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Abstract

A characterization is proved for random variables which are optimal cou-
plings w.r.t. a general function c. It turns out that on very general probabil-
ity spaces optimal couplings can be characterized by subgradients of c-convex
functions. An interesting application of optimal couplings are minimal [P-
metrics.
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1 Introduction

Let P, be probability measures on (Q;,4;),i = 1,2 and let ¢ : Q; x Qy — R!
be measurable w.r.t. the product o-algebra. Call a pair of random variables
X 4 PY, 4 P,  c-optimal if

Ec(Xy, Xy) = sup{Ec(U,V);U £ P,V £ P}. (1.1)

The underlying probability space is assumed to support sufficiently many rv’s. (1.1)
is the basis of the optimal coupling problem and optimal solutions have been charac-
terized in several cases (cf. [1],[6],[7],[8],[9]). An interesting special case of problem
(1.1) is given when Q; = Q5 is a metric space and c(z,y) = —dP(x,y),p > 1, is the
p-th power of the underlying metric. Then (1.1) leads to the problem to determine
the minimal /,-metric (w.r.t. distance d), i.e.

(P, P) = inf {(Ed"(Y,,Y2))/7;Y; £ P} (1.2)
For the relevance and wide field of applications of this metric cf. [3].

The characterization of optimal solutions of (1.1) is closely related to the inves-
tigation of inequalities from conjugate duality theory. Define a subset I' C £2; x 2y
to be c-cyclically monotone, if for all (z1,y1), ..., (Tn,Yn) € T, Tpy1 == 21:

n

Yo (el@in, yi) — (i, y:)) <0 (1.3)

=1

and for functions f on €2y, g on {25 define the c-subgradient in x € ) resp. y € {2y

Ocf(r) = {y € f(2)— flz) > c(z,y) —c(z,y),Vz € dom(f)}  (1.4)
de9(y) = {zeQ;g(z) —g(y) > c(z,2) — c(x,y),Vz € dom(g)}

(cf.[2], [7]).

f is called c-convex if
f(x) = sup(c(z, yi) + a;) (1.5)

il

for some y;, a; and index set I. The c-conjugate of f is defined by

f(y)= sup (c(z,y) — f(z)), ye (1.6)

redom f

and the doubly c-conjugate

(@) = sup (el y) = f(y)). (1.7)

yedom f*

Then f is c-convex if and only if f = f**(cf. [2]). The aim of this note is to relate
problems (1.1) to (1.3) in a general situation.



2 Optimal c-couplings
We first establish a relation between c-cyclically monotone sets and c-subgradients.

Lemma 2.1 T' C Q xQy is c-cyclically monotone if and only if there ex. a c-convex
function f on Qq such that T C O.f (i.e. T'y C O.f(x) for all x € ).

Proof: If I' C O.f and (x;,y;) € T, 1 < i < n, then by definition of
Ocf (@), 201 (@i, i) — @i, i) < 30y (f (@) — f(21)) = 0, Le. I'is c-cyclically
monotone.

If, conversely, T' is c-cyclically monotone, and (xg,yo) € T, then define
f : Ql — ﬁ

f(l') = sup (C(Zlf, yn) - C(l’m yn) + ...+ 6(271, yo) — C(ZEQ, yo)) (21)
(zi,yi)€T,1<i<n

Then f is c-convex and f(xg) = 0 as I' is c-cyclically monotone. We establish that
I'C O.f. Let (2/,y) € I'and A < f(2'), then there exist (x;,y;) € I', 1 < i < m, with

A< C(l’/,ym) - C<$maym) +...+ C(xhyO) - C(l’g,yo). Define Tm41 = :L,/’ Ym+1 = y/>
then for x €

f(SL’) Z C(l’, ym+1> - C(merlu merl) + C(merlu ym)
_C(xma ym) +.o+ C(mla yO) - C(x(% yO)
> (%, Ymr1) = (Tmt1, Y1) + A

This implies

f(x) = f(2") > clz,y) —c(a,y), Ve €

and since f(xg) =0, f(2') < oco. Therefore, ¥ € 9.f(x') and so " C O.f. 0

Let (A; ® As),, denote the set of all lower majorized A; ® As measurable func-
tions ¢ on ; x Oy, ie. c(z,y) > fi(z) + foly) for some f; € L1(P;). Recall that
P; is called perfect if for every measurable function f; : Q; — IR' one can find
a Borel set B; C f;(Q;) such that Pi(f7*(B;)) = 1. Perfectness is a weak reg-
ularity condition on P;. For properties of this notion we refer to [4]. Define for
fi € LYP), f1 ® fo(z,y) = fi(x) + fo(y). The following theorem gives a very gen-
eral characterization of c-optimal random variables. Special cases of this result are
in [6], [7], 18], [9].

Theorem 2.2 Let Py or Py be perfect, ¢ € (A; ® As)n and
2
I(c) = inf {Z/fldpw fi € El(Aia P),c< fid fQ} < Q. (2.2)
i=1

Then X; < Py,i = 1,2, are c-optimal if and only if X, € 0.f(Xy) a.s. for some
c-convex function f or if and only if the support I' of the distribution of (X1, Xs) is
c-cyclically monotone.



Proof: If X; 4 P; and X5 € 0.f(X1) a.s. for some c-convex function f, then for any

v's Y; 2 P; we have the following chain of inequalities. If f* denotes the c-conjugate
of f, then f(z)+ f*(y) > ¢(x,y) for all z,y and

Ee(V1,Ys) < E(f(Y1) + [*(Y2)) = B(J(X)) + ['(X2)) = Be(X1, Xa),  (23)

i.e. the pair (X, X3) is c-optimal.
For the converse note that by Theorem 1 in [5] the following duality theorem
holds:

2
sup{Ec(Y1,Y2);Y; £ P;} = I(c) = inf {Z/fidPiQ fie LN(P),c< i@ fg} :
i=1
(2.4)
Let (f1, f2) be a solution of the dual problem which exists by Proposition 3 in
[5]. Then with
fy) = sup(c(z,y) — fi(z)) and

xT

[ () = sup(c(r,y) — f(y))

y
the pair (f**, f*) is admissible, i.e. f*(z) 4+ f*(y) > c(z,y), f*, [** are c-convex
and f** is the largest c-convex function majorized by f, and f; & fo > f* @ f*.
Therefore, also (f**, f*) is a solution of the dual problem.

From the equality Fe(Xi,Xs) = E(f*(X1) + f*(X3)) we conclude that
(X1, Xo) = f*(X1) + fH(X2) as. and so Xy € 0.f**(X;) a.s. (equivalently, also
X € 0.f*(X2) as.) O

Examples and Remark:

a) Let Q; = R* and c(z,y) = —|z — y[’,p > 1,| | the euclidean metric, i.e. we
consider the problem to determine the minimal /,-metric as in the introduction.
® : IR¥ — IR is called cyclically monotone if 37 ®(z;) (2441 — ;) < 0 for all
z1,..., ¢, € R¥ 2,1 := 2. Cyclically monotone functions are well studied in
convex analysis. They arise essentially as gradients of convex functions. From
6] cyclically monotone functions lead to optimal couplings w.r.t. —| |*. For
a cyclically monotone function ® define

U(z) = |B(2)| 1 ®(z) + (2.5)

then W is c-cyclically monotone, and for any r.v. X; in the domain of ¥, the
pair (X1, V(X7)) is an optimal c-coupling.

For the proof note that by concavity of ¢(z,y) = —|z — y|P we have
> (c(@ipr, U(x) — e(xi, U(w:))
i=1
< > ea(w, U(a)) (@i — x4)

=1

i=1



The case p = 2 leads to the optimality of ®(z) + x for the squared euclidean
distance (cf. [6]), the case 1 < p < 2 of this result has been dealt with in
[9]. From the result for p = 2 one can see that the sufficient condition for
optimality in (2.5) is not too far from being necessary.

The case p = 1, i.e. the Kantorovich /;-metric has been studied in [8]. If ¥
satisfies the normalized angle monotonicity condition

B U(r)—z Yy —=
e (5 ) 2° 20

then (X7, ¥(X7)) is an optimal [;-coupling for the l;-metric w.r.t. the euclidean
distance for any r.v. X; in the domain of W.

There remain two central open problems with the application of Theorem
2.2. The first one is to find characterizations of c-convex functions and c-
subgradients. Only in few cases as c¢(z,y) = —|z — y|* this problem has been
dealt with satisfactorily. A second problem is to find to given P, ) an optimal
coupling function ®. If P,Q are on IRF with densities f, g and if a regular
invertible solution ® exists, then by the transformation formula the problem
to be solved is a Monge type nonlinear partial differential equation. Find &
regular, c-cyclically monotone such that in the support of @)

g(z) = f(@7'(x))|det Dy-1(z)|. (2.7)

The usual boundary conditions of PDE’s are replaced by the condition of c-
cyclical monotonicity. O
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