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Abstract

For iid random variables in the domain of attraction of a max-stable dis-
tribution with discount and observation costs we determine asymptotic ap-
proximations of the optimal stopping values and asymptotically optimal stop-
ping times. The results are based on Poisson approximation of the related
embedded planar point processes. The optimal stopping problem for the lim-
iting Poisson point processes can be reduced to differential equations for the
boundaries. We obtain in several cases numerical solutions of the differen-
tial equations. In some cases the analysis allows to obtain explicit optimal
stopping values. This approach leads to approximate solutions of the optimal
stopping problem of these discrete time sequence.
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1 Introduction

Kennedy and Kertz (1990, 1991, 1992) found approximations for the optimal stop-
ping of iid sequences (Xi) in the domain of attraction of max-stable laws of type Λ,
Φα and Ψα. They also determined approximations to the stopping problem with lin-
ear costs (Xi − iδ), respectively with geometrically discounted sequences e−iδXi for
infinite sequences as δ → 0 i.e. for the case of ’small’ observation costs respectively
discount factor close to 1.

A general approximation method for the optimal stopping of independent se-
quences was developed in a recent paper of Kühne and Rüschendorf (1998) (which
we quote in the following by KR (98)). This method is based on Poisson approxima-
tion of the embedded planar point processes Nn =

∑n
i=1 ε( i

n
,Xn,i)

, where Xn,i = Xi−bn
an

are normalized versions of Xi which ensure convergence of Nn to a Poisson process
on [0, 1]× IR.

For the iid case and Xi with distribution function F in the domain of a max-

stable law G ∈ {Λ,Φα,Ψα} convergence of Nn holds, Nn
D→ N , where N is a Poisson
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process with intensity measure µ = λ\[0,1] ⊗ ν and

ν([x,∞)) = e−x if F ∈ D(Λ)

ν([x,∞)) = x−α, x > 0, if F ∈ D(Φα) (1.1)

ν([x,∞)) = (−x)α, x < 0, if F ∈ D(Ψα), ωF = 0

(see Resnick (1987, p. 210)). an, bn are the normalizations as in the limit theorems
for maxima Mn = max{X1, . . . , Xn}.

The optimal stopping problem for a Poisson process with intensity µ can be
reduced to solving a differential equation of the form

v′(t) = −
∞∫

v(t)

∞∫
x

h(t, y)dy dx, 0 ≤ t ≤ t0

v(t0) = c

(1.2)

where h is a Lebesgue-density of µ, (t, z) →
∞∫
z

∫
x
h(t, y)dy dx is assumed to be con-

tinuous (condition (D)) and to, c arise from the specific problem (see KR (98)).
The solution of (1.2) is the optimal stopping curve for the Poisson process, if v

is assumed to satisfy the separation condition (S) that (v − f)|[0, t] > ct > 0 for
t < t0, where f is decreasing and describes the lower boundary of the intensity µ.
In the case of iid asymptotics in (1.1) f = −∞ if F ∈ D(Λ,Ψα) and f = 0 if
F ∈ D(Φα). Note that the intensity of the limiting Poisson process N is infinite at
the lower boundary f .

Finally, convergence of the stopping problem of {X1, . . . , Xn} to the stopping
problem of N holds if additionally to the assumptions (S) and (D) also the {(Mn)+}
are uniformly integrable (condition (G)) and the lower curve condition (L) holds,
i.e. limun(1 − ε) > −∞ for all ε > 0. Here un,1, . . . , un,n is the optimal stopping
curve of Xn,1, . . . , Xn,n and un(s) = un,[ns]∨1. Convergence of the stopping problem
means convergence of the optimal stopping times, stopping time distributions and
stopping value.

This new approximation approach was applied to the optimal stopping of iid
sequences with observation costs and df F in the max-domain of Λ(x) = e−e

−x
in

KR (98). It was also applied to iid sequences with discount costs for dfs F in the
max-domain of Φα resp. Ψα.

Some related ideas can be found in the literature. An approximation of the opti-
mal stopping of max-sequences by the optimal stopping of continuous time extremal
processes has been observed in Flatau and Irle (1984). In this paper both stopping
problems are of monotone kind and could be solved explicitely. The approximative
optimal stopping of the max-sequence by that of the limiting process is not derived
from some general approximation argument but is proved directly. It has also been
observed in some papers that the optimal stopping problem has an easier solution
in a related form with a Poisson number of points. Bruss and Rogers (1991) and
Gnedin (1996) use this idea in the context of an optimal selection problem. An
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example of this kind is the house selling problem (see Chow, Robbins, and Sieg-
mund (1971)) where a Poisson process with finite intensity of the form µ = λ\ ⊗ ν
on [0, 1] × IR1 is stopped. For this case the stopping problem could be reduced to
the stopping of stationary Markov sequences and could be solved in some cases.

In this paper we apply the approximation approach in a more systematic way to
further stopping problems of iid sequences with observation costs and/or discount
costs where the iid random variables are in the domain of max-stable distributions.
These kind of nonstationary sequences are a natural class of models for stopping
problems. These models were also the subject of intensive study in extreme value
theory after the iid case had been solved.

Some of the stopping problems considered in this paper do not admit closed so-
lutions due to the complexity of the assumptions and in particular of the differential
equation (1.2) but can be solved numerically. In these problems direct recursive
solutions as in the papers of Kennedy and Kertz in the iid case seem to be not
obtainable. For some details of the arguments and calculations we refer to KR (98)
and to the dissertation of Kühne (1997).

2 Approximate optimal stopping rules

Let (Yi) be an iid sequence of real random variables with df F in the domain of at-
traction of a max-stable law which is known to be of three possible types, Λ,Φα,Ψα;
Λ(x) = e−e

−x
, x ∈ IR1, Φα(x) = e−x

−α
, x > 0, and Ψα(x) = e−(x)

d
, x < 0 .

We consider at first random sequences (Yi) with distribution function F in the
domain of attraction of Φα or with F ∈ D(Ψα) and ωF = 0 (i.e. Yi ≤ 0). In both
cases the normalizing sequences an, bn can be choosen as an = F−1(1 − 1

n
) (resp.

an = −F−1(1 − 1
n
)) and bn = 0. Consider a bounded discount sequence ci > 0 and

observation costs (di) such that (ci) are either increasing or decreasing and

lim
c[nt]
cn

= tc, t ∈ [0, 1] (2.1)

and

lim
d[nt]
ancn

= d exist. (2.2)

Conditions of the type (2.1), (2.2) are common in extreme value theory (see de Haan
and Verkade (1987)). They ensure convergence of the imbedded point processes Nn.

Define

Xi = ciYi + di, i ∈ IN. (2.3)

We consider the optimal stopping problem for X1, . . . , Xn, i.e. the problem to
determine

V n = sup{EXτ ; τ a stopping time ≤ n}. (2.4)

Let Tn denote an optimal stopping time for problem (2.4).
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Theorem 2.1 Consider the optimal stopping problem (2.4) and assume (2.1), (2.2)
with c > − 1

α
.

a) If F ∈ D(Φα), α > 1, d ≥ 0, then the differential equation
u′(t) = − tcα

α− 1
(u(t)− dt1/α+c)1−α

u(1) = d
(2.5)

has a unique continuous, monotonically nonincreasing solution u.

If (Tn) denotes the sequence of optimal stopping times, then

E
XTn

ân
→ u(0), where ân = cnan. (2.6)

The threshold stopping times T un := inf
{
i ≤ n;Xi ≥ u

(
i
n

)}
are asymptotically

optimal.

b) If F ∈ D(Ψα), α > 0, d ≥ 0, then the differential equation
u′(t) = − tcα

1 + α

(
−u(t) + dt−c−

1/α
)1+α

u(1) = −∞
(2.7)

has a unique continuous, monotonically nonincreasing solution on [0, 1] and

E
XTn

ân
→ u(0). (2.8)

The threshold stopping times T un are asymptotically optimal.

Proof:

a) In the first step we prove the point process convergence

Nn =
n∑
i=1

ε(
i
n
,
Xi
ân

) D−→ N, (2.9)

where N is a Poisson process with intensity given by

dµ(· × [x,∞))

dλ\[0,1]
(t) = tcα(x− dt1/α+c)−α, x ≥ 0.

For the proof we note that Xi
ân

= ciYi+di
cnan

= ci
cn

Yi
an

+ di
cnan

. Define γn, i
n

= ci
cn

,

τn, i
n

= di
cnan

; then for t 6= 0, (tn, yn)→ (t, y) implies

Rn(tn, yn) := (tn, γn,tnyn + τn,tn)→ (t, γty + τt) =: R0(t, y), (2.10)
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where γt = limn
c[nt]
cn

= tc and

τt = lim
d[nt]
ancn

= lim
d[nt]

a[nt]c[nt]

a[nt]c[nt]
ancn

= dtct
1/α = dtc+

1/α.

Remind that Ñn =
∑n
i=1 ε( i

n
,
Yi
an

)
→ Ñ a Poisson process with intensity µ̃ =

λ\[0,1] ⊗ ν, ν([x,∞)) = x−α, x > 0 (see Resnick (1987, p. 210)).

From uniform convergence of Rn → R0 on [0, 1] for t > 0 we conclude that

Nn = RnÑn
D→ N := R0Ñ , where Rn, R0 operate on the points of the point

process. N is a Poisson process with intensity µ = (µ̃)R0 . Then

µ([0, t]× [x,∞)) = µ̃
({

(s, y); 0 ≤ s ≤ t, scy + dsc+
1/α ≥ x

})
=

t∫
0

ds(s−cx− ds1/α)−α.

Therefore, dµ(·×[x,∞))
dλ\[0,1]

(t) = tcα(x− dt1/α+c)−α. Since

∞∫
u(x)

1

(xt−c − dt1/α)
α dx = − tcα

α− 1

(
u(t)− dt1/α+c

)1−α
,

u solves the differential equation in (1.2) characterizing optimal stopping curves
for the limiting Poisson process. The regularity conditions stated in the intro-
duction are easily checked in this case and imply convergence of the stopping
problem.

b) is proved analogously to a). To prove uniqueness of the solution of (2.7) (which
is needed as u(1) = −∞, see KR (98)) assume that u1, u2 are different solu-
tions. Then u1(0) 6= u2(0) since a solution v is uniquely determined by its initial
value v(0) = c > −∞. Assume u1(0) > u2(0); then by (2.5), u′1(t) ≥ u′2(t),
t ∈ [0, 1) and so u1(t) ≥ u2(t) + u1(0) − u2(0), t ∈ [0, 1). For any solutions v
holds: u0(t) + b ≥ v(t) ≥ u0(t) + b(1 − t)1/α+c. For t close to one this leads to a
contradiction with u1(0)− u2(0) > 0. 2

Remark 2.2 For d < 0 in part a) of Theorem 2.1 the separation condition is diffi-
cult to analyse. It can be checked numerically in each case considered and then leads
to the same approximation result as in the case d ≥ 0.

Theorem 2.1 reduces the optimal stopping problem of X1, . . . , Xn to solving the
differential equations (2.5), (2.7). This can be done in general only numerically.
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Example 2.3 In the following example we consider the case Φα with α = 2, c =
1, d = 1. The optimal stopping value u(0) for the limiting Poisson process to-
gether with (2.6) and (2.8) determines the asymptotic behaviour of the stopping value
V n. It is calculated with Maple (note the singularity of the derivative in t = 1).

1.2

1.3

1.4

y

1.5

1.6

1.7

0 0.2 0.4 0.6 0.8 1
t

Figure 1:
Optimal stopping boundary u(t),
α = 2, c = 1, d = 1

Next we consider in more detail the case F ∈ D(Φ2) and ci = 1,∀i, i.e. the
Φ2-case with observation costs only. Let (di) ⊂ IR with di ≥ 0, di+1 ≥ di or di ≤
0, di+1 ≤ di and d = limn

dn
an

exists and define

Xi = Yi + di.

In this case we obtain a more detailed analysis of the differential equation and
derive an implicit representation of the solution. This yields an explicit expression
for the optimal stopping value u(0).

Theorem 2.4 a) If |d| < 2
√

2, then

EXTn

an
→
√

2 e
d

π
2−tan−1

(
d√

8−d2

)
√

8−d2 ,

where Tn are the optimal stopping rules.

Furthermore, with

F (t, y) :=

(
y −
√
t

2
d

)2

+ t

(
2− d2

4

)
− 2e

2d

tan−1

(
2
y−
√
t

2 d√
8−d2

√
t
−tan−1 d√

8−d2

)
√

8−d2

for t ∈ (0, 1], y ∈ IR the following conditions

1.) F (t, u(t)) = 0 for t ∈ (0, 1]

2.) u(0) =
√

2 e
d

π
2−tan−1 d√

8−d2√
8−d2

3.) u(t) ≥ d for t ∈ [0, 1]

(2.11)
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determine uniquely a monotonically nonincreasing function on [0, 1]. The corre-
sponding threshold stopping time T un is asymptotically optimal.

b) For d > 2
√

2 holds

EXTn

an
→
√

2

(
d2 + d

√
d2 − 8− 4

4

) d

2
√
d2−8

(2.12)

and

F (t, y) =

(
y −
√
t

2
d

)
+ t

(
2− d2

4

)
− 2e

2c

tanh−1

(
c

d2−8

)
−tanh−1

(
2
y−
√
t

2 d√
d2−8

)
√
d2−8

determines an asymptotical optimal threshold stopping time as in a).

c) If d = 2
√

2 then EXTn
an
→
√

2e and F (t, y) = y−
√

2t−
√

2 e
y−2
√
2t

y−
√
2t determines an

asymptotic optimal threshold stopping time as in a).

Proof: As dn
an
→ d we have for t ∈ [0, 1]

γt := lim
d[nt]
an

= lim
d[nt]a[nt]
a[nt]an

= d
√
t.

This implies as in (2.9) point process convergence

Nn =
n∑
i=1

ε( in ,
Xi
an

)
D−→ N =

∑
r

ε(τi,Yi+d
√
τi) (2.13)

to a Poisson process with intensity given by dµ(·×[x,∞))
dλ\[0,1]

(t) = (x − d
√
t)−2. Consider

the optimal stopping curve differential equation for N
u′(t) = −

∞∫
u(t)

1

(x− d
√
t)2
dx = − 1

(u(t)− d
√
t)

u(1) = d

(2.14)

a) Some detailed analysis (see Kühne (1997)) yields that the implicit equation

F (t, u(t)) = 0, t ∈ (0, 1]

has a unique solution u(t) whose continuity and differentiability follows from an
implicit function theorem and u satisfies equation (2.11). Since u(t) > d

√
t we

have u′(t) < 0 i.e u is strictly monotonically nonincreasing on (0, 1) and u(t) > d,
t ∈ (0, 1). Assume that d′ = limt↑1 u(t) > d. Then dn = u(tn) → d′ > d for any
tn ↑ 1 and F (tn, dn) = 0,∀n. Continuity of F implies F (1, d′) = 0; a contradiction
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to the fact that F (1, x) 6= 0 for x ∈ (d,∞). So u is continuous in t = 1 and it is
the unique solution of (2.11). We may extend F continuously to [0, 1] × [d,∞)
by

F 1(t, y) =


F (t, y) t ∈ (0, 1]

y2 − 2e
2d

π
2−tan−1 d√

8−d2√
8−d2 t = 0.

Then F 1(0, y) = 0 if and only if y =
√

2 e
d

π
2−tan−1 d√

8−d2√
8−d2 and one can argue that

u can be extended continuously to 0 by this value.

From the general approximation theorem in KR (98) as described in the intro-
duction we obtain a). For more details of this argument we refer to Kühne
(1997).

The proof of b), c) is similar. The involved differential equations are solved nu-
merically using Maple. 2

Example 2.5 The following example shows the optimal stopping curve u for values
of u(1) = d from −2.8 up to 5.

-2

0

2

4

6

y

0 0.2 0.4 0.6 0.8 1
t

Figure 2:
Optimal stopping curve u(t)
for d = −2.8, . . . , d = 5

Remark 2.6 For an infinite iid sequence (Xi) the optimal stopping problem for
X1− δ, X2− 2δ, . . . , δ > 0 is treated in Chow, Robbins, and Siegmund (1971). The
optimal stopping time is given by

T δ1 = inf{i ∈ IN; Xi ≥ V1(δ)}, (2.15)

where E(X1−V1(δ))+ = δ and V1(δ) = V (X1− δ,X2−2δ, . . .). The infinite problem
is easier than the finite problem. It can be reduced to the stopping of a max sequence
and can be solved by a monotone case argument. Kennedy and Kertz (1992) prove
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point process convergence results: If F ∈ D(G) is in the domain of an extreme value
distribution G, then there are constants a1(δ), b1(δ), c1(δ) such that for δ → 0

∞∑
i=1

ε(
i

c1(δ)
,a1(δ)(Xi−iδ−b1(δ))

) D−→ N,

where N is a Poisson process on [0,∞]× (−∞,∞]. Based on this result the asymp-
totic distribution of the stopped random variables is approximated for δ → 0. Similar
results are also given in the case of geometrically discounted variables e−iδXi. We
could use our general approach to prove approximation of the optimal stopping prob-
lem to that of the limiting Poisson process in this case too. Instead we will give an
extension of these results to the case with geometrically discounted and with linear
observation costs of type b · i simultaneously.

Theorem 2.7 Let (Yi) be iid integrable with distribution function F ∈ D(Λ) and let
b ≥ 0 and Xi = Xδ

i = e−iδYi − bi
a1(δ)c1(δ)

, i ∈ IN. Let T δ denote the optimal stopping

time of Xδ
1 , X

δ
2 , . . .. Then

lim
δ→0

a1(δ)(EXT δ − b1(δ)) = − log(1 + b).

Proof: We use the idea of the proof of the general approximation theorem in
KR (98) which does not apply directly as we consider an unbounded time interval
here. With X ′i := e−iδYi, i ∈ IN, by Theorem 2.2 of Kennedy and Kertz (1992) on
[0,∞)× (−∞,∞] holds for δ → 0:

∞∑
i=1

ε(
i

ci(δ)
,a1(δ)(X′i−b1(δ)

) D−→ N ′ =
∑

ε(τ ′i ,Y ′i ) (2.16)

where N ′ is a Poisson process with intensity given by dµ1
ds dy

= e−s−y. Since Xi =

X ′i − bi
a1(δ)c1(δ)

we obtain from the continuous mapping theorem

∞∑
i=1

ε(
i

c1(δ)
,a1(δ)(Xi−b1(δ))

) D−→ N =
∑

ε(τ ′i ,Y ′i−bτ ′i) (2.17)

N is a Poisson process with intensity given by dµ2
ds dy

= e−s−y−bs. N satisfies the

differentiability condition (D) in KR (98) (see the introduction). Next we prove an
analogue of the lower bound condition (L) (see the introduction):

lim inf
n→∞

un(t) > −∞, t > 0. (2.18)

To prove (2.18) choose for t > 0 fixed t′ > t and consider stopping times ≤ t′. For
the case without discount and observation costs (2.18) holds true by the results of
Kennedy and Kertz (1992). Since on [0, t′] observation costs and the discounts are
bounded below this holds true in general.

The optimal stopping curve of the Poisson process is given by the differential
equation (1.2) which becomes

u′(t) = −e−u(t)e−t−bt, u(∞) = −∞. (2.19)
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Equation (2.19) has the unique solution

u(t) = −t(1 + b)− log(1 + b).

For any t > 0 (un(t)) is bounded above and by (2.18) there exists a converging
subsequence with limit c (see Kennedy and Kertz (1992, p. 262)). As in the proof
of the approximation theorem in KR (98), this implies that on [0, t] un(s) → u(s)
where the limit u solves (2.18) with u(t) = c. So the limit of each converging sub-
sequence of (un(t)) solves this differential equation which implies un(t)→ u(t). For
t = 0 we obtain un(0)→ u(0) = − log(1 + b). 2

Remark 2.8 Similar extensions can be given in the cases Φα, Ψα, but the differ-
ential equations allow only numerical solutions and the uniqueness of solutions is
difficult to analyse.
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