
Variance minimization and randomvariables with constant sumLudger R�uschendorf� and Ludger UckelmannInstitut f�ur Mathematische Stochastik, University of Freiburg,Eckerstr. 1, 79104 Freiburg, GermanyAbstractMotivated by the problem of variance minimization and the method of an-tithetic variates we consider the problem of construction of random variableswith given marginals and constant sum. In the case of one dimensional sym-metric, unimodal distributions we give a simple general construction. An al-ternative more complicated construction had been given previously by Knottand Smith (1998). In the multivariate case we consider the correspondingproblem for a�ne transforms of products, elliptically contoured distributions,�-symmetric distributions and �-Cauchy distributions.1 IntroductionA well known problem coming from the method of antithetic variates in Monte Carlosimulation is to construct real random variables X1; : : : ;Xn with given distributionsP1; : : : ; Pn such that the variance of the sum is minimalvar nXi=1Xi! = min! (1.1)w.r.t. all similar constructions. For n = 2 the solution is given by the antitheticvariates X1 = F�11 (U);X2 = F�12 (1 � U), where Fi are the distribution functionsof Pi and U is uniform on (0; 1). For some cases like Pi = B(1; #) or Pi = U(0; 1)the uniform distribution on (0; 1) or Pi = U(f1; : : : ;mg) the uniform distribution onf1; : : : ;mg and some other distributions, solutions have been constructed for generaln (see Rachev and R�uschendorf (1998) for references). The idea of the construc-tion is to try to concentrate the sum Sn = Pnj=1Xj at the expectation as muchas possible. Obviously, for an optimal solution X1; : : : ;Xn any of the variables Xjhas to be optimally coupled to Ti = Pj 6=iXj in the sense of antithetic variates but�Corresponding author. E-mail: ruschen@stochastik.uni-freiburg.de



Variance minimization and random variables with constant sum 2this necessary condition is not su�cient for optimality in general (see R�uschendorfand Uckelmann (1997)). For the dual problem of variance maximization it has beenproved in a recent paper in R�uschendorf and Uckelmann (1998) that an idea ofKnott and Smith (1994) to reduce the n-coupling problem to two coupling problemsby optimal monotone coupling to the sum can be justi�ed in general under sometechnical condition. This leads to some examples with explicit results.A general characterization of optimal random variables for variance minimizationhas been given in R�uschendorf and Uckelmann (1997, 1998) where the problem isreduced to several two coupling problems { but for some more complicated couplingfunctionals. It is however not easy to solve these two coupling problems in general.In this note we consider also the multivariate extension of the variance mini-mization problemE 




 nXi=1Xi




2 = inf (1.2)where the inf is on all random variables Xi with distributions Pi on IRd given. Anobvious solution of (1.2) is obtained if Xi d= Pi are constructed such thatnXj=1Xj = c: (1.3)Here Xi d= Pi denotes, that Xi has distribution Pi.Knott and Smith (1998) gave a construction of a solution of (1.3) in dimensiond = 1; n = 3; c = 0 if P1 = P2 = P3 is absolutely continuous, symmetric andunimodal.In the �rst part of this note we give a simpli�ed construction of solutions of (1.3) ind = 1 and then in the second part provide some extensions to the multivariate case.2 Symmetric unimodal one dimensional distribu-tionsFor the variance minimization problem (1.2) with n = 3; P1 = P2 = P3 = P a prob-ability with a symmetric, unimodal density f Knott and Smith (1998) constructeda solution X d= Y d= Z d= P of (1.3) of the following typeX = R cosU; Y = R cos�U + 23�� ; Z = R cos�U � 23�� (2.1)where U is uniformly distributed on (0; 2�) independent of R. Then by the additiontheorem for the cosine functionX + Y + Z = 0: (2.2)



Variance minimization and random variables with constant sum 3By means of the Mellintransform one gets the density of R in the formefR(t) = �t ddt Z 11 f(ut) 2upu2 � 1du (2.3)(see Knott and Smith (1998), formula (10)).Formula (2.3) is not easy to evaluate in general. A simpli�ed construction forrandom variables with constant sum is obtained as follows.Consider at �rst the case of uniform distributions on (�1; 1). De�ne for n = 3.U1 := U d= U(�1; 1) (2.4)U2 := ( �2U � 1 if �1 � U � 01 � 2U if 0 < U � 1U3 := ( U + 1 if �1 � U � 0U � 1 if 0 < U � 1then Ui d= U(�1; 1) are uniformly distributed on (�1; 1) and (for n = 3)3Xi=1 Ui = 0: (2.5)
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Figure 1: Construction of Ui for n = 3With the antithetic construction eU1 = U; eU2 = �U one obtains for the case n = 2eU1 + eU2 = 0: (2.6)By combination of (2.5), (2.6) one obtains for any nUi d= U(�1; 1) with nXi=1 Ui = 0: (2.7)



Variance minimization and random variables with constant sum 4(see also Ga�ke and R�uschendorf (1981), R�uschendorf and Uckelmann (1997)).We next give a construction of random variables with constant sum and �xedsymmetric unimodal distribution of the marginals for general n.Theorem 2.1 (Random variables with constant sum) Let P be a symmetricunimodal distribution on (IR1;B1) with a.s. di�erentiable Lebesgue density f . ThenfR(x) := �xf 0(x) is a Lebesgue density. If R is a random variable with density fR,then (X1; : : : ;Xn), where Xi = RUi; 1 � i � n and (Ui) as in (2.7), is a solution ofthe variance minimization problem and Pnj=1Xj = 0.Proof: Obviously by (2.7), Pnj=1Xj = RPnj=1 Uj = 0 so we have only to prove thatfR is a density and that RU d= P .By unimodality and symmetry of f it holds fR(x) = �xf 0(x) � 0 andZ 1�1 fR(x)dx = 2 Z 10 �xf 0(x)dx= 2 limy!1�xf(x)����y0 + 2 Z 10 f(x)dx = 1;so fR is a density.For the characteristic function of the product RU we have'RU (t) = R 'U (xt)fR(x)dx= � R sin(tx)t f 0(x)dx:With h(x) := 1t sin(tx) we obtain using symmetry of P('p � 'RU )(t) = R cos(tx)f(x)dx+ R sin(tx)t f 0(x)dx= R h0(x)f(x)dx+ R h(x)f 0(x)dx= limy!1 h(x)f(x)���y�y = limy!1 1t sin(tx)f(x)���y�y = 0:Therefore, RU d= P and (X1; : : : ;Xn) is a solution of the variance minimizationproblem. 2Remark 2.2 The factorization in Theorem 2.1 is closely related to the wellknownfactorization of symmetric unimodal distributions by Khinchin. The coupling distri-bution fR in Theorem 2.1 can be calculated easily in examples.



Variance minimization and random variables with constant sum 5Example 2.3a) For P = N(0; �2); fP (x) = 1p2��e� x22�2 , one obtains fR(x) = 1p2��3x2 exp �� 12�2x2�the density of a double-Maxwell distribution with parameter � = 1�2b) For P the Cauchy distribution with densityfC (x) = 1� 11 + (�x)2 one obtainsfR(x) = 2��  x1 + (�x)2!2c) For P the Laplace-distribution with densityf(x) = 12� exp(��jxj) one obtainsfR(x) = 12�2jxj exp(��jxj):In this example the coupling distribution in Knott and Smith's construction (2.3)cannot be calculated in explicit form.
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coupling densityCauchy distribution Laplace distributionFigure 2: Coupling densities3 Extensions to multivariate distributionsIn the multivariate case there is not a general construction principle as in Theorem2.1. The idea is to transfer solutions in standard cases to more general situations.We consider some standard situations.



Variance minimization and random variables with constant sum 6a) A�ne transforms of productsLet Q = Nmi=1Qi, where Qi are symmetric, unimodal distributions with a.s.di�erentiable densities fQi , then Qi d= RiU ji = Xji , where fRi (t) = �tf 0Qi(t) and(R1; U j1 ); : : : ; (Rm; U jm) are independent, U ji d= U(�1; 1) with Pnj=1 U ji = 0 asin (2.7). Let P = QA be the image of Q under a linear mapping A and letXj = (Xji )1�i�m; 1 � j � n, then we haveTheorem 3.1 De�ne Y j = AXj; 1 � j � n; then Y j d= P; (Y 1; : : : ; Y n) solvesthe multivariate variance minimization problem and Pnj=1 Y j = 0.Proof: Since Xj = (Xji )1�i�m d= Nmi=1Qi we obtain AXj d= P . AlsonXj=1 Y j = A nXj=1Xj = A0@ nXj=1RiU ji 1A= A0@Ri nXj=1U ji 1A = 0:Therefore, X1; : : : ;Xn solves the variance minimization problem. 2b) �-symmetric distributionsA random vector X = (X1; : : : ;Xn) has an �-symmetric distribution on IRn,� > 0, if the characteristic function of X has a representation of the form'X (t) = � �(jt1j� + � � � + jtnj�)1=�� (3.1)for some real function �.For � = 2 'X (t) = � (ktk2) if and only if�(t) = Z 10 
(rt) dF (r) (3.2)for some distribution function F on IR+ and
(t) = ��n2��2t�n�22 Jn�22 (t);J a Besselfunction. 
 (kxk) is the characteristic function of the uniform distri-bution on the unit sphere Sn�1 = fx 2 IRd; kxk = 1g. Therefore, (3.1) and (3.2)(with � = 2) are equivalent to a stochastic representation of the formX d= RU (3.3)



Variance minimization and random variables with constant sum 7where U is uniformly distributed on Sn�1 and R � 0 is independent of U .Similarly, for � = 1 X is 1-symmetric if and only ifX d= R U1D1=21 ; : : : ; UnD1=2n !T (3.4)where D is Dirichlet-distributed with parameter �12 ; : : : ; 12� and the density ofD0 = (D1; : : : ;Dn�1) is given byfD0 (x) = ��n2���12��n   1 � n�1Xi=1 xi! n�1Yi=1 xi!�1=2 ;xi � 0;Pn�1i=1 xi � 1 (cf. Gneiting (1998), Fang and Zhang (1990)).Our next aim is to construct X d= Y d= Z d= P for 1- or 2-symmetric distributionsP with constant sum X + Y + Z = 0. To that purpose consider the orthogonalmapping on IR2nS = 0B@ S1 0. . .0 Sn 1CA where Si =  �12 12p3�12p3 �12 ! : (3.5)As S2i =  �12 �12p312p3 �12 ! we haveI2n + S + S2 = 0B@ I2 + S1 + S21 0. . .0 I2 + Sn + S2n 1CA = 0: (3.6)Let U be uniformly distributed on the unit sphere S2n�1 in IR2n, then by orthogo-nality of S U d= SU d= S2U and U + SU + S2U = 0:De�nefor � = 2 X = RU; Y = RSU;Z = RS2U (3.7)with R as in (3.3) and de�nefor � = 1 X = R( UipDi ); Y = R (SU)ipDi ! ; Z =  (S2U)ipDi ! (3.8)with R as in (3.4).Theorem 3.2 (X;Y;Z) as de�ned in (3.7) for � = 2 and in (3.8) for � = 1is a solution to the variance minimization problem for �-symmetric distributions,� = 1; 2 for the case of even dimension 2n and X + Y + Z = 0.



Variance minimization and random variables with constant sum 8Remark:1) Note that the construction above works in even dimension for three summands.For two summands we have the trivial construction with X = RU; Y = R(�U)in any dimension. Therefore, we obtain by combination a construction withconstant sum in even dimension for any number of summands.2) The coupling distributions of R are given for � = 2 by R = kXk. For � = 1 Rhas the densityfR(r) = 2��2 �n2� rn�1Bm�1n (r2)where Bn(t) = (�1)n�22 tn�12 R10 sin(upt)�(u)duand 'P (t) = �(jt1j+ � � �+ jtnj)(see Cambanis, Keener and Simons (1983)).�-symmetric distributions 0 < � � 2A characterization of the class �n(�) of functions � satisfying (3.1) is not knownfor � 6= 1; 2. But it is known that � 2 �1(�) for 0 < � � 2 if and only if�(t) = Z 10 e�rt�dF (r) (3.9)and �n(�) = f1g for n � 3; � 2 (2;1]: (3.10)(For references see Gneiting (1998).)So X is a �nite segment of an in�nite dimensional vector whose �nite dimensionaldistributions are �-symmetric 0 < � � 2 if and only ifX d= RY (3.11)where R � 0 is independent of Y which has independent and identically distributedsymmetric stable components of index � and F is the distribution function of R.From the results of section 1 we therefore get for this subclass of �-symmetricdistributions for any n 2 IN a construction of random variables Xj; 1 � j � n suchthat Xj d= X andnXj=1Xj = 0: (3.12)As consequence as in section 2 one obtains variance minimization results fora�ne transformations of �-symmetric distributions by (AX;AY;AZ) where X d=Y d= Z d= Q is �-symmetric, P = QA and X + Y + Z = 0 as constructed above. 2



Variance minimization and random variables with constant sum 9Examples 3.3A) Normal distributionLet P = N(0;�);� > 0, then � = AAT and we can apply both constructions(that in a) and that in b)) to this example.1) For Q = N(0; I)) = Nmi=1N(0; 1) the coupling vector R = (R1; : : : ; Rm) hasthe densityfR(x) = �mi=1 1p2�x2i exp��12x2i� (3.13)= (2�)m=2 exp��12kxk2�h(x)with h(x) = �mi=1x2i . So AR has the densityfAR(x) = h �A�1x� fP (x)and an optimal n-tuple is given by(ARU1; ARU2; : : : ; ARUn) with RU j = (R1U j1 ; : : : ; RmU jm) (3.14)where U j = (U j1 ; : : : ; U jm) have independent uniform components in [�1; 1]and as in a) Pnj=1 U ji = 0; 1 � i � m. The following �gure shows thecoupling density of AR for m = 2; n = 3; P =  5 11 1 !
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normal density f� coupling density fARFigure 3: Normal density and coupling distribution2) N(0; I) is 2-symmetric, so the second construction with U i = SiU , i = 0; 1; 2can be applied and we obtain the solution (for n = 3)(RAU1; RAU2; RAU3): (3.15)



Variance minimization and random variables with constant sum 10U i is uniformly distributed on the unit sphere S2. By calculating the densitiesof kXk we obtainfR(t) = ��n2��1 tn�1 exp��12t2� ; t � 0: (3.16)The following �gure gives the support of AU (an ellipse) and the couplingdensity fR for P = N(0;�) with � =  5 11 1 ! as in 1).
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Figure 4: density fAU and coupling density fRB) Elliptically contoured distributionsA random vector X has an elliptically contoured distribution denoted byECm(0;�;�) if the characteristic function 'X is of the form 'X (t) = �(tT�t).A special case are normal distributions N(0;�) where �(u) = exp��u2�. ThenX d= ECm(0;�;�) with rg� = k if and only if X d= RATU where U is uniformlydistributed on the unit sphere in IRk; A is a k�mmatrix with � = ATA;R � 0 isa real random variable independent of U with characteristic function � (see Cam-banis, Huang and Simons (1981) and Fang and Zhang (pg. 65, 1990)). Therefore,as in the normal example in A 2) we obtain a construction of Xj d= ECm(0;�;�)with �nj=1Xj = 0 in even dimension.C) Cauchy-distributionsFor X = (X1; : : : ;Xn) d= P with stochastically independent Cauchy-distributedcomponents, Xi d= C(1); 1 � i � n, we have'P (t) = �ni=1'Xi (ti) = exp (�(jt1j+ � � �+ jtnj)) (3.17)P is 1-symmetric and the coupling distribution R in Theorem 3.2 has the densityfR(t) = 2�(n)��n2��2 tn�1 1(1� t2)n ; t � 0 (3.18)(see Cambanis, Keener and Simons (1983)).



Variance minimization and random variables with constant sum 11D) �-Cauchy distributionThe m-dimensional �-Cauchy distribution C(�)m has the densityc(�)m (x) = 2Jm+1(�) 1�1 +Pmj=1 jxjj��(m+1)=� (3.19)for any � > 0. Let X = (X1; : : : ;Xm+1) be uniformly distributed on the unitsphere S�;m in IRm+1 w.r.t. k k�, then X1Xm+1 ; : : : ; XmXm+1! d= C(�)m (3.20)(see Szablowski (1998), Lemma 3.1).Also it is known that if Y1; : : : ; Ym+1 are independent, each with densityf�(x) = 12 �1�1=2� (1=2) exp �jxj�� ! ; (3.21)then X = YkY k� is uniformly distributed on the norm � unit sphere in IRm+1where Y = (Y1; : : : ; Ym+1) (see Rachev and R�uschendorf (1991)). Therefore, ac-cording to our �rst one-dimensional construction method we �nd for any n 2 INYm+1;nY ji ; 1 � j � no, such that Y j1 ; : : : ; Y jm; Ym+1 are independent with densityf� and Pnj=1 Y ji = 0, 1 � i � m. Then de�ne for 1 � j � nY j = 1Ym+1 �Y j1 ; : : : ; Y jm� : (3.22)Since with eY j = �Y j1 ; : : : ; Y jm; Ym+1� ; eY jkeY jk� is uniform on the unit sphere, weobtain by (3.20) that Y j is C(�)m -distributed andnXj=1 Y j = 0 (3.23)So Y 1; : : : ; Y n solve the variance minimization problem for �-Cauchy distribu-tions.References[1] Cambanis, S.; Keener, R. and Simons, G. (1983): On �-symmetric multivariatedistributions J. Mult. Anal. 13, 213-233[2] Cambanis, S.; Huang, S. and Simons, G. (1981): On the theory of ellipticallycontoured distributions J. Mult. Anal. 11, 368-385



Variance minimization and random variables with constant sum 12[3] Fang, K.T. and Zhang, Y.T. (1990) Generalized Multivariate Analysis Springer[4] Ga�ke, N. and R�uschendorf, L. (1981): On a class of extremal problems instatistics Math. Operationsforsch. Stat., Ser. Optimization 12, 123-135[5] Gneiting, T. (1998): On �-symmetric multivariate characteristic functions. J.Mult. Anal. 64, 131-147[6] Knott, M. and Smith, C.S. (1998): On multivariate variance reduction Preprint[7] Olshen, R.A. and Savage, L.J.. (1970): A generalized unimodality J. Appl.Probab.7, 21-34[8] Rachev, S.T. and R�uschendorf, L. (1998): Mass Transportation Problems.Volume I: Theory. Springer[9] Rachev, S.T. and R�uschendorf, L. (1991): Approximate independence of distri-butions on spheres and their stability properties Ann. Probab.19, 1311-1337[10] R�uschendorf, L. and Uckelmann, L. (1997): On optimal multivariate couplingsIn: Distributions with given marginals and moment problems. Eds: Benes,V.; Stepan, J.; Kluwer, 261-273[11] R�uschendorf L. and Uckelmann, L. (1998): On the n-coupling problem Preprint[12] Szablowski, P. J. (1998): Uniform distributions on spheres in �nite dimensionalL� and their generalizations J. Mult. Anal. 64, 103-117


