. Hence one may expect that value functions

for integral functionals should also be “more regular”.
In Section 3 we study in complete detail the case of diffusions without drift

and with zero discount. Necessary and sufficient conditions for the existence of
solutions of the free boundary problem are established (Theorem 3.1). Also in the
case that the free boundary problem has no solutions, the optimal stopping problem
is dealt with (Theorems 3.2 and 3.9). We discuss finiteness of the value function,
obtain explicit formulas for the value function and the optimal stopping time, and
determine approximately optimal stopping time sequences in case, where there is
no optimal stopping time. Finally, the appendix contains several technical lemmas,
which are used in the proofs and can be helpful in studying related questions.

2 Stopping problem, free boundary problem, and

verification theorem

2.1 Setting of the problem

Let X = (Xt)t∈[0,∞) be a continuous stochastic process with values in the extended
real line R ∪ {∆} and explosion time ζ , i.e., the following two properties hold:

(i) X is R-valued and continuous on [0, ζ);
(ii) if ζ < ∞, then X ≡ ∆ on [ζ,∞) and either limt↑ζ Xt = ∞ or limt↑ζ Xt = −∞.

If ζ = ∞ a.s., then X is called non-explosive.
We consider stopping problems for diffusions X defined by

dXt = b(Xt) dt + σ(Xt) dBt, (2.1)

where B is a Brownian motion, and b and σ are Borel functions R → R. In the sequel
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we assume that the coefficients b and σ satisfy the Engelbert-Schmidt condition

σ(x) 6= 0 ∀x ∈ R,
1

σ2
∈ L1

loc(R),
b

σ2
∈ L1

loc(R), (2.2)

where L1
loc(R) denotes the class of locally integrable functions on R. Under this

condition, the SDE (2.1) has a unique in law (possibly, explosive) weak solution for
any starting point X0 = x (see Engelbert and Schmidt (1985, 1991), or Karatzas
and Shreve (1991, Ch. 5, Th. 5.15)). Let us note that condition (2.2) is weak enough.
For example, if b is locally bounded and σ is locally bounded away from zero, then
(2.2) holds.

f(·)

x1ℓ x1r x2ℓ x2r

Figure 2.1

Let f : R → R be a Borel function such that there exist points x1ℓ ≤ x1r < x2ℓ ≤
x2r in R such that f > 0 on (x1r, x2ℓ), f = 0 on [x1ℓ, x1r] ∪ [x2ℓ, x2r], and f < 0
on (−∞, x1ℓ)∪ (x2r,∞) (see Figure 2.1). Throughout the following we assume that
the function f satisfies the condition

f

σ2
∈ L1

loc(R),
1

f
∈ Bloc(x) ∀x ∈ R \ ([x1ℓ, x1r] ∪ [x2ℓ, x2r]), (2.3)

where Bloc(x) denotes the class of locally bounded at x functions R → R

(g ∈ Bloc(x) if it is bounded in a sufficiently small neighborhood of x). Finally,
let us note that f/σ2 ∈ L1

loc(R) holds for all locally bounded functions f due
to (2.2).

In the paper, we use the following convention. For any function g : R → R, we
define g(∆) = 0.

Let X be a (possibly explosive) solution of (2.1) on some probability space
(Ω,F , Px), where Px(X0 = x) = 1, x ∈ R. By (FX

t ) we denote the filtration
generated by X satisfying the usual conditions. In this paper, we consider the class
of optimal stopping problems defined for functions f as specified above by

V ∗(x) = sup
τ∈M

Ex

∫ τ

0

e−λsf(Xs) ds. (2.4)
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Here λ ≥ 0 and M is the class of (FX
t )-stopping times τ such that

Ex

∫ τ

0

e−λsf+(Xs)ds < ∞ or Ex

∫ τ

0

e−λsf−(Xs)ds < ∞. (2.5)

Let us remark that it is enough to consider only stopping times τ ≤ ζ because
f(∆) = 0. Setting (2.4) is a well motivated class of stopping problems arising e.g.
in connection with various versions of options of Asian type. The gain function f
rewards positively the case where the process stays in a favorable domain [x1ℓ, x2r]
and puts negative weight in case this domain is left. From this formulation one may
expect that two-sided stopping times play an essential role.

For real numbers α < β we denote by Tα,β the stopping time

Tα,β = inf{t ∈ [0,∞) : Xt ≤ α or Xt ≥ β} (2.6)

(as usual, inf Ø = ∞). It is important that under our assumptions Tα,β ∈ M (see
Lemma A.3 in the appendix).

Let µL denote the Lebesgue measure on (R,B(R)). Using the occupation times
formula (see Revuz and Yor (1999, Ch. VI, Cor. (1.6)) one can verify that

µL({t ∈ [0,∞) : Xt ∈ A}) = 0 Px-a.s.

for sets A of Lebesgue measure 0. Hence, problem (2.4) remains unchanged if we
change the function f on a set of µL-measure 0. In particular, the cases, where
some of the values f(x1ℓ), f(x1r), f(x2ℓ), and f(x2r) are non-zero, reduce to the
situation under consideration.

The interesting point in the formulation of assumptions (2.2) and (2.3) is that
they allow discontinuities in b, σ, and f , which is of interest in various applications.
For example, in modeling the stock prices it is reasonable to consider volatilities σ
that jump to a higher range of values when the price reaches a certain threshold.

Remarks (i) All results of Section 2 remain valid also for J ∪ {∆}-valued diffu-
sions X, where J = (ℓ, r), −∞ ≤ ℓ < r ≤ ∞, the functions b, σ, and f : J → R

satisfy conditions similar to (2.2) and (2.3) (one should replace R with J), and X
explodes when it tends either to ℓ or to r at a finite time.

(ii) One main reason why we consider functionals of the form as in Figure 2.1 is
that one encounters concrete stopping problems of this type in the literature. For
example, Graversen, Peskir, and Shiryaev (2000) reduce the problem of stopping a
Brownian motion B = (Bt)t∈[0,1] as close as possible to its maximum

inf
τ

E
(

max
t∈[0,1]

Bt − Bτ

)2

to the problem of the form (2.4) with an Ornstein–Uhlenbeck process X, dXt =
Xt dt+

√
2 dBt, λ = 2, and f(x) = 3−4Φ(|x|), where Φ is the distribution function
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of the standard Gaussian random variable (see also Peskir and Shiryaev (2006,
Ch. VIII, Sec. 30.1)). Note that f has the form as in Figure 2.1.

As another example we consider the following stopping problem of Karatzas
and Ocone (2002), which they study in order to solve a stochastic control problem
(see also Dayanik and Karatzas (2003, Sec. 6.9)):

inf
τ

Ex

[
e−λτδX2

τ +

∫ τ

0

e−λsX2
s ds

]
, x ∈ J := (0,∞), (2.7)

where λ ≥ 0, δ > 0, and dXt = −θ dt+dBt, θ > 0 (X is absorbed when it reaches 0).
The local martingale that appears in Itô’s formula applied to the process (e−λtδX2

t )
is a uniformly integrable martingale whenever λ > 0. Simple computations show
that in the case λ > 0, problem (2.7) can be reduced to the problem of the form (2.4)
with the state space J = (0,∞) (see the previous remark) and

f(x) = (λδ − 1)x2 + 2δθx − δ.

This function f has the form as in Figure 2.1 if λδ < 1 and λδ + θ2δ > 1 (cp. with
Dayanik and Karatzas (2003, Sec. 6.9, Case III)).

Actually, the class of functions f that have the form as in Figure 2.1 is a “natural
class for which one expects optimal stopping times to be two-sided”, though there
exist functions f not of this form with corresponding two-sided optimal stopping
times, and it can happen that optimal stopping times for functions of this form are
not two-sided (see Section 3 of the present paper). 2

2.2 Free boundary problem and main results

In order to solve problem (2.4) the free boundary problem (with smooth fit condi-
tions) is usually formulated as follows:

σ2(x)

2
V ′′(x) + b(x)V ′(x) − λV (x) = −f(x), x ∈ (x∗

1, x
∗
2); (2.8)

V (x) = 0, x ∈ R \ (x∗
1, x

∗
2); (2.9)

V ′
+(x∗

1) = V ′
−(x∗

2) = 0, (2.10)

where V ′
+ and V ′

− denote respectively right and left derivatives of V . The form
of the free boundary problem (2.8)–(2.10) is motivated by the form of the func-
tion f . It is natural to expect that the optimal continuation domain here is some
interval (x∗

1, x
∗
2) (one can also expect that the continuation domain should contain

(x1ℓ, x2r)). The usual way to make use of this free boundary problem is to take an
appropriate solution (V, x∗

1, x
∗
2) of the problem (2.8)–(2.10) and then to prove that

V = V ∗ and Tx∗

1,x∗

2
is an optimal stopping time in (2.4).

We say that the free boundary problem (2.8)–(2.10) loses a solution of the
optimal stopping problem (2.4) if (2.4) has a two-sided optimal stopping time of
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the form Tα,β for some real α < β and the triplet (V ∗, α, β) is not a solution of
(2.8)–(2.10). This does not happen in many concrete examples with continuous b, σ,
and f . However, it would be a fairly general situation if b, σ, or f are discontinuous.
The reason is that (2.8) is too restrictive in that case: one should not require this
equality to be held for all x ∈ (x∗

1, x
∗
2) if one wants to allow discontinuities in b, σ,

and f .

Below we shall see that the following modified free boundary formulation is
“no-loss” in the sense that it does not lose solutions of (2.4) even if b, σ, and f are
allowed to be discontinuous:

V ′ is absolutely continuous on [x∗
1, x

∗
2]; (2.11)

σ2(x)

2
V ′′(x) + b(x)V ′(x) − λV (x) = −f(x) for µL-a.a. x ∈ (x∗

1, x
∗
2); (2.12)

V (x) = 0, x ∈ R \ (x∗
1, x

∗
2); (2.13)

V ′
+(x∗

1) = V ′
−(x∗

2) = 0. (2.14)

We say that a triplet (V, x∗
1, x

∗
2) is a solution of (2.11)–(2.14) if x∗

1 and x∗
2 are real

numbers, x∗
1 < x∗

2, V ∈ C1([x∗
1, x

∗
2]), and the triplet (V, x∗

1, x
∗
2) satisfies (2.11)–

(2.14). Formally, under V ′(x∗
1) and V ′(x∗

2) in (2.11) one should understand respec-
tively right and left derivatives. However, (2.13) and (2.14) imply that the two-sided
derivatives exist at both points. We shall see below that condition (2.11) is impor-
tant.

We say that a solution (V, x∗
1, x

∗
2) of (2.11)–(2.14) is trivial if V ≡ 0. For exam-

ple, if x1ℓ < x1r or x2ℓ < x2r, then taking any x∗
1 < x∗

2 belonging either to [x1ℓ, x1r]
or to [x2ℓ, x2r], we get a trivial solution (0, x∗

1, x
∗
2). Of course, we are interested only

in non-trivial solutions.

The modified free boundary problem (2.11)–(2.14) can be equivalently formu-
lated in the following way, which will be sometimes more convenient for us:

V ′(x) =

∫ x

x∗

1

2

σ2(t)

[
λV (t) − b(t)V ′(t) − f(t)

]
dt, x ∈ (x∗

1, x
∗
2); (2.15)

V (x) = 0, x ∈ R \ (x∗
1, x

∗
2); (2.16)

V ′
−(x∗

2) = 0. (2.17)

Similarly, a triplet (V, x∗
1, x

∗
2) is a solution of (2.15)–(2.17) if x∗

1 and x∗
2 are real

numbers, x∗
1 < x∗

2, V ∈ C1([x∗
1, x

∗
2]), and the triplet (V, x∗

1, x
∗
2) satisfies (2.15)–

(2.17). Clearly, a triplet (V, x∗
1, x

∗
2) is a solution of (2.11)–(2.14) if and only if it is

a solution of (2.15)–(2.17). In connection with (2.15), note that for any function
V ∈ C1(R), we have (λV −bV ′−f)/σ2 ∈ L1

loc(R), which follows from (2.2) and (2.3).

The first main result of this paper is a verification theorem for the optimal
stopping problem (2.4). Its proof will be given in Section 2.3.
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Theorem 2.1 (Verification Theorem) If (V, x∗
1, x

∗
2) is a non-trivial solution of

the free boundary problem (2.11)–(2.14), then it is the unique non-trivial solution.
V is the value function in the optimal stopping problem (2.4), i.e., V = V ∗, and
Tx∗

1,x∗

2
is the unique optimal stopping time in (2.4).

Remarks (i) Condition (2.11) ensures uniqueness of the non-trivial solution of the
free boundary problem (2.11)–(2.14). Problem (2.12)–(2.14) may have non-trivial
solutions that have nothing to do with the stopping problem (2.4).

Lamberton and Zervos (2006) prove that value functions of a wide class of
stopping problems of the form “maximize Ex[e

−Aτ g(Xτ )I(τ < ∞)] over all stopping
times τ” are differences of two convex functions. It seems therefore of interest
whether our free boundary formulation will still have a unique non-trivial solution
if we replace (2.11) by the weaker condition “V is the difference of two convex
functions”. The answer is negative as the following example shows.

Consider the case λ = 0 and b ≡ 0 and suppose that there exists a non-
trivial solution (V, x∗

1, x
∗
2) of (2.11)–(2.14) (see Section 3 for necessary and sufficient

conditions). We take any continuous function h : R → R such that h = 0 on

(−∞, x∗
1]∪ [x∗

2,∞), h′ = 0 µL-a.e. on [x∗
1, x

∗
2],
∫ x∗

2

x∗

1
h(t)dt = 0, and h is not absolutely

continuous on [x∗
1, x

∗
2] (such a function h can be easily constructed through the

Cantor staircase function). We set H(x) =
∫ x

−∞
h(t)dt, x ∈ R, and define the

function Ṽ by the formula Ṽ = V + H . Clearly, the triplet (Ṽ , x∗
1, x

∗
2) satisfies

(2.12)–(2.14) and Ṽ is the difference of two convex functions. However, Ṽ has

nothing to do with the stopping problem (2.4) because Ṽ 6= V = V ∗.

(ii) It is interesting to note that we have always strict inequalities x∗
1 < x1ℓ

and x∗
2 > x2r no matter how large negative values the function f takes to the left

from x1ℓ or to the right from x2r (see Proposition 2.9 below). This is different from
problems of the form

sup
τ

Ex

[
e−λτg(Xτ)I(τ < ∞)

]
.

In such problems, a point, where g or g′ have a discontinuity, can be a boundary
point of the stopping region (for the corresponding examples, see Salminen (1985,
p. 98, Ex. (iii)), Øksendal and Reikvam (1998, Sec. 4), or Dayanik and Karatzas
(2003, Sec. 6.7 and 6.11)). 2

The following result states that the modified free boundary formulation (2.11)–
(2.14) is “no-loss” in the sense described above. This justifies the modification
of the free boundary as (2.11)–(2.14). In the following theorem, we do not need
the structure of the gain function f as specified in Figure 2.1; we need only the
condition f/σ2 ∈ L1

loc(R).

Theorem 2.2 Let f be any Borel function R → R such that f/σ2 ∈ L1
loc(R).

If there exist real numbers x∗
1 < x∗

2 such that Tx∗

1,x∗

2
is an optimal stopping time

in (2.4), then the triplet (V ∗, x∗
1, x

∗
2) is a solution of (2.11)–(2.14).
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Remarks (i) Theorem 2.2 was stated as a conjecture in the first version of this
paper. The authors are very grateful to Mihail Zervos, who gave the essential idea
for the proof (this was during the Second AMaMeF Conference in Bedlewo, Poland,
April 30–May 5, 2007). The proof will be given in a subsequent paper (joint with
D. Belomestny). The results of Section 3 imply Theorem 2.2 in the particular case
b ≡ 0 and λ = 0.

(ii) It follows from Theorems 2.1 and 2.2 that for functions f that have the
form as in Figure 2.1 and satisfy (2.3), the stopping problem (2.4) has a two-sided
optimal stopping time if and only if the free boundary problem (2.11)–(2.14) has
a non-trivial solution. It would be interesting to obtain “simple” necessary and
sufficient conditions for this in terms of b, σ, f , and λ. We cannot do it in this
generality. However, this is done in Section 3 in the particular case b ≡ 0 and λ = 0
(see Theorem 3.1).

(iii) As it is seen from the discussion above, assumption (2.11) is a key as-
sumption on the value function in the framework of this paper. By Theorem 2.2,
(2.11) holds whenever (2.4) has a two-sided optimal stopping time. However, it is
interesting to obtain sufficient conditions on the diffusion coefficients, f , and λ to
ensure that the value function V ∗ in problem (2.4) satisfies (2.11) no matter what
form optimal stopping times have.

We cannot solve this problem in general. It follows however from the results
of Section 3 that in the particular case b ≡ 0 and λ = 0 (f of the form as in
Figure 2.1), the value function V ∗ satisfies (2.11) if and only if V ∗ is finite (one
can also see necessary and sufficient conditions for this in terms of σ and f in
Section 3). Cp. this with Lamberton and Zervos (2006); and see also Remark (i)
after Theorem 2.1. 2

In the rest of Section 2.2, we study a generalization of our stopping problem
and point out at some interesting effect. We now consider functions f that have
the following form: there exist four segments Ii = [xi,ℓ, xi,r], xi,ℓ ≤ xi,r, 1 ≤ i ≤ 4,
xi,r < xi+1,ℓ, 1 ≤ i ≤ 3 such that f = 0 on

⋃4
i=1 Ii, f > 0 on (x1,r, x2,ℓ)∪ (x3,r, x4,ℓ),

and f < 0 on the rest of real line (now we have two favorable domains compared
with one for functions f specified in Figure 2.1). We suppose that (2.2) and the
following modification of (2.3) hold:

f

σ2
∈ L1

loc(R),
1

f
∈ Bloc(x) ∀x ∈ R \

( 4⋃

i=1

Ii

)
.

To account for the possibility that the stopping region has the form (−∞, x∗
1]∪
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[x∗
2, x

∗
3] ∪ [x∗

4,∞), we formulate the modified free boundary problem

V ′ is absolutely continuous on [x∗
1, x

∗
2] and on [x∗

3, x
∗
4]; (2.18)

σ2(x)

2
V ′′(x) + b(x)V ′(x) − λV (x) = −f(x)

for µL-a.a. x ∈ (x∗
1, x

∗
2) ∪ (x∗

3, x
∗
4); (2.19)

V (x) = 0, x ∈ R \ [(x∗
1, x

∗
2) ∪ (x∗

3, x
∗
4)]; (2.20)

V ′
+(x∗

1) = V ′
−(x∗

2) = V ′
+(x∗

3) = V ′
−(x∗

4) = 0 (2.21)

and define its solution (V, x∗
1, x

∗
2, x

∗
3, x

∗
4) in a way similar to that for (2.11)–(2.14).

The following optimal stopping result for the class of functions f with two
favorable regions as introduced above can be proved similarly to the proof of The-
orem 2.1 (see Section 2.3).

Theorem 2.3 If (V, x∗
1, x

∗
2, x

∗
3, x

∗
4) is a solution of the free boundary problem

(2.18)–(2.21) such that V 6≡ 0 on (x∗
1, x

∗
2) and V 6≡ 0 on (x∗

3, x
∗
4), then it is the

unique solution with this property. V is the value function in the optimal stopping
problem (2.4), i.e., V = V ∗, and the unique optimal stopping time in (2.4) is given
by the formula

Tx∗

1,x∗

2,x∗

3,x∗

4
= inf{t ∈ [0,∞) : Xt /∈ (x∗

1, x
∗
2) ∪ (x∗

3, x
∗
4)},

where inf Ø := ∞. Moreover, x∗
1 < x1,ℓ, x∗

2, x
∗
3 ∈ (x2,r, x3,ℓ), and x∗

4 > x4,r.

Remark For some functions f of the modified form, the optimal stopping region
is two-sided, i.e. it is of the form (−∞, x∗

1] ∪ [x∗
2,∞) (one can think on a function

f such that |f | is “small” on (x2,r, x3,ℓ) and “large” on
⋃

i=1,2,4,5(xi−1,r, xi,ℓ) with
x0,r := −∞ and x5,ℓ := ∞). Therefore, it is interesting to understand whether
Theorem 2.1 remains true also in this case (to account for two-sided solutions of
the stopping problem). The answer is “No”! The form of the function f as in
Figure 2.1 is crucial for Theorem 2.1.

To illustrate this issue let us consider some function f as in Figure 2.1 such
that the free boundary problem (2.11)–(2.14) with f instead of f has a non-trivial
solution (V, x∗

1, x
∗
2). Then let us construct a function f of the form we consider now

by modifying f on [x∗
2,∞) in such a way that f > 0 on some (x∗

2, x
∗
2 + ε) (note that

f < 0 on some (x∗
2 − δ, x∗

2) by Remark (ii) after Theorem 2.1). Clearly, (V, x∗
1, x

∗
2) is

also a non-trivial solution of (2.11)–(2.14) for this new function f , but the stopping
time Tx∗

1,x∗

2
is no more optimal in (2.4) because it is equal to 0 if the starting point

belongs to the favorable region (x∗
2, x

∗
2 + ε). 2

2.3 Auxiliary results and proofs

Below we work in the setting of Section 2.1 (in particular, f has the form specified
in Figure 2.1). At first we need a uniqueness result for the Cauchy problem in (2.15).



Rüschendorf, Urusov 11

Lemma 2.4 (Uniqueness for the Cauchy problem) Let I be an interval in
R that is either open, semi-open, or closed, and either bounded or unbounded. Let
g : I → R be a function such that g/σ2 ∈ L1

loc(I). Let a ∈ I, c ∈ R, and V and Ṽ
be functions I → R that satisfy the equation

V ′(x) = c +

∫ x

a

2

σ2(t)

[
λV (t) − b(t)V ′(t) − g(t)

]
dt, x ∈ I.

If V (x0) = Ṽ (x0) and V ′(x0) = Ṽ ′(x0) for some x0 ∈ I, then V = Ṽ on I.

Proof: Let us set U = V − Ṽ and

y = inf{x ∈ I ∩ [x0,∞) : U(x) 6= 0}

(inf Ø := ∞) and suppose that U 6≡ 0 on I ∩ [x0,∞). Then y < d, where d denotes
the right endpoint of the interval I ∩ [x0,∞), and we have

U ′(x) =

∫ x

y

2

σ2(t)
[λU(t) − b(t)U ′(t)]dt, x ∈ I. (2.22)

Let δ ∈ (0, 1] be sufficiently small such that y + δ < d and

max

(∫ y+δ

y

2λ

σ2(t)
dt,

∫ y+δ

y

2|b(t)|
σ2(t)

dt

)
≤ 1

3

(see (2.2)), set m = supx∈[y,y+δ] |U ′(x)|, and note that m > 0 and |U | ≤ m on
[y, y + δ]. Now taking x ∈ [y, y + δ] such that |U ′(x)| = m, we get from (2.22) that
m ≤ 2

3
m. This contradiction implies that U ≡ 0 on I ∩ [x0,∞). Similarly, U ≡ 0

on (−∞, x0] ∩ I. 2

In Lemmas 2.5–2.8 below, we assume additionally that

b is locally bounded on R. (2.23)

In the following let (V, x∗
1, x

∗
2) be any non-trivial solution of the free boundary

problem (2.15)–(2.17).

Lemma 2.5 Let y ∈ [x∗
1, x

∗
2] and assume that (2.23) holds.

(i) If V attains a local maximum at y and V (y) ≥ 0, then f(y) ≥ 0.

(ii) If V attains a local minimum at y and V (y) ≤ 0, then f(y) ≤ 0.
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Proof:

(i) Since V ′(y) = 0, we have

V ′(x) =

∫ x

y

g(t)dt, x ∈ [x∗
1, x

∗
2],

where g(t) = (2/σ2(t))[λV (t) − b(t)V ′(t) − f(t)]. If f(y) < 0, then g > 0
in a sufficiently small neighborhood of y (see (2.3) and (2.23)). Hence, for a
sufficiently small ε > 0, V ′ > 0 on (y, y+ε) and V ′ < 0 on (y−ε, y) (if y = x∗

1

or y = x∗
2, one should consider respectively only (y, y + ε) or only (y − ε, y)).

This contradicts the fact that V attains a local maximum at y.

(ii) One can apply the reasoning above to the functions −V and −f . 2

Lemma 2.6 Under assumption (2.23), we have x∗
1 ≤ x1r, x∗

2 ≥ x2ℓ, and V ≥ 0
on R.

Proof:

I) Let us assume that x∗
2 < x2ℓ. There are several cases to consider.

1) Suppose that x∗
2 ∈ (x1r, x2ℓ) and x∗

1 ≥ x1ℓ (see Figure 2.2). It follows from

x1ℓ x∗
1 x1r y x∗

2 x2ℓ

V (·)
Figure 2.2

(2.15)–(2.17), (2.3), and (2.23) that V < 0 on (x∗
2 − ε, x∗

2) for a sufficiently
small ε > 0. If x∗

1 < x1r, then, by Lemma 2.4, V = 0 on [x∗
1, x1r]. Let

us take y ∈ [x∗
1, x

∗
2] such that V (y) = infx∈[x∗

1,x∗

2] V (x). The reasoning
above ensures that y ∈ (x1r, x2ℓ). Since f > 0 on (x1r, x2ℓ), we obtain a
contradiction with Lemma 2.5.

2) Suppose that x∗
2 ∈ (x1r, x2ℓ) and x∗

1 < x1ℓ (see Figure 2.3). It follows from
(2.15)–(2.17), (2.3), and (2.23) that V < 0 on (x∗

2 − ε, x∗
2) and V > 0 on

(x∗
1, x

∗
1 + ε) for a sufficiently small ε > 0. By a we denote any point in

(x∗
1, x

∗
2) such that V (a) = 0. Let us take y ∈ [x∗

1, a] and z ∈ [a, x∗
2] such

that V (y) = supx∈[x∗

1,a] V (x) and V (z) = infx∈[a,x∗

2] V (x) and note that
y < a < z and V (y) > 0 > V (z). By Lemma 2.5, f(y) ≥ 0 and f(z) ≤ 0.
Due to the form of the function f and the fact that y < z < x2ℓ, we obtain
that y, z ∈ [x1ℓ, x1r].
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x∗
1 x1ℓ y

z x1r x∗
2 x2ℓ

V (·)

Figure 2.3

Since V ′(y) = 0, we have

V ′(x) =

∫ x

y

2

σ2(t)
[λV (t) − b(t)V ′(t)]dt, x ∈ [y, z]. (2.24)

In case that λ > 0 it follows from (2.24), (2.23), and V (y) > 0 that V ′ > 0
on a sufficiently small interval (y, y + ε). This contradicts the fact that V
attains a local maximum at y.

Finally, in case that λ = 0 the function Ṽ (x) = V (y), x ∈ [y, z], is a

solution of (2.24) on the interval [y, z]. By Lemma 2.4, V = Ṽ on [y, z],
hence, V (y) = V (z). We obtain a contradiction with V (y) > 0 > V (z).

3) Suppose that x∗
2 ≤ x1r. If x∗

1 ≥ x1ℓ, then, by Lemma 2.4, V ≡ 0. Since we
consider a non-trivial solution (V, x∗

1, x
∗
2) of (2.15)–(2.17), we get x∗

1 < x1ℓ.
Now we obtain a contradiction by a reasoning similar to that in part 1).

Thus, we established that x∗
2 ≥ x2ℓ. Similarly, x∗

1 ≤ x1r.

II) In the next part we prove that V ≥ 0 on R.

Let us at first prove that V ≥ 0 on [x2ℓ, x
∗
2]. If x∗

2 ≤ x2r, then, by Lemma 2.4,
V = 0 on [x2ℓ, x

∗
2]. In case that x∗

2 > x2r (see Figure 2.4) it follows from
(2.15)–(2.17), (2.3), and (2.23) that V is strictly decreasing on a sufficiently
small interval [x∗

2 − ε, x∗
2], hence, V > 0 on [x∗

2 − ε, x∗
2). To prove that V

V (·)

x2ℓ y z x2r x∗
2

Figure 2.4

is decreasing on [x2ℓ, x
∗
2], assume that this is not the case. Then there exist
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points y and z, x2ℓ ≤ y < z < x∗
2, such that V (y) < V (z) = supx∈[y,x∗

2] V (x).
By Lemma 2.5, f(z) ≥ 0; hence, z ≤ x2r. Since V ′(z) = 0, we obtain from
(2.15) that

V ′(x) =

∫ x

z

2

σ2(t)
[λV (t) − b(t)V ′(t)]dt, x ∈ [y, z]. (2.25)

If λ > 0, then V ′ < 0 on some interval (z−ε, z) due to (2.23). This contradicts
the fact that V attains a local maximum at z. If λ = 0, then the function
Ṽ (x) = V (z), x ∈ [y, z], is a solution of (2.25) on the interval [y, z]. By

Lemma 2.4, V = Ṽ on [y, z], hence, V (y) = V (z), and this is a contradiction.

Thus, V ≥ 0 on [x2ℓ, x
∗
2]. Similarly, V ≥ 0 on [x∗

1, x1r].

Finally, if there exists a point y ∈ (x1r, x2ℓ) such that V (y) < 0, then we
obtain a contradiction with Lemma 2.5 by considering z ∈ (x1r, x2ℓ) such
that V (z) = infx∈[x1r,x2ℓ] V (x). This completes the proof. 2

In the following lemma we establish the main part of the verification theorem.

Lemma 2.7 Under assumption (2.23), V ∗ = V , and Tx∗

1,x∗

2
is an optimal stopping

time in the stopping problem (2.4).

Proof: Let x ∈ R be fixed. At first we prove that we can apply Itô’s formula in
the standard form to e−λ(t∧T−n,n)V (X

T−n,n

t ), n ∈ N (we stop X at T−n,n because it
can explode) and obtain

e−λ(t∧T−n,n)V (Xt∧T−n,n
) = V (x) +

∫ t∧T−n,n

0

e−λsV ′(Xs)σ(Xs)dBs

+

∫ t∧T−n,n

0

e−λsG(Xs)ds Px-a.s., t ∈ [0,∞),

(2.26)

where G(y) = σ2(y)V ′′(y)/2 + b(y)V ′(y) − λV (y), y ∈ R. Note that the term∫ t∧T−n,n

0
e−λsG(Xs)ds is well defined (though it contains V ′′ that is defined only

µL-a.e.) because

µL({t ∈ [0,∞) : Xt ∈ A}) = 0 Px-a.s. whenever µL(A) = 0, (2.27)

which, in turn, can be derived from the occupation times formula (see Revuz and
Yor (1999, Ch. VI, Cor. (1.6))).

It follows from (2.11) that V is the difference of two convex functions. By the
Itô–Tanaka formula (see Revuz and Yor (1999, Ch. VI, Th. (1.5)), we get

V (X
T−n,n

t ) = V (x) +

∫ t∧T−n,n

0

V ′(Xs)σ(Xs)dBs +

∫ t∧T−n,n

0

V ′(Xs)b(Xs)ds

+
1

2

∫

R

Ly
t (X)V ′(dy) Px-a.s., t ∈ [0,∞),

(2.28)
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where V ′(dy) denotes the (signed) Radon measure on (R,B(R)) with the distribu-
tion function V ′. Since V ′(dy) = V ′′(y)dy (see (2.11)), the term with the local time
in (2.28) can be rewritten by the occupation times formula as follows:

∫

R

Ly
t (X)V ′(dy) =

∫

R

Ly
t (X)V ′′(y)dy

=

∫ t

0

V ′′(Xs)d[X]s

=

∫ t

0

V ′′(Xs)σ
2(Xs)ds Px-a.s., t ∈ [0,∞).

Substituting this in (2.28), we obtain

V (X
T−n,n

t ) = V (x) +

∫ t∧T−n,n

0

V ′(Xs)σ(Xs)dBs

+

∫ t∧T−n,n

0

[σ2(Xs)V
′′(Xs)/2 + b(Xs)V

′(Xs)]ds Px-a.s., t ∈ [0,∞).

(2.29)

Now applying Itô’s formula to e−λ(t∧T−n,n)Yt, where Yt = V (X
T−n,n

t ), and using
(2.29) we get (2.26). For the sequel, note that in (2.26) we have G = −fI[x∗

1,x∗

2]

µL-a.e. (see (2.12)).
Since T−n,n ↑ ζ Px-a.s. as n ↑ ∞, we have

e−λ(t∧T−n,n)V (Xt∧T−n,n
) → e−λtV (Xt) Px-a.s. on {ζ > t}.

Additionally by our definition g(∆) = 0 for any function g : R → R and using the
fact that V has compact support, we get

e−λ(t∧T−n,n)V (Xt∧T−n,n
) → 0 = e−λtV (Xt) Px-a.s. on {ζ ≤ t}.

Treating in a similar way the right-hand side of (2.26), we obtain

e−λtV (Xt) = V (x) + Mt +

∫ t

0

e−λsG(Xs)ds Px-a.s., t ∈ [0,∞), (2.30)

where

Mt =

∫ t

0

e−λsV ′(Xs)σ(Xs)dBs (2.31)

is a local martingale. Indeed,

∫ t

0

[
e−λsV ′(Xs)σ(Xs)

]2
ds < ∞ Px-a.s., t ∈ [0,∞),

because
∫ t

0
σ2(Xs)ds < ∞ Px-a.s. on the set {ζ > t} and further V ′ has compact

support.
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Let τ ∈ M be an arbitrary stopping time and let τn ↑ ∞ be a localizing sequence
for M (so that each M τn is a uniformly integrable martingale). Setting F = −G,
we obtain from (2.30) that

V (x) = Ex

[
e−λ(τ∧τn)V (Xτ∧τn

)
]

+ Ex

∫ τ∧τn

0

e−λsF (Xs)ds (2.32)

(Note that the first term on the right-hand side is finite because V is bounded.
Hence, the second term is also finite). By Lebesgue’s bounded convergence theorem,

Ex

[
e−λ(τ∧τn)V (Xτ∧τn

)
]
→ Ex

[
e−λτV (Xτ )

]
, n → ∞.

Since F = fI[x∗

1,x∗

2] µL-a.e., we have F+ ≤ f+ µL-a.e. and F− ≤ f− µL-a.e.
Since τ ∈ M, we have

Ex

∫ τ

0

e−λsF+(Xs)ds < ∞ or Ex

∫ τ

0

e−λsF−(Xs)ds < ∞.

Considering separately F+ and F− and applying the monotone convergence theo-
rem, we get

Ex

∫ τ∧τn

0

e−λsF (Xs)ds → Ex

∫ τ

0

e−λsF (Xs)ds, n → ∞.

Thus, (2.32) implies the definitive equation

V (x) = Ex

[
e−λτV (Xτ )

]
+ Ex

∫ τ

0

e−λsF (Xs)ds. (2.33)

By Lemma 2.6, V (y) ≥ 0 for all y ∈ R and F (y) ≥ f(y) for µL-a.a. y ∈ R. Applying
(2.27), we obtain from (2.33) that

V (x) ≥ Ex

∫ τ

0

e−λsf(Xs)ds

for each τ ∈ M. Hence, V (x) ≥ V ∗(x). Putting τ = Tx∗

1,x∗

2
in (2.33), we see that

V (x) = Ex

∫ Tx∗
1

,x∗
2

0

e−λsf(Xs)ds.

This completes the proof. 2

Now we can strengthen Lemma 2.6.

Lemma 2.8 Under assumption (2.23), we have x∗
1 ≤ x1ℓ, x∗

2 ≥ x2r, and V > 0 on
(x∗

1, x
∗
2).
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Proof: We recall that for the solution X of SDE (2.1) under condition (2.2) it
holds Px(Ty < Tz) > 0 and Px(Tz < Ty) > 0 for any y < x < z, where

Ty = inf{t ∈ [0,∞) : Xt = y}

with the usual agreement inf Ø = ∞, and Tz is defined similarly (see Engelbert
and Schmidt (1985, 1991), or Karatzas and Shreve (1991, Ch. 5.5.A–B)). Applying
Lemma 2.7, we obtain

V (x) = V ∗(x) ≥ Ex

∫ Tx1ℓ,x2r

0

e−λsf(Xs)ds > 0, x ∈ (x1ℓ, x2r).

Hence, x∗
1 ≤ x1ℓ and x∗

2 ≥ x2r. Finally, it remains to recall the following fact, which
is established in part II) of the proof of Lemma 2.6: if x∗

1 < x1ℓ (resp., x∗
2 > x2r),

then V > 0 on (x∗
1, x1ℓ] (resp., on [x2r, x

∗
2)). 2

Proof of Theorem 2.1 1) At first we additionally assume (2.23). We still need to
prove the uniqueness of the non-trivial solution of (2.15)–(2.17) and the uniqueness
of the optimal stopping time in (2.4).

It follows from Lemmas 2.7 and 2.8 that for any non-trivial solution (V, x∗
1, x

∗
2)

of (2.15)–(2.17), we have

V = V ∗,

x∗
1 = sup{x ≤ x1ℓ : V ∗(x) = 0},

x∗
2 = inf{x ≥ x2r : V ∗(x) = 0}.

Hence, the non-trivial solution of (2.15)–(2.17) is unique.
Consider any x ∈ R and any stopping time τ ∈ M. If Px(τ < Tx∗

1,x∗

2
) > 0, then,

by Lemma 2.8, Ex[e
−λτV (Xτ )] > 0. Hence, (2.33) implies that τ is not optimal

in problem (2.4). Now assume that Px(τ > Tx∗

1,x∗

2
) > 0 and consider the process

Yt = XTx∗
1

,x∗
2
+t − XTx∗

1
,x∗

2
(note that Tx∗

1,x∗

2
< ∞ Px-a.s.). For any ε > 0, we have

supt∈[0,ε] Yt > 0 Px-a.s. and inft∈[0,ε] Yt < 0 Px-a.s. (see for instance Karatzas and
Shreve (1991, Ch. 5.5.A–B)). Then it follows from (2.33), V ≥ 0 on R and F > f
µL-a.e. on R \ [x∗

1, x
∗
2] that τ is not optimal in (2.4). Thus, there exists no other

optimal stopping time in (2.4) except Tx∗

1,x∗

2
.

2) Now we prove the result without assuming (2.23). For some fixed c ∈ R we
consider the scale function of the process X

p(x) =

∫ x

c

exp

(
−
∫ y

c

2b(z)

σ2(z)
dz

)
dy, x ∈ R. (2.34)

We define the process X̃t = p(Xt), p(∆) := ∆, with the state space J ∪ {∆},
J = (p(−∞), p(∞)). Then we have

dX̃t = σ̃(X̃t) dBt
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with σ̃(x) = (p′σ) ◦ p−1(x), x ∈ J . We shall use the alternative notation P̃x for the

measure Pp−1(x) so that P̃x(X̃0 = x) = 1. Consider now the stopping problem

Ṽ ∗(x) = sup
τ∈M

Ẽx

∫ τ

0

e−λsf̃(X̃s) ds,

where f̃ = f ◦ p−1. Clearly, it is a reformulation of the problem (2.4) in the sense

that Ṽ ∗ = V ∗ ◦ p−1, and a stopping time τ ∗ is optimal in the problem V ∗(x) if

and only if it is optimal in the problem Ṽ ∗(p(x)). Note that conditions (2.2) and

(2.3) for the functions b̃ ≡ 0, σ̃, and f̃ are satisfied (one should replace R with
J in (2.2) and (2.3)). Now the result follows from part 1) and the fact that the
triplet (V, x∗

1, x
∗
2) is a non-trivial solution of (2.11)–(2.14) if and only if the triplet

(Ṽ , x̃∗
1, x̃

∗
2) := (V ◦ p−1, p(x∗

1), p(x∗
2)) is a non-trivial solution of the free boundary

problem

Ṽ ′ is absolutely continuous on [x̃∗
1, x̃

∗
2]; (2.35)

σ̃2(x)

2
Ṽ ′′(x) − λṼ (x) = −f̃(x) for µL-a.a. x ∈ (x̃∗

1, x̃
∗
2); (2.36)

Ṽ (x) = 0, x ∈ J \ (x̃∗
1, x̃

∗
2); (2.37)

Ṽ ′
+(x̃∗

1) = Ṽ ′
−(x̃∗

2) = 0 (2.38)

(we use also Remark (i) at the end of Section 2.1). 2

Finally, we prove the result stated in Remark (ii) after the formulation of The-
orem 2.1.

Proposition 2.9 If (V, x∗
1, x

∗
2) is a non-trivial solution of the free boundary prob-

lem (2.11)–(2.14), then x∗
1 < x1ℓ and x∗

2 > x2r.

Proof: Since the triplet (V, x∗
1, x

∗
2) is a non-trivial solution of (2.11)–(2.14) if and

only if the triplet (Ṽ , x̃∗
1, x̃

∗
2) := (V ◦ p−1, p(x∗

1), p(x∗
2)) is a non-trivial solution of

(2.35)–(2.38), we assume without loss of generality that b ≡ 0.
By Lemma 2.8, x∗

1 ≤ x1ℓ. If we suppose that x∗
1 = x1ℓ, then (V, x∗

1, x
∗
2) will be

also a non-trivial solution of (2.11)–(2.14) with the function f instead of f , where

f(x) =

{
0 if x ∈ [x1ℓ, x1ℓ],

f(x) otherwise

with an arbitrary x1ℓ < x1l. Since f has the form considered in the paper (see
Figure 2.1), we obtain the contradiction with Lemma 2.8. Thus, x∗

1 < x1ℓ and,
similarly, x∗

2 > x2r. 2
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3 Investigation of the stopping problem in case

b ≡ 0 and λ = 0

In this section, we consider the case b ≡ 0 and λ = 0 in detail. The assumptions
on the functions f and σ remain the same as in Section 2. We define the functions
g and h : R → R by

g(x) = −2f(x)

σ2(x)
, h(x) =

∫ x

0

g(y)dy.

The function h is well defined because f/σ2 ∈ L1
loc(R) (see (2.3)). Due to the form of

the function f , we have g > 0 on (−∞, x1ℓ)∪(x2r,∞), g = 0 on [x1ℓ, x1r]∪ [x2ℓ, x2r],
and g < 0 on (x1r, x2ℓ). Hence, h is strictly increasing on (−∞, x1ℓ] and on [x2r,∞),
it is constant on [x1ℓ, x1r] and on [x2ℓ, x2r] and it is strictly decreasing on [x1r, x2ℓ].
We set h(∞) = lim

x→∞
h(x) and h(−∞) = lim

x→−∞
h(x).

For any c ∈ R, we define the function H(x, c) = h(x) − c, x ∈ R. If c ∈ R is
chosen in such a way that H(x1ℓ, c) > 0 and H(−∞, c) < 0 (resp., H(x2r, c) < 0
and H(∞, c) > 0 ), then we denote by αc (resp., βc) the unique point in (−∞, x1ℓ)
(resp., (x2r,∞)) such that H(αc, c) = 0 (resp., H(βc, c) = 0). For illustration see
Figure 3.1.

h(·)

αc βcx1ℓ x1r

x2ℓ x2r
c

Figure 3.1

3.1 Necessary and sufficient conditions for the existence
of a non-trivial solution of the free boundary problem

(2.15)–(2.17)

We consider the condition

(A1) h(∞) > h(−∞) (or, equivalently,
∫∞

−∞
g(y)dy > 0; note that

∫∞

−∞
g(y)dy is

well defined because
∫∞

−∞
g−(y)dy =

∫ x2ℓ

x1r
g−(y)dy < ∞).

If (A1) holds, we additionally introduce the following conditions:
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(A2) If h(∞) < h(x1ℓ), then
∫∞

αh(∞)
H(y, h(∞))dy < 0;

(A3) If h(−∞) > h(x2r), then
∫ βh(−∞)

−∞
H(y, h(−∞))dy > 0.

Theorem 3.1 The free boundary problem (2.15)–(2.17) has a non-trivial solution
if and only if conditions (A1)–(A3) hold. In this case, the non-trivial solution is
unique.

Proof: Assume that conditions (A1)–(A3) are satisfied. We set m1 = h(x2r) ∨
h(−∞) and m2 = h(x1ℓ) ∧ h(∞). There exist c1 and c2, m1 < c1 < c2 < m2, such
that

∫ βc1

αc1

H(y, c1)dy > 0 and

∫ βc2

αc2

H(y, c2)dy < 0.

Then there exists c∗ ∈ (c1, c2) such that

∫ βc∗

αc∗

H(y, c∗)dy = 0.

Now it is clear that the triplet (V, αc∗ , βc∗) is a non-trivial solution of (2.15) –(2.17),
where

V (x) =

{∫ x

αc∗
H(y, c∗)dy if x ∈ (αc∗ , βc∗),

0 otherwise.
(3.1)

The converse and the uniqueness can also be easily verified (alternatively, the
uniqueness follows from Theorem 2.1). 2

It is a remarkable fact, that the value function of the optimal stopping problem
can be determined in explicit form (see (3.1)) based on the free boundary formu-
lation (2.15)–(2.17). This shows the usefulness of the modified formulation of the
free boundary problem.

3.2 Study of the optimal stopping problem when (A1)–(A3)

are not satisfied

Suppose that at least one of the conditions (A1)–(A3) is violated. It is interesting
to consider the stopping problem (2.4) also in this case. For the sequel, note that
our assumption b ≡ 0 implies that the solution X of (2.1) does not explode and is
recurrent (see Engelbert and Schmidt (1985, 1991), or Karatzas and Shreve (1991,
Ch. 5.5.A)). If at least one of conditions (A1)–(A3) is violated, then we are in the
situation of exactly one of the following three cases.

Case 1: h(∞) ≤ h(−∞) (or, equivalently,
∫∞

−∞
g(y)dy ≤ 0);
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Case 2: h(−∞) < h(∞) < h(x1ℓ) and
∫∞

αh(∞)
H(y, h(∞))dy ≥ 0;

Case 3: h(x2r) < h(−∞) < h(∞) and
∫ βh(−∞)

−∞
H(y, h(−∞))dy ≤ 0.

Note that each of these cases excludes the other ones.
For illustration see Figure 3.2.

h(·)

h(−∞)

h(∞)

Case 1

αh(∞)

H(·, h(∞))

Case 2

βh(−∞)

H(·, h(−∞))

Case 3

Figure 3.2

3.3 Study of case 1

In case 1, h(∞) and h(−∞) are finite. We set

m =
h(∞) + h(−∞)

2
, K+ =

∫

R

H+(y, m)dy, K− =

∫

R

H−(y, m)dy.

Recall that for any real numbers α < β, Tα,β ∈ M and, moreover, Ex

∫ Tα,β

0
|f(Xs)|ds

< ∞, x ∈ R (see Lemma A.3).

Theorem 3.2 (Solution of the stopping problem in case 1)

(i) For any τ ∈ M and x ∈ R we have

Ex

∫ τ

0

f(Xs)ds < V ∗(x),

i.e., there exists no optimal stopping time.

(ii) There exist sequences an ↓ −∞ and bn ↑ ∞ such that for any x ∈ R,

Ex

∫ Tan,bn

0

f(Xs)ds → V ∗(x), (3.2)

i.e., the sequence of stopping times {Tan,bn
} is asymptotically optimal.

(iii) If K+ = ∞ or K− = ∞, then

V ∗(x) = ∞, x ∈ R.

If K− ≤ K+ < ∞, then

V ∗(x) =

∫ x

−∞

H(y, m)dy, x ∈ R.
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If K+ ≤ K− < ∞, then

V ∗(x) = −
∫ ∞

x

H(y, m)dy, x ∈ R.

In particular, we have

K+ ∨ K− < ∞ ⇐⇒ V ∗(x) < ∞ ∀x ∈ R,

K+ ∨ K− = ∞ ⇐⇒ V ∗(x) = ∞ ∀x ∈ R.

Let us also note that K+ ∨ K− can be finite only if h(∞) = h(−∞).

Remarks (i) The situation of case 1 can be heuristically interpreted as the situation
when the “negative tails” of the function f are light compared with the “positive
midst”. This interpretation suggests that it is never optimal to stop (because X is
recurrent and λ = 0), which agrees with Theorem 3.2. In this connection, we note
that τ ≡ ∞ is not an optimal stopping time here because τ /∈ M (see Lemma 3.3).

(ii) We would like to remark that the asymptotic optimality of Tan,bn
in (3.2) is

not true for all sequences an ↓ −∞ and bn ↑ ∞. At the end of this subsection we
present a corresponding example. 2

The proof of Theorem 3.2 will follow from Lemmas 3.6–3.8 below. At first
however we need several auxiliary results.

Lemma 3.3 For the stopping time τ ≡ ∞, we have τ /∈ M.

Proof: Since X is a recurrent continuous local martingale, we have [X]∞ = ∞
Px - a.s. Then, for the local time of X, we have Ly

∞ = ∞ Px-a.s. for any y ∈ R

(Revuz and Yor (1999, Ch. VI, Ex. (1.27))). By the occupation times formula,

∫ ∞

0

f+(Xs)ds =

∫ ∞

0

f+(Xs)

σ2(Xs)
d[X]s =

∫

R

f+(y)

σ2(y)
Ly
∞(X)dy = ∞ Px - a.s.

Similarly,
∫∞

0
f−(Xs)ds = ∞ Px - a.s. 2

In Lemmas 3.4–3.8 below we assume that

K+ ≥ K−. (3.3)

The case K+ ≤ K− can be treated similarly.

Lemma 3.4 Let z ∈ R be an arbitrary real number. There exist sequences {an},
{bn} and {cn} such that the following statements hold:

i) an ↓ −∞, a1 ≤ x1ℓ;

ii) bn ↑ ∞, b1 ≥ x2r;
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iii) m ≤ cn < h(an);

iv)

∫ bn

an

H(y, cn)dy = 0;

v) if an < z, then

∫ z

an

H(y, cn)dy ≥
∫ z

an

H(y, m)dy − 1

n
.

In connection with statement v), let us note that an < z for sufficiently large n.
For illustration see Figure 3.3.

h(·)

m

cn

an x1ℓ

x2r bn

Figure 3.3

Proof: At first we take any sequences a′
n ↓ −∞ and b′n ↑ ∞ such that a′

1 ≤ x1ℓ,
b′1 ≥ x2r, and for any n,

∫ b′n

a′
n

H(y, m)dy ≥ 0.

This can be done due to (3.3). Now we construct the sequence {c′n} in the following

way. If
∫ b′n

a′

n
H(y, m)dy = 0, we take c′n = m. If

∫ b′n
a′

n
H(y, m)dy > 0, we take c′n

sufficiently close to m so that the following properties are satisfied:

(a) m < c′n < h(a′
n);

(b)

∫ b′n

a′

n

H(y, c′n)dy ≥ 0;

(c) if a′
n < z, then

∫ z

a′
n

H(y, c′n)dy ≥
∫ z

a′
n

H(y, m)dy − 1

n
.
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Since c′n > m ≥ h(∞), we have
∫

R
H−(y, c′n)dy = ∞. Consequently, there exists

b′′n ≥ b′n such that

∫ b′′n

a′

n

H(y, c′n)dy = 0.

Finally, let us denote by {bn} any monotone subsequence of {b′′n} and by {an} and
{bn} the corresponding subsequences of {a′

n} and {c′n}. Clearly, statements i)–v)
hold. 2

Now let {an}, {bn}, and {cn} be any sequences satisfying conditions i)–v) of
Lemma 3.4. We consider the optimal stopping problem

V ∗
n (x) = sup

τ≤Tan,bn

Ex

∫ τ

0

f(Xs)ds, (3.4)

where the supremum is taken over all stopping times τ ≤ Tan,bn
(note that by

Lemma A.3, τ ∈ M whenever τ ≤ Tan,bn
). We define

Vn(x) =





∫ x

an

H(y, cn)dy if x ∈ (an, bn),

0 otherwise.

Then Vn is continuous and Vn > 0 on (an, bn) (see Figure 3.3).

Lemma 3.5 Vn is identical to the optimal stopping value in (3.4), i.e, Vn = V ∗
n ,

and Tan,bn
is the unique optimal stopping time.

Proof: If x 6∈ (an, bn), then the statement is clear; thus let x ∈ (an, bn). Let Ṽn

be any function such that Ṽn ∈ C1(R) ∩ C2((−∞, an] ∪ [bn,∞)) and Ṽn = Vn on

[an, bn]. Note that we cannot take Ṽn = Vn because V ′
n has discontinuities at the

points an and bn. We can apply Itô’s formula in the standard form to Ṽn(X) (as in
the proof of Lemma 2.7) and obtain

Ṽn(Xt) = Ṽn(x)+

∫ t

0

Ṽ ′
n(Xs)σ(Xs)dBs+

1

2

∫ t

0

Ṽ ′′
n (Xs)σ

2(Xs)ds Px-a.s., t ∈ [0,∞).

Hence, by (2.12)

Vn(Xt) = Vn(x) + Mt −
∫ t

0

f(Xs)ds Px-a.s. on {t ≤ Tan,bn
} (3.5)

where

Mt =

∫ t

0

V ′
n(Xs)σ(Xs)dBs
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(we used also (2.27) because V ′′(y)σ2(y)/2 = −f(y) only for µL-a.a. y ∈ [an, bn]).
By Lemma A.1 and boundedness of V ′

n on (an, bn), MTan,bn is a uniformly integrable
martingale. Hence, we obtain from (3.5) that for any stopping time τ ≤ Tan,bn

,

Vn(x) = ExVn(Xτ ) + Ex

∫ τ

0

f(Xs)ds.

This implies the statement of Lemma 3.5. 2

Lemma 3.6 For any x ∈ R,

Ex

∫ Tan,bn

0

f(Xs)ds = V ∗
n (x) ↑ V ∗(x), n ↑ ∞.

Proof: The equality is a part of Lemma 3.5. The sequence {V ∗
n (x)}n∈N is increasing

and for each n, V ∗
n (x) ≤ V ∗(x). By the monotone convergence theorem applied

separately to f+ and f−, we have for any τ ∈ M,

Ex

∫ τ

0

f(Xs)ds = lim
n→∞

Ex

∫ τ∧Tan,bn

0

f(Xs)ds ≤ lim
n→∞

V ∗
n (x).

Hence V ∗
n (x) ↑ V ∗(x). 2

Let us recall that we still assume that K+ ≥ K− (see (3.3)).

Lemma 3.7 If K+ = ∞, then

V ∗(x) = ∞, x ∈ R. (3.6)

If K+ < ∞, then

V ∗(x) =

∫ x

−∞

H(y, m)dy, x ∈ R. (3.7)

Proof: Let us recall that
∫ z

an

H(y, m)dy − 1

n
≤
∫ z

an

H(y, cn)dy ≤
∫ z

an

H(y, m)dy

(see Lemma 3.4). By Lemmas 3.5 and 3.6,

V ∗(z) = lim
n→∞

V ∗
n (z) = lim

n→∞
Vn(z) = lim

n→∞

∫ z

an

H(y, cn)dy

= lim
n→∞

∫ z

an

H(y, m)dy =

∫ z

−∞

H(y, m)dy.

Since z is an arbitrary point in R, we obtain (3.7). Finally, it remains to note that
the right-hand side of (3.7) is identically infinite if K+ = ∞. 2
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Lemma 3.8 For any τ ∈ M and x ∈ R, it holds

Ex

∫ τ

0

f(Xs)ds < V ∗(x).

Proof: We prove this result by contradiction. Assume that there exists τ ∈ M and
x ∈ R such that

Ex

∫ τ

0

f(Xs)ds = V ∗(x). (3.8)

1) At first we consider the case V ∗(x) < ∞. By Lemma 3.3, there exists a suffi-
ciently large n such that Px(τ < Tan,bn

) > 0. By Lemma A.3, τ ∨ Tan,bn
∈ M.

To obtain a contradiction, it is enough to prove that

Ex

∫ τ∨Tan,bn

0

f(Xs)ds > Ex

∫ τ

0

f(Xs)ds. (3.9)

If N is a process such that NTan,bn is a uniformly integrable martingale, then

Ex [NτI(τ < Tan,bn
)] = Ex

[
NTan,bn

I(τ < Tan,bn
)
]
. (3.10)

We rewrite (3.5) as

Vn(x) + Mt = Vn(Xt) +

∫ t

0

f(Xs)ds Px-a.s. on {t ≤ Tan,bn
}

and substitute the process Nt = Vn(x) + Mt in (3.10). We get

Ex

[(
Vn(Xτ ) +

∫ τ

0

f(Xs)ds

)
I(τ < Tan,bn

)

]

= Ex

[∫ Tan,bn

0

f(Xs)dsI(τ < Tan,bn
)

]
.

(3.11)

Since we assume (3.8) and V ∗(x) < ∞, Ex

∫ τ

0
f(Xs)ds is finite. Hence,

Ex

[∫ τ

0
f(Xs)dsI(τ < Tan,bn

)
]

is finite. Together with (3.11) and Ex [Vn(Xτ )
I(τ < Tan,bn

)] > 0, this implies

Ex

[∫ Tan,bn

0

f(Xs)dsI(τ < Tan,bn
)

]
> Ex

[∫ τ

0

f(Xs)dsI(τ < Tan,bn
)

]
. (3.12)

Finally, we add the finite quantity Ex

[∫ τ

0
f(Xs)dsI(τ ≥ Tan,bn

)
]

to both sides
of (3.12) and obtain (3.9).

2) Now we consider the case V ∗(x) = ∞. By the occupation times formula, we
have

Ex

∫ τ

0

f+(Xs)ds =

∫ x2ℓ

x1r

f+(y)

σ2(y)
ExL

y
τ (X)dy (3.13)
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(note that f+ = 0 outside (x1r, x2ℓ)) and similarly

Ex

∫ τ

0

f−(Xs)ds =

∫

R

f−(y)

σ2(y)
ExL

y
τ (X)dy. (3.14)

It follows from (3.8) that Ex

∫ τ

0
f+(Xs)ds = ∞. Lemma A.2, formula (3.13),

and local integrability of f+/σ2 imply that ExL
y
τ (X) = ∞, ∀y ∈ R. Hence,

(3.14) yields Ex

∫ τ

0
f−(Xs)ds = ∞. This contradicts τ ∈ M. 2

This concludes the proof of Theorem 3.2 in the case K+ ≥ K−. The case
K+ ≤ K− can be dealt with in a similar way. We omit the details.

Example Consider the situation h(∞) = h(−∞), K+ = ∞, and K− < ∞. We
shall construct sequences an ↓ −∞ and bn ↑ ∞ such that

lim
n→∞

Ex

∫ Tan,bn

0

f(Xs)ds < V ∗(x) (3.15)

for all x ∈ R (cp. with statement (ii) of Theorem 3.2).
The construction is illustrated by Figure 3.4. For c ∈ (h(x2ℓ), h(x1r)) we use

h(·)

m

cn

an αcn

γm bn

γcn

Figure 3.4

the notation γc for the unique point in (x1r, x2ℓ) such that h(γc) = c. Let {bn} be
a sequence, bn ↑ ∞ and b1 ≥ x2r. Further, let {cn} be a sequence such that cn ↓ m
and

(a) m < cn < h(x1r);

(b)

∫ γcn

αcn

H(y, cn)dy > K− (note that

∫ γc

αc

H(y, c)dy ↑ K+ = ∞ as c ↓ m);

(c)

∫ bn

γcn

(−H(y, cn))dy ≤ K− (note that

∫ bn

γm

(−H(y, m))dy < K− for all n).

For each n, we have
∫ bn

αcn
H(y, cn)dy > 0. Since

∫ αcn

−∞
H(y, cn)dy = −∞, there exists

an < αcn
such that

∫ bn

an

H(y, cn)dy = 0.
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Clearly, an → −∞. Without loss of generality we assume that the sequence {an}
is monotone (otherwise we consider a monotone subsequence) and define

Un(x) =






∫ x

an

H(y, cn)dy if x ∈ (an, bn),

0 otherwise.

Note that Un is continuous, Un is strictly decreasing an [an, αcn
] and on [γcn

, bn],
and is strictly increasing on [αcn

, γcn
]. In particular,

sup
x∈R

Un(x) = Un(γcn
) ≤ K− (3.16)

by condition (c) above. One can verify with the help of Itô’s formula that

Ex

∫ Tan,bn

0

f(Xs)ds = Un(x), x ∈ R. (3.17)

Since K+ = ∞, we have V ∗ ≡ ∞. Together with (3.16) and (3.17) this im-
plies (3.15).

3.4 Study of cases 2 and 3

We recall that in case 2, h(−∞) < h(∞) < h(x1ℓ) and
∫∞

αh(∞)
H(y, h(∞))dy ≥ 0,

and in case 3, h(x2r) < h(−∞) < h(∞) and
∫ βh(−∞)

−∞
H(y, h(−∞))dy ≤ 0. For real

numbers α, β we define the one-sided stopping times

T−
α = inf{t ∈ [0,∞) : Xt ≤ α}, (3.18)

T+
β = inf{t ∈ [0,∞) : Xt ≥ β}, (3.19)

(as usual, inf Ø = ∞). It is important that T−
α , T+

β ∈ M (see Lemma A.4). We
introduce the functions

V −(x) =





0 if x ≤ αh(∞),

∫ x

αh(∞)

H(y, h(∞))dy if x > αh(∞)

and

V +(x) =





−
∫ βh(−∞)

x

H(y, h(−∞))dy if x < βh(−∞),

0 if x ≥ βh(−∞).
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Theorem 3.9 (Solution of the stopping problem in cases 2 and 3)
In cases 2 and 3 the optimal stopping value V ∗ is given by V ∗ = V − resp. V ∗ = V +.
The optimal stopping times are unique and are given by the one-sided stopping times
T−

αh(∞)
resp. T+

βh(−∞)
.

The proof of Theorem 3.9 is omitted. It can be obtained similarly to that of
Lemma 2.7 and Theorem 2.1. The details of that proofs concerning a possible
explosion of X can be omitted here. Note that unlike case 1, the value function V ∗

is finite in cases 2 and 3.

Remark Case 2 can be heuristically interpreted as the situation when the “right
negative tail” of the function f is light, while the “left negative tail” of f is heavy.
This interpretation makes it natural that the optimal stopping time should have
the form T−

α for a suitably chosen α. The situation in case 3 is symmetric. 2

A Appendix

Here we prove some technical lemmas which are used in the proofs and also seem
to be of independent interest.

Below J = (ℓ, r), −∞ ≤ ℓ < r ≤ ∞, and X is a (possibly, explosive) J ∪ {∆}-
valued diffusion that satisfies the SDE (2.1) and starts at the point x ∈ J under
the measure Px (X explodes when it tends either to ℓ or to r at a finite time). The
coefficients b and σ are Borel functions J → R that satisfy

σ(x) 6= 0 ∀x ∈ J,
1

σ2
∈ L1

loc(J),
b

σ2
∈ L1

loc(J), (A.1)

where L1
loc(J) denotes the class of functions J → R that are integrable on compact

subintervals of J . Let us define the strictly increasing function p by formula (2.34)

and the process X̃t = p(Xt), p(∆) := ∆, with the state space J̃∪{∆}, J̃ = (ℓ̃, r̃) :=
(p(ℓ), p(r)). Then we have

dX̃t = σ̃(X̃t) dBt

with σ̃(x) = (p′σ) ◦ p−1(x), x ∈ J̃ . Note that condition (A.1) with J̃ instead of J

holds for the functions b̃ ≡ 0 and σ̃. We shall use the alternative notation P̃x for
the measure Pp−1(x) so that P̃x(X̃0 = x) = 1. For α < β in J , we use the notation

Tα,β of (2.6). For α < β in J̃ , we define

T̃α,β := inf{t ∈ [0,∞) : X̃t ≤ α or X̃t ≥ β} (= Tp−1(α),p−1(β)).

Lemma A.1 For any p > 0, α, β ∈ J , α < β, we have

Ex

(∫ Tα,β

0

σ2(Xs) ds

)p

< ∞, x ∈ J (A.2)

(or, equivalently, Ex[X]pTα,β
< ∞, x ∈ J).
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Proof: If x /∈ (α, β), then the statement is clear. Let us assume that x ∈ (α, β) and

set κ̃(y) = σ ◦ p−1(y), y ∈ J̃ . Below we denote positive constants used in estimates
by c1, c2, etc. Note that κ̃(y) ≤ c1σ̃(y), y ∈ [p(α), p(β)]. We have

Ex

(∫ Tα,β

0

σ2(Xs) ds

)p

= Ẽp(x)

(∫ T̃p(α),p(β)

0

κ̃
2(X̃s) ds

)p

≤ c2Ẽp(x)

(∫ T̃p(α),p(β)

0

σ̃2(X̃s) ds

)p

.

Hence, it is enough to prove (A.2) under the additional assumption b ≡ 0. Then
(Xt∧Tα,β

) is a bounded martingale. For q ≥ 1, Burkholder-Davis-Gundy inequalities
yield

Ex[X]
q/2
Tα,β

≤ c3Ex

(
sup
t≥0

Xt∧Tα,β

)q

< ∞.

This completes the proof. 2

Below Ly
t (X) denotes the local time of X at time t and level y.

Lemma A.2 Let x ∈ J and τ be an arbitrary stopping time. Consider the function
h : J → [0,∞] defined by h(y) = ExL

y
τ (X). Then either h(y) = ∞ ∀y ∈ J or h is

bounded.

Let us stress that neither finiteness nor boundedness of τ is assumed.

Proof: By Revuz and Yor (1999, Ch. VI, Ex. (1.23)),

Lp(y)
τ (p(X)) = p′(y)Ly

τ (X) Px-a.s., y ∈ J.

Hence,

h(y) =
1

p′(y)
Ẽp(x)L

p(y)
τ (X̃), y ∈ J.

Therefore it is enough to prove the lemma under the additional assumption b ≡ 0.
For some sequences an ↓ ℓ and bn ↑ r, set hn(y) = ExL

y
τ∧Tan,bn

(X), y ∈ J . Since

the local time remains unchanged after the explosion time, hn(y) ↑ h(y). Assume
that h(y0) < ∞ for some y0 ∈ J and consider an arbitrary y ∈ J . By the Tanaka
formula under the measure Px (see Revuz and Yor (1999, Ch. VI, Th. (1.2))),

|Xτ∧Tan,bn
−y| = |x−y|+

∫ τ∧Tan,bn

0

sgn(Xs−y)σ(Xs) dBs+Ly
τ∧Tan,bn

(X) Px-a.s.,

(A.3)
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where

sgn y =

{
1 if y > 0,

−1 if y ≤ 0.

For each y, the process Mt =
∫ t∧Tan,bn

0
sgn(Xs − y)σ(Xs) dBs is a uniformly inte-

grable martingale by Lemma A.1. Taking the expectation in (A.3) we get

Ex

∣∣Xτ∧Tan,bn
− y
∣∣ = |x − y| + hn(y). (A.4)

In particular,

Ex

∣∣Xτ∧Tan,bn
− y0

∣∣ = |x − y0| + hn(y0). (A.5)

Since h(y0) < ∞, we obtain from (A.5) that c := supn Ex

∣∣Xτ∧Tan,bn

∣∣ < ∞. Now
(A.4) implies that for any n,

hn(y) = Ex

[
|Xτ∧Tan,bn

− y| − |x − y|
]
≤ Ex

∣∣Xτ∧Tan,bn
− x
∣∣ ≤ c + |x|.

Hence, the function h is bounded. 2

Lemma A.3 For any Borel function f : J → R such that f/σ2 ∈ L1
loc(J) and any

α, β ∈ J , α < β, we have

Ex

∫ Tα,β

0

|f(Xs)| ds < ∞, x ∈ J.

Proof: We need only to consider the case x ∈ (α, β). Using the occupation times
formula (under the measure Px) we get

∫ Tα,β

0

|f(Xs)| ds =

∫ Tα,β

0

|f(Xs)|
σ2(Xs)

d[X]s =

∫ β

α

|f(y)|
σ2(y)

Ly
Tα,β

(X) dy. (A.6)

By Lemma A.2, the function y 7→ ExL
y
Tα,β

(X) is bounded on J (that is because

this function equals 0 at the point y = α). Since we have f/σ2 ∈ L1
loc(J), the

statement of the lemma follows from (A.6). 2

Below we use the notation T−
α and T+

β , α, β ∈ J , for one-sided stopping times
as in (3.18) and (3.19).

Lemma A.4 Let α, β ∈ J . For any Borel function f : J → R that has the form as
in Figure 2.1 and satisfies f/σ2 ∈ L1

loc(J), we have

Ex

∫ T−

α

0

f+(Xs) ds < ∞ and Ex

∫ T+
β

0

f+(Xs) ds < ∞, x ∈ J.
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Proof: The proof is similar to that of Lemma A.3. The form for f as in Figure 2.1
ensures that the integral at the right-hand side of the analogue of (A.6) can be
taken over the compact subinterval [x1ℓ, x2r] of J . 2
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Rüschendorf, Urusov 33

Graversen, S. E., G. Peskir, and A. N. Shiryaev (2000). Stopping Brownian mo-
tion without anticipation as close as possible to its ultimate maximum. Teor.
Veroyatnost. i Primenen. 45 (1), 125–136.

Karatzas, I. and D. Ocone (2002). A leavable bounded-velocity stochastic control
problem. Stochastic Process. Appl. 99 (1), 31–51.

Karatzas, I. and S. E. Shreve (1991). Brownian Motion and Stochastic Calcu-
lus (Second ed.), Volume 113 of Graduate Texts in Mathematics. New York:
Springer-Verlag.

Lamberton, D. and M. Zervos (2006). On the problem of optimally stopping a
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