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de variety of metrics available for study and use. In this review we discuss
the interrelations between metrics of different type, the choice of an ap-
propriate metric for a given approximation problem, the characterization of
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1. Introduction

The theory of probability metrics (TPM) arises in the same way as any
other branch of probability theory. First certain basic properties of the ob-
jects to be investigated are found, which are capable of a concrete inter-
pretation, generally in more than one way. The basic properties of the prob-
ability metrics (p- metrics) come from the fact that they metrize different
types of convergences in the space of measures or measurable functions,
for example weak convergence, total variation, Lp-convergence. etc. More-
over, due to the probabilistic structure of p- metrics there is a natural
correspondence between metrics in the space of probability measures and
metrics in the space of random elements; Prohorov distance — Ky Fan dis-
tance, Kantorovich- Rubinstein metric « L,-distance. Concrete interpre-
tation of the basic properties and classification of probability metrics pro-
vide the introduction of the TPM. The development of the TPM was closely
related to many other branches of probability theory and mathematical
statistics such as limit theorems, characterization of probability distributions,
robustness, risk theory, queueing theory, quality control and others.
p - metrics (i.e. metrics (or semimetrics) in the space of probability mea-
sures or in the space of random elements) have been studied by a great
number of researchers, among them are Lévy [691], [70], Fréchet [38],
Fortét and Mourier [34], Kolmogorov [671, Prohorov [811, Kantorovich and

Rubinstein [561, Strassen (1143, Dudley [281, [291], and Zolotarev (1211,
(12273, T1271.

There are few monographs which treat the p- metrics as a separate subject:
1. Lévy [69] (pp. 199 - 200; definition of Lévy metric);

2. Fréchet [35]1 (pp. 193 - 195; definition of distances between random
variables);

3. Lukacs [71]1 (Ch. 3; definition and properties of the Ky Fan distance and

Lp-distances between random variables);

4. Hennequin and Tortrat [49] (Prohorov distance, total variation distance):

5. Dudley [29], [30] (duality representation of Prohorov and Kantoro-
vich-Rubinstein metrics in the space of probability measures, proper-

ties of metrics that metrize the weak convergence);
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6. Zolotarev [130] (Ch. 1: introduction to the theory of probability metrics);

7. Kalashnikov and Rachev [55] (Ch. 3, review on the results in the TPM
until 1984).

The aim of the present review is to discuss the contemporary state of
the TPM mainly paying attention to the wide spectrum of possible applicati-
ons of the TPM.

For the basic notions of probability metrics we refer to (1271, [91],
[55] and [93]. Let £(U) denote the set of all random variables on a prob-
ability space (Q,%U.P) with values in U. We assume that the induced set of
distributions of pairs X,Y € X (U) is identical to the set of all distributions
on U x U. For a probability metric u(X,Y) (cf. (5.1) for definition) the func-

tional

(1.1) ﬁ(P1.P2) = inf {u(X.Y): X,Y€ ZE(U), Px=P1'PY=P2)

is called minimal metric. In order that {i is a probability metric, some “topo-

logical” assumptions on U are to be made (cf. [931]).

2. Metrics Related to Mass Transportation Problems
Probably one of the first metrics in probability theory originated in the
works of Monge [74] and Gini [44], [45]. From different aspects they con-

sidered in fact the following metric in the distribution function space
(2.1) x(F,G) =inf E[X-YI],

where the infimum is taken over all joint distributions of pairs (X,Y) with fixed

marginal distribution functions F and G.

In 1781, G. Monge proposed in simple prose a seemingly straightfor-
ward problem of optimization. It was destined to have wide ramifications.

He began his paper on the theory of “clearings and fillings™ as follows:

“"When one must transport soil from one location to another, the cus-
tom is to give the name clearing (‘deblai’) to the volume of the soil that
one must transport and the name filling (‘remblai’) to the space that it must
occupy after transfer.



The cost of the transportation of one molecule being, all other things
equal, proportional to its weight and the interval that it is made to pass-
through, and consequently the total cost of transportation having to be
proportional to the sum of the projects of the molecules each multiplied by
the interval traversed, it follows that the clearing and filling being given in
shape and position, it is not indifferent that someone molecule of the clear-
ing be moved to one or another spot of the filling, but rather that there is
a certain distribution to be made of the molecules from the first to the se-
cond, by which the sum of its projects will be the least possible, and the
cost of the total transportation will be a minimum." (Monge [741, p. 666)

In 1948 Kantorovich rediscovered the Monge problem (cf. [571). The

abstract form of the Monge-Kantorovich-problem is as follows:

Suppose that P1 and P2 are two Borel probability measures given on a
separable metric space (s.m.s.) (U,d) and %(P1.P2) is the space of all Borel
probability measures P on U x U with fixed marginals P1(-) =P(- x U) and

P2(-) = P(Ux ). Evaluate the functional
(2.2) 21(P1.P2) = inf {U;I"Ud(x.y)P(dx.dy): Pe ‘D(P1.P2)}.

The measures P1 and F’2 may be viewed as the initial and final distri-
bution of mass and ‘D(P1.P2) as the space of admissible transference plans.
If the infimum in (2.2) is realized for some measure P* E‘D(P1.P2). then P*
is said to be the optimal transference plan. The function d(x,y) can be in-

terpreted as the cost of transferring a unit mass from x to y.

Problem (2.2) was first formulated and studied by Kantorovich for a

compact U (cf. [57]). It was shown that
(2.3) 21(P1.P2)=8d(P1,P2).

where Bd is the Kantorovich metric in the space ‘DU of Borel probability

measures on (U,d),

(2.4) B4(P,.P,):=sup {IL!j fd(P, - P,)I: fe Lip(U)},
and
(2.5) Lip (U): = {f: U R": If(x) - f(y)| < d(x,y), x.y € U, sup If)| <o)



The equality (2.3) for s.m.s. U was proved by Kellerer [59] (see also [89]
and [30], Chapter 11, for the case when [ d(x.a) (P + P2)(dx) < ®).

In many of his writings Corrado Gine (see the survey [45]) discussed
the following problem: What is meant b the degree of concordance (greater
values of X go with greater values of Y)? Gini [44] introduced the concept
of “simple index of dissimilarity” which coincides with (2.1). Specific con-
tributions to the solution of the Gini problem which is clearly closely related
to the Monge-Kantorovich problem (2.2) were made by Hoeffding [501,
Fréchet (361, [371], Dall'Aglio [19], [20], (21], Cambanis, Simons and Stout
[13]1, Cambanis and Simons [14], Tchen [115], Riuschendorf [105], [1061],
[1071. In particular, we refer to the review paper of Rachev [90] on the
Monge-Kantorovich and Gini problems. In this section we discuss some
recent developments of these problems.

From the dual representation (2.3) of the metric 21 it follows easily that in
the special case U = R, d(x,y) = |[x - y| we have the following explicit ex-

pression for 21:

+ o 1
(2.6) 2,(F.G) = [ IFG)-GOldx= [IF™(1) -G"™(0)]dt,
- oo
where F'™Y is the generalized inverse of F. Formula (2.6) shows that the in-

fimum in (2.1) is attained for X = F™(V), Y = F™(V), where V is a
[0,1]-uniformly distributed random variable. This implies that the optimal
association of the "molecules™ in the Monge problem can be determined by
the "greedy"” algorithm, the so-called northwest corner rule, that solves
transportation problems having a particular structure of the cost and is,
moreover, at the heart of many seemingly different problems having an

"easy" solution, cf. [51] and [4].

More generally, for any measurable nonnegative cost function c(x,y) on U x U

we define the Kantorovich-functional
(2.7) uc(P1,P2) =inf (uiu c(x,y)P(dx,dy): P€ ‘D(P1,P2)},

which has the following fundamental representation (cf. [60], (88], [901], [68])

(2.8) @_(P,P)=sup ([ fdP +fgdP; feR'(P), geR(P,).flx)+gly) < clx.y). ¥ x.y} .



For special cost functions c(x,y) one can “improve" the representation (2.8)

as for example for c(x,y) = d(x,y) in (2.4) (cf. [901, [96]).
Consider a mass transportation problem with cost function
c (x.y) =I{(x,y) € UxU: d(x.,y) > €}

and masses P1 and P‘2 given on a s.m.s. U. Then for any € » 0, the following

improvement of (2.8), the Strassen-Dudley-theorem [114]1, [28] holds:
(2.9) ﬁct(P1.P2)= sup {(P_(A) —PZ(A‘)): AeB(U)},

where A® = {x: d(x,A) < €} and B(U) is the Borel c-algebra on (U,d). Thus if

Kk(X.Y) is the Ky Fan distance with parameter X\ > O (distance in probabili-
ty, see [33], [82])

(2.10) KX(X.Y) =inf {e > 0: Pr(d(X,Y) > \g) <&}

and nx(P1.P2) is the Prohorov metric with prameter A >0,
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(2.11) xx(P1.P2)—mf {e>0: A:ga(u)(P#A) P,(ATT)) <k},
then by (2.9)

(2.12) nx(PrPZ) =KX(P1,P2).

where

(2.13) KX(P1.P2) =inf {KX(X.Y); X,Y € £(U), P><=P1 PY=P2},
is the minimal metric relative to K).‘

Letting A > O we get

(2.14) "x(Per) - o(P1.P2) - Aesg;zu) |P1(A) = P2(A)l '

and thus in the limit one obtains Dobrushin's representation

(2.15) o(P,.P,)=T(P,,P,), where i(X,Y)=Pr(X#Y).

Letting A > o, AK, - L_ and thus (cf. [83], [281)

(2.16) C_(P.P,) =inf (e>0: P_(A)<P_(A®), for all A€ B(U)},
where

(2.17) L_(P)=ess supd(x,y) =inf {e>0; P(d(x,y) >€)=0}.



Consideration of the cost function c(x.y) = dP(x.y) for some 0 < p < w leads

to the Lp-minimal metrics Bp

(2.18) £ (PP, =infAL (P):PERP P)=T (P.P) O<pso,
where
(2.19) L(Pr=t I dP(x,y)P(dx,dy)1?" (0 <p<w, p' =min(1,1/p))

and (Lp(P))Vp. is the total cost of transportation of P, to P, by using the
transference plan P and cost function dP(x.y). Letting p » 0 or p » » we

get the following limit expressions for Lp:

(2.20) L (P)= UIU [{x#y}P(dx,dy), L_(P) =ess_sup dix,y).

x
For U = R, d(x,y) = Ix - yl, Zp =ALp. 1< p < o admits the explicit re-
presentation [13], [831]:

1
= inv _pinv 7p
(2.21) ¢ Pp =L IR -FiovmIRar] ",
z 2 - inv _linv)
(2.22) (PPy) Sup, |F1 (t) Fom (0l

There was some essential progress on the problem of obtaining explicit
expressions and characterizations for the Kantorovich metric in the multi-
dimensional case U = R", n > 1. A simple completely explicit formula for
2p(P1.P2) can not be expected, since e.g. the multivariate assignment prob-
lem of combinatorial optimization theory is a very special case of this problem.
We mention one result on the evaluation of 22(P,Q) where P and Q are dis-

tributions in R".
For a lower semicontinuous convex function f on R" let f* denote the
conjugate function

(2.23) f¥(y) = sup {<x,y> - f(x)}
xeR"

and denote the subdifferential of f in x by
(2.24) af(x) ={y € R"; f(z) - f(x) 2¢z-x,y), z€ R"},

(cf. [103]). The elements of 3f(x) are called subgradients of f at x. Then it

holds that for all x,y
(2.25) f(x) +f (y) 2 <x,y>



with equality if and only if y € 3f(x). The pair (X*,Y") of n-dimensional vec-
tors with marginal distributions P, Q is said to be optimal for the Monge-
Kantorovich problem with cost function |x —ylli - ‘g1|x'-y'|2, if (X*,Y%)
achieves the following infimum in

(2.26) £2(P.Q) = inf (EIX- YIZ: Pr =P,Pr_=Q).

The following result is due to Riischendorf and Rachev [109] extending ear-

lier work of Knott and Smith [66] :

(2.27) (X*.Y®) is optimal if and only if Y* € af(Xx*) (P-a.s.)

for some lower semicontinuous convex function f.

The sufficiency of the condition in (2.27) is easy to see. Suppose that X",
Y® have distributions P, Q, Y* € af(X®), then for any other rv's X, Y with
distributions P, Q we have ElX-YIZ=EIXIZ+ENYIZ- 2E(X,Y>
2ENXIZ + ENYIZ - 2E(F(X) + £7(Y)) =EIX"IIZ + ENY*IZ - 2E(F(X") + £*(Y*))
=EIX" - Y*IIZ, since Y* € af(X").

In particular, if P and Q are Gaussian measures on R" with means r'ﬁ1

and th_ and non-singular covariance matrices M. and M_ res ectively, one
2 g 1 2 P y
obtains choosing Y* = AX"®, A=M:/z(M:/ZMZM:/z)'V‘?M:/a:

2 _ _ 2 - 1/72
(2.28) e3P =N =R I3 +trM) +trM,) - 2tr [ (VM M, /M) %]
see [77] and [46].

Next let D.(P1.P2) to be the set of all finite Borel-measures Q on B (U x U)
such that

(2.29) Q(AxU)-Q(UxA)=P1(A)-P2(A). AeB(U).
Define the Kantorovich-Rubinstein functional
(2.30) ;ozc(P1.P2)=inf{Ic(x.y)Q(dx.dy); Qe(P P},

Levin in the early 1970's (see reference [68]) proved the dual representation

(analogously to (2.8)):
(2.3 u_(P.P)= sup ([ fd(P -P_); f:U> R, f(x) - fly) sclx,y), Vx,y€ U)

for c(x,y) continuous and U compact. Rachev and Shortt [96] got the follow-
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ing strengthened duality representation for symmetric nonnegative cost func-

tions c(x,y) on a separable metric space U satisfying the following conditions:
C.1 cix,y)=0 iff x=y,

C.2 clx,y) < x(x) +Aly), Vx,y, for function X:S-> R_ mapping bounded sets

into bounded sets,

C.3 sup{c(x,y); x,y€ B‘(a). d(x,y) <8}>0 as 8- 0 for each a€ U, B_(a) the
e-ball with center a.
Defining for f: U-> R
— [f(x)-f(y)| .
(2.32) Ifll_: = sup {_c?x_,)’— x#y)

the following representation holds:

(2.33)  u (PP ) =sup{l[fd(P -P ) IIfll_<1}
=sup {Jfd(P - Po): flx) - fly) <clx,y), Vxy},

assuming [ [x|dP (x) ¢, i=1,2.
While obviously in general
o ~
(2.34) uc(P1.P2) Suc(P1.P2).

it follows by comparison with (2.3) that for c(x,y) =d(x,y), ﬁd(P1.P2)=ﬁd(P1,P2).

The cost function

(2.35) ¢ (x.y) =d(x,y) max [1.d° '(x.,a), d® '(y.a)1, p21, x.ye R,
satisfies C.1 - C.3. From (2.33) we obtain the explicit representation

(2.36) BepPyPR) = T max (Llx-alP™) IF, ) - F(aldx,

where F‘ are the df's of PI (cf. [89] and for some generalizations [961]).

Except for p = 1 an optimal measure Q" satisfying
o
(2.37) ucp(O') = fcp(x.y)o'wx.dy) = e, (P.Py)
is not known. acp is for p21 identical to the Fortét-Mourier metric [34]
= - & P
(2.38) FMp(P1.P2) sup(ll.!',fd(F’1 P2)|. fecCrl,

where

CP={g:U>R"; sup r'"P sup (-'3%’)7;9%)—'. x#y, d(x,a) <r,d(y,a) sr} <1},
rz .



A relation between the Kantorovich functional ac and the Kantorovich-
Rubinstein functional ﬁc can be obtained in the following way. Define for a

costfunction c(x,y) 20,

-1
(2.39) Eley) =inf (F clxx, )i n€N, x €U, x,=x, x_=y}.

c (x,y) is the minimal cost of a transport from x to y done in several steps.
Obviously, c(x,y) < c(x,y) and  satisfies the triangle inequality: c(x,y)
< C(x,z) + €(z,y). If c is symmetric, then ¢ is a (semi-) metric and is obvi-
ously the largest (semi-) metric dominated by c. Now suppose that for ¢, c

the duality theorem (2.31), (2.33) resp. holds, then we obtain:

(2.40) ﬁc(P1.P2)=sup{Ifd(P1—Pz); f(x) - fly) <clx,y), V¥ x.y}

sup{ [ fd(P - PL): f(x) - fly) <C(x.y), V x.y}
B PP

c

From (2.40) for c symmetric, we obtain

(2.4 @ (PP = sup{Iffd(P, -P)I; If(x) - fly)| £ (x,y), V x.y)

If Q% is an optimal measure w.r.t. € we obtain that c(x.y) = clx,y) a.s. w.r.t.
Q”.This gives a natural explanation of the relevance of ﬁc for transportation
problems. A somewhat different interpretation of ﬁc can be found in Kem-
perman [61] (multistage shipping). In linear programming the discrete ana-
logon is known as network flow problem. Kantorovich and Rubinstein [56]
studied in 1957 a modification with exactly n-stages of the transportation.

In terms of rv's we may also give the following representation.
ﬁc(P1.P2)=ﬁg(P1.P2)=inf (EC(X,.X,); Px =P ,Px =P}
(2.42) = inf {E[c(X1.X2) + c(Xz.X3) + ot c(Xn_1.Xn)]; neEN
Rty =P Pxn=P2. X, any rv's, 2<i<n-1}
=inf {J c(x,y)Q(dx,dy); Q€ aP P,), &UxU)Ee N},

n-1
here Q=_Z‘_1 Pxi,x‘ﬂ- From (2.41) obviously ﬁc is a semimetric on P(U) if

c is symmetric (cf. also [28], Lemma 20.2, [86]). If c(x,y) = d®(x,y), p > 1,
U = R¥, then (x.y) = 0 and, therefore, by (2.41) @ (P,.P,) = 0. This shows

a striking difference between ﬁc and ﬁc.

__4@_,-



Inequalities between Zp, ﬁcp and other metrics on P(U) are studied in
(831, [84 , [85] . In particular for any Po EP(U), D(Po.tp) = {P eP(U);
Bp(P.Po) < o} is Zp-complete and for P, = 8&_ the following convergence

criterion holds on D(sa.zp):

(2.43) £ (P P)»0 e i (P ,P)>0
P n P n
= P_-P (weakly) and Idp(x.y)(Pn-P)(dx)-» 0.

For Po # 8. a corresponding characterization is unknown. A compactness

criterion for £ _ is unknown in the general case, for U = R' cf. [101].

We finally describe some applications of the Kantorovich resp. Kanto-

rovich-Rubinstein functionals Ec. 80.

2.1. Classification Problem, Asignment Problem
Suppose that n individuals should be classified or asigned to n jobs.

After a series of tests one knows the empirical measure P'(A). for A C U,
the set of "qualities” which are of interest for the jobs. P1(A) denoting the
relative number of individuals with qualities in the set A. PZ(A) represents the
desired distribution of the qualities for the jobs. A distance d(x,y), x,y € U,
is measuring the ability for an individual with quality x to cope with the
needed quality y of a job (e.g. U = R¥, d(x,y) = lix - yll). Each element
P E%(P1.P2) describes a classification. P(A x B) is the number of individuals
with qualities in A which are assigned to jobs with qualities in B. Then
EC(P1.P2) is the optimal amount of disclassification. In a model where indivi-
duals can gradually change their qualities to fit to the different jobs in a sequence
of n retraining stages, a classification is given by an element Q EQ(P1.P2)
and the optimal disclassification amount is given by <ﬁ‘__‘(Per) < ﬁc(P1.P2)
(cf. [95]).

2.2. Optimal Allocation Policy

Karatzas [58] (see also the general discussion in Whittle [119], pp.
210 - 211) considers d "medical treatments” (or “projects” or “investigati-
ons”) with the state of the j-th of them (at time t 2 0) denoted by xj(t). At

each instant of time t, we are allowed to use only one medical treatment
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denoted by i(t), which then evolves according to some Markovian rule: me-
anwhile, the states of all other projects remain frozen. If i(t) = j, one ac-

quires an instant reward equal to h(j.xl(t)) per unit time, discounted by the

o

factor e”*'. The stochastic control problem is then to choose the sequenti-

al "allocation policy” {i(t), t = O} in such a way as to maximize the expected

discounted reward E (J; e-“th(i(t).x'(t)(t)dt.

We will now consider the situation, when we are allowed to use a com-
bination of different medical treatments (say for brevity, medicines) deno-
ted by M1,....Md. Letd =2 and U = U1 xR, U1 the space of relevant para-
meters of the patient, R, the time. Let PI(A x B) be the total quantity of
medicine M' which should be given to a patient with parameters in A in time
B. P, can be normalized by 1. An admissible allocation (treatment) policy
describes the combination of medicines over the time and is given by an
element P E‘D(P1,P2) (resp. Q en(P1.P2)). If we can specify a reward function
cllx,.t.), (xz.tz)) describing the interaction of the medicines, then we can
formulate the question of an optimal policy of combination of medicines
(depending on time and patient's status) as a Monge-Kantorovich problem
with a treatment policy P € $(P1.P2) or in the case of multistaged treatment

as a Kantorovich-Rubinstein problem with treatment policy Q E.D.(Pl.Pz).

2.3. Generalized Kantorovich Theorem and Optimal Quality Usage

It is common practice to describe the quality of an item of a product
by a collection of its characteristics x = (x1.....xm) € R™. The quality of all
produced items of a given type is described by a probability measure u(A),
A €®B™ the algebra of Borel measurable sets in R™. The measure u(A)
represents the proportion of items with quality x € A. On the other hand
the usage (consumption) of items can be represented by another probability
measure v(B), B € 8™, where v(B) describes the necessary consumption
product with quality characteristics x € B. We call u(A) the production
measure and v(B) the consumption measure, A,B € B and assume that u(R™)
= v(R™) = 1, [57]. Let c(x,y) denote the cost (or degree of unpleasantness)

to satisfy a demand y with a produced quality x possibly different from y.
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In most practical cases the information about production and consump-
tion quality concerns only the marginal features of the production and con-

th

sumption measures. We denote the i’ marginal measure of production qua-

lity by u.'(A') and the j"‘ marginal measure of the consumption quality by

vJ(BJ). i.e.

(2.44) w(A)=uR 'xA xR™ ), A €8’
v,(B)=v(R"'xB xR™)), B €D’
[27]. We say that a probability measure P on B2™ is a weakly admissible

plan when it satisfies the marginal conditions
(2.45) PR "xA xR®™ ) =y (A), i=1,...m;
PR™ ™ B xR™ ) =v(B), j=1...m.

Denote by ‘3(u1.....um;v1.....vm) the collection of all weakly admissible plans,
then

(2.46) P € Pt i Vpeay, ).

A weakly admissible plan P° is called optimal w.r.t. a cost function c if
it satisfies the relation
oy o .
(2.47) ke (P7)=min u (P).

PEP
(2.47) implies that

(2.48) u (PO <u_(P%): =ac(u.v).

m
Equality holds in (2.48) e.qg. if w=0®u, v=®v] and c(x.y)=‘§1 cl(xl.yl). For
the determination of p.c(P°) there are several explicit results mainly based

on the generalized Kantorovich theorem
PO) = T It T [gdu;:fell(u) L) T (F (
(2.49) uc( —sup{{=1 ldui+j=‘ g‘duj. € w). g€ ) Z ‘x‘)*
+g,(y ) sclxy), x.yE€ R™},

holding for general costfunctions c (as in (2.8)) (cf. [39], [1061, [107],
[60], [89]). In particular it was proved in Rischendorf [106] that for any
A.B, € B(U) we have the sharpness of the Fréchet-bounds

— A%



(2.50)  sup {P(A x...xA_xB x..xB_ ) Pe$}=min{ui(Ai).vi(Bi), 1<si<m),

—_ m
(2.51) inf {P(A1 Xasrs Am X B1 X wics X Bm); PePl}= (151 (ul(A') + v‘(Bl)) -(2m - 1))+.

For a recent review of these and related Fréchet-type bounds we refer to
1111

3. Uniformities for Weak Convergence and Convergence in Probability
There have been some interesting recent results on the characerization
of the uniform structure of probability metrics (cf. [301, Chapter 11, [251,
(171, [903, (1001, [101]). In contrast to the characterization of convergent
sequences and to the description of compactness criteria (as e.g. in (2.43))
we will consider criteria for convergence in the noncompact (merging)
case. If u(X,Y) and v(X,Y) are probability metrics, then we shall consider
criteria for convergence of u(Xn.Yn) - 0, respectively, the question of

uniform comparability: w(X .Y )= 0 implies v(Xn.Yn)-) 0.

Consider for A € (0,) the Prohorov type metric T from (2.11); m=ETW
is the usual Prohorov metric. It is well known that for separable metric

spaces m, T, metrize the topology of weak convergence on P(U), i.e. if o
u € M'(S), n € N, then:

(3.1) un£> u (weak convergence) e n)‘(u.n.p.)-b 0.

Moreover the following sequence of equivalences holds (cf. Dudley [301, p.
310):

a) ¢, =D u,

b) Ifdun-» J fdu, VfeBL(U,d) the class of bounded Lipschitz-

functions with lIfllg, =Ufll_+lIfll _ < e,

(3.2) c)  Blu .w:=sup{ffdlu_-u; Ifllg,_=<1-0,

d) n(un.u)—) 0,

e) there exists U-valued random variables Xn sun. x < u on

some probability space (Q,%,P) such that d(Xn.X)-y 0 a.s.

— /In__,



Some interesting applications of (3.2) to Glivenko-Cantelli theorems, func-
tional central limit theorems and stability of queueing systems are described
in [29] and [90]. The equivalence of a), d), e) is the famous Skor;ahod.
Strassen, Dudley, Wichura a.s. convergence theorem. The following "exten-

sion” of this equivalence can be proved in the “noncompact” case (cf.
[1011).

THEOREM 3.1. For any X\ € (0,o) and K,V € P(U) holds:

; : . . d
n, (e v )= 0, if and only if there exist U-valued rv's X ™~ 0

(3.3) Yng- v_on a probability space (Q,U.P) such that: d(Xn.Yn)-»O CP1.

a

For m = m., (3.3) was proved independently by Rachev, Riischendorf and
Schief [100 ] and Dudley [301. As the a.s. convergence theorem (3.2),e) in the
“compact” case, (3.3) has interesting applications in statistics e.g. to
establish general versions of the 8-method (the differentiation approach to

convergence theorems).

For the limiting cases of the Prohorov-type metric t, as A » O or A = o,

A
n = o (cf. (2.14), = =tm (cf. (2.16)) we have the following analog

results (cf. [101]):

2 s d d
(3.4) o(un.vn)-» 0 iff for some versions Xn ®, Yn~ v
[I{X #Y }>0 a.s.
n n
and
~ . . d d
(3.5) Lw(un.un)-’o iff for some versions Xn W, Yn~ v

ess sup d(Xn.Yn)-o 0.

To characterize the uniformity of the Prohorov metric ®m we assume
w.l.g. that the metric d is bounded (otherwise define e.g. d"(x,y) =
min (1,d(x,y))), then we have the following equivalence analogously to (3.2)
(cf. [101]):

THEOREM 3.2.

a) n(un.vn)-» 0,



b) B(un.vn)a 0,

(3.6) c) d (. .v ) =sup {Iffd(un - vl llfIILs 1}- 0,
d) L1(un.vn)-) 0,
e) Ep(un.vn)-ao. VO<p<o. a

The equivalence of uniformities w.r.t. two probability metrics 0., 0, is

a consequence of inequalities of the form:
(3.7) $lo (u,v) < oz(u.v) < (p(c1(u.v))

for some functions ¢, ¢ continuous in 0, (0) = ¢(0) = 0, @(x) # O, ¢(x) # 0.

For several inequalities of this type cf. [101].
* For the convergence in probability metrized by the Ky-Fan distance

K =K, (cf. (2.10)) we have some results analogously to (3.4), (3.6).

THEOREM 3.3. [101] Let Xn. Yn be U-valued rv's.

1. If U is compact, then the following are equivalent:
a) EIf(Xn) - f(Yn)|-> 0, Vvfe BL(U,d)
(3.8) b) dg (X .Y ):=sup {E|f(X )-f(Y )|; fe BL(U,d)}>0
n n n n
c) K(X ,Y )0 . o
n n

Y
2. (3.8) also holds true for general U if P ™ has densities hn w.r.t. a
dominating measure g and IhnI <h for some integrable h.
3. K(Xn.Yn) - 0 is equivalent to the existence of rv's Xn. Yn. such that

(X .Y ) have the same distribution as (X ,Y ) and d(X .Y )= O a.s.
n n n n n n

4. Appropriate” Metrics for Approximation of Distributions and Stability of

Characterizations of Exponential, Marshall-Olkin and Beta Distributions

Any concret stochastic approximation problem requires an "appropria-
te” or "natural” metric (topology, convergence, uniformities, etc.) having
properties which are helpful in solving the problem. If one needs to develop
the solution of the approximation problem in terms of another metric (topo-
logy, etc.) the transition is carried out by using general relationships bet-
ween metrics (topologies, etc.). This two stage approach (selection of the
appropriate metric and comparison of metrics) is the basis of the TPM
1221, 01271, [1291].
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Since there is not a satisfactory definition of a "natural” metric, we shall
use different examples to explain this approach. The first two examples deal

with approximation of exponential families of distributions.

EXAMPLE 4.1. Robustness of xz-test of exponentiality
Suppose that Y is exponentially distributed with density (p.d.f.) fY(x) =

1/a e /2

» (x 2 0; a> 0). To perform hypothesis tests on a, one makes use
of the fact that, if Y1.Y2.....Yn are n independent, identically distributed
random variables, each with p.d.f. fY. then 2 ":2‘.1 Y‘/a ~ xin. In practice, the
assumption of exponentiality is only an approximation: it is therefore of in-
terest to enquire how well the xgn distribution approximates that of 2‘; Xl/a.
where X1.X2.....Xn are n independent, identically distributed, non-negative
random variables with common mean a, representing a "perturbation”, in
some sense, of exponential random variables with the same mean. The usual
approach requires one to either make an assumption concerning the class
of random variables representing the possible "perturbations” of the expo-
nential distribution or to identify the nature of the “mechanism" causing the

"perturbation”.

The case when X's belong to an aging class distributions. A nonnegati-
ve random variable X with distribution function F is said to be HNBUE (har-
monic new better than used in expectation) if FF(u)du <ae ™2 for all x 20,
where a=E(X) and F =1-F. It is easily seen t:\at if X is HNBUE, moments of
all orders exist. Similarly, X is said to be HNWUE (harmonic new worse than
used in expectation) if ,‘fmf(u)duzae"‘/a for all x20 assuming that a is finite.
See [55] and [65] forxfurther details of HNBUE and HNWUE distributions.
The class of HNBUE (HNWUE) distributions include all the standard "ageing”
("anti-ageing”) classes, IFR, IFRA, NBU and NBUE (DFR, DFRA. NWU and
NWUE).

It is well known that if X is HNBUE with a = EX and ¢ = var X then X
is exponentially distributed if and only if a = 0. To investigate stability of
this characterization we must select a metric u(X,Y) = u(Fx,FY) in the dis-

tribution functions space F(R) such that

AT



a) u guarantees the convergence in distribution plus convergence of the

first two moments;

b) one can construct inequalities
(4.1) <p1(|a -ol) < u(X,E(a)) < q>2(|a -ol), (X€ HNBUE, EX = a, var X =62,

where ¢ are continuous increasing functions with ¢(0) =0, E(a) denotes

an exponential variate with mean a.

Clearly, the most appropriate metric u should satisfy a) and b) with

PiE Py Such a metric is

+co x
(4.2) £, - sup IECO0 - fovnl=_f I-.,f (F, (1) - F_(t)dtldx,

where F2 is the class of all functions f having almost everywhere second
derivative f" and |[f"| < 1 a.e.; for details, see [76], and [5]. The metric (2
is called Zolotarev Cz-metric (see [126]). From the first representation of
C2 it follows that Cz—convergence implies convergence of the second mo-

ments. Moreover, if L is the Levy metric on §(R) (see [71], Sec. 3.4)

(4.3) L(X,Y) =inf{e> 0; Fo(x-€)-e< F,(x) < Fx+e)+e for all xe R},
then

(4.4) L(X,Y) <[4, (X,1)1"/3,

see [47], [72]. Thus Cz-convergence preserves the converge in distribu-
tion, and so a) holds. Concerning b), we use the second representation of
C2 to get

(4.5) CZ(X,Y)

| f Fx(t)dt-ae'x/aldx =f fae ™72 - { F_(t)dtldx
x (o] x X
2 _

(a 2

N|=+ Oy

; for X is HNBUE, Y:=E(a).

Now if one studies the stability the above characterization in terms of

a “traditional” metric as the uniform one
(4.6) p(X,Y): = fg& IFx(x) - FY(x)I.

then one simply compares C2 with p. Namely, by the well-known inequality

between the Levy distance L and the Kolmogorov distance p, we have

(4.7) Pp(X.Y) < [1+sup f, (x)IL(X,Y)
x
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if fx=F'x exists. Thus, by (4.4) and (4.7)

P(X.Y) < [1+sup Fon WIICAE (X ieVITY ¥2.(c®7 P 5 My,

c“’3)c4c2(x.m”3

for any c»> 0,

where Mx=sup fx(t). Minimizing the right hand side of the last inequality with
t

respect to c, we obtain

(4.8) P(X,Y) £ 3MZ73 (L, (x, Y3,

Thus. for any X € HNBUE with EX=a, var Y =g2

(4.9) p(X,E(a)) s 3(a/2)"3, a=1-02/a%.
Note that the order 1/3 of a is sharp, see [18].

Next using the “"natural” metric Cz' we derive a bound on the uniform
n
distance between the xgn distribution and the distribution of 2|§1X'/a.

assuming that X is HNBUE. Define X =(X -a)/a and Y, =(Y -a)/a (i=1,2,...,n)
n —_ | 2 P n _ N —
and write W_=2 "_£1X|/a. W = '§1X|/f—. Zn=2|§1Y|/a and Zn='§1Y|/-/F.
Let ffn denote the p.d.f. of in and let Mn=sgp f!.n(x). Then by (4.8),
Y 2 273 ~N T yq1/3
p(W . Z )< 3M7 [Cz(Wn.Zn)] -
Now we use the fact that G, is "ideal metric of order 2" [122], i.e. for any

vectors (Xl);"=1 and {YI)'"=1 with independent components and constants

n n n I 2
(4.10) C‘?(ig1 c X, i§1 clYi) < i‘___£1 cll C2(Xl.Y').
Thus Cz(Wn.zn)SCZ(X.Y)/aZ, and finally the required estimate is

THEOREM 4.1. [5]
(4.11) oW, .Z ) < —Zm (1= (e/)®) 72,

where

n -1/(12n-11)
M, %1 Zxin=ty ‘@ : =)

In the same way one can treat the case X € HNWUE [5]. If one makes

no assumptios concerning X, it is necessary to make an assumption con-
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cerning the "mechanism” by which the exponential distribution is “perturbed”.
Then using the estimates for C2 we can deduce bounds for p(Wn.Zn) in the
case of the three most common possible "mechanism”: contamination by

mixture, contamination by an additive error and right-censoring [5].

EXAMPLE 4.2. Stability of a Characterization of the Marshall-Olkin Dis-
tribution
The derivation of the estimates (4.9), (4.11) is just a simple example of how
one can use the TPM. While in the case of (4.9), one can get similar re-
sults by the traditional methods (see Daley [18]) in order to study multiva-
riate versions of (4.9) one cannot use the standard technique [11], [12],
[181].

Further the TPM is utilized to analyze the stability of a new characte-
rization of the bivariate Marshall-Olkin distribution: We show that if a dis-
tribution possesses a certain bivariate NBU property, it is Marshall-Olkin
if and only if a given function of the first and second moments and the

hazard rates at the origin vanishes.

Recall that if G(x.y) = P(X1 > X, X2 > y} denotes the bivariate survivor
function of (X1.X2). then the bivariate Marshall-Olkin distribution (BMOD) is
defined by

(4.12) G(x.y)==exp{—k1x-k max (x,y)}

2Y X2
for )‘1.>‘2>0. )\1220. £731].

Let B denote the class of all bivariate survivor functions of pairs of non-
negative random variables. For G € B, define the hazard vector (h, (1), h, (1)
= Vl-log G(t,t)], assuming that this exists, and write H,(x,y) = -3log G(x,y)/dy
and ¢ = H,(0,0) + H,(0,0). Fixing h,(0), h,(0) and c

~ _Jexp{-cy-hy(0O)(x~-y)} if x=2y
(4.13) Gixy) =| exp {~cx-h2(0)(y-x)} if xsy '
i.e. é is the bivariate survivor function of the Marshall-Olkin distribution
with 11 =c - h2(0). )‘2 =c - h1(0) and X12 = h1(0) + h2(0) - c. Notice that

if (X1.X2) has survivor function 6 then E(Xl) = 1/h'(0) and E(Xlz) =



2/“‘;(0)]2 (i =1,2) and E(X1X2)=[1/h1(0)+ 1/h,(0)1/c, where (h1(0).h2(0))
=VI[-log G(0,0)].

Suppose that G € B, the survival function of (X1.X2). satisfies the in-
equalities
(i) G(x+t,y+t)<G(x,y)G(t,t) for all x,y,t20,
(ii) G,(x +1t) <G,(x)G (1) for all x,t 20, where G is the survivor function of
X (i=1,2).
Then G is said to be weakly bivariate NBU (WBNB).
Obviously any bivariate distribution with increasing failure rate (BIFR)
(3] is WBNBU. However, the bivariate Weibull-Marshall-Olkin distribution

(73] Ga(x1.x2)=exp(-)\1x;"->\2x;—)\12 max(x:’.x;)}. x,20, «>0 is WBNBU
but not BIFR.

For any survival function G in B define

B(G): = {[1/h1(0) - E(X,)] + [1/h2(0) - E(X2)]
2 2
(4.14) +[2 E(X,) - h1(0)E(X1 )1+ [2E(X2) - h2(0)E(X2)J
+ 4[E(X1) + E(Xz) - cE(X1X2)J)/c.

Clearly, B(G) = O if G is BMOD. In general, B(G) represents a measure

of closeness of the moments of G to the corresponding moments of the
BMOD G defined by (4.13).

THEOREM 4.2. [6]. If G is WBNBU, then G is Marshall-Olkin if and on-
ly if B(G) = 0. Moreover, the uniform distance between G € WBNBU and G

can be estimated by B(G) as follows:
(4.15) p(G.G) = (1+cZe°)[p(@)1"3.

The proof of (4.15) follows the same two stage approach as in Example
4.1. Here, the "natural” metric in terms of which an inequality is easy to

prove is

(4.16) ' c;<e,.ez>=é (I) IG, (x,y) = G, (x,y)|dxdy.



(4.15) follows from the following three inequalities:

a) (4.17) c;(e.é)ss(e),
- 3
b) (4.18) Cz(GVGz)Z(L(Ger” ; VG1.62.
where
(4.19) L(G1.G2)=inf(e>O;G1(x-s.y-e)—ESGz(x.y)s

G (x+e,y+e) +e, Vxy}
is the Levy-metric.

c) (4.20) 0(G,G) < (1+c2e°)L(G.G).

EXAMPLE 4.3. Stability of Characterizations of Beta-distributions and
Stability of de Finetti's Theorem
Consider the following question: Let C1.C2.... be a sequence of independent
identically distributed (i.i.d.) positive random variables (r.v.'s) with d.f. F

satisfying the normalization EC': =1, @>p>1 and define

- K p o & b _
(4.21) Xemp™ 5 8/ E 00 15 ksn, neNe= (12,0,

Does there exist a (unique?) d.f. F'-'Fp such that Xk.n' has a Beta

B(%."—;k)- distribution for any k < n, n € N? It is well-known that F, is the
standard exponential distribution and F'2 is the absolute value of a standard
normal r.v. (see for example [16], Sec. 18, [26]). As we will see the affir-
mative answer of this question and its stability with respect to a small de-
partures from the Beta-distribution will lead to satisfy theorems for de
Finetti type characterizations of scale mixtures and exponential type fami-
lies. For references on de Finetti's theorem we recommend Diaconis and
Freedman [24], [26]. The results included in this section are due to Rachev
and Riischendorf [94].

THEOREM 4.3. For any 0 < p < o there exists exactly one distribution

F =F _, such that for all k < n,n€ N, X  has a B(i. "_k)-distribution.
p k,n.,p P P
Fp has the density
1-1/p

PR
fo¥) = Fa7m

exp (-%). x20. a
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To get a meaningful result for p=w, let B be a B(%.n—;k)-distributed

r.v. and define ¥y =BVP. then ¥y has a density given b
k,n,p k.,n.p g y

fYk n

(x) =B(X, Dk o k=Nq o (PYyR=107p & ¢ 2.
P P' P
Let ; T be the weak limit of yk'n‘p as p= o, i.e.

n-k jf Osx>1
(4.22) P 0= { 7

if x21

THEOREM 4.4. Let C1.C2.... be a sequence of positive iid r.v.'s and let
k n
X = l\=/1 l.','/i;/1 Ci (VC'= = max C'). Then Xk'n

. and Yiono 2T equally dis-

tributed for any k < n, n € N, if and only if C1 is uniformly distribution on [0,1].

By Theorem 4.4 one can say that in the limit case p = o the required

Fm is the uniform [0,1]-distribution.

Let us now look at the stability of the characterization of Fp. pE (0,].

Once again we follow the two stage approach as in Example 4.1. We
consider a sequence 2152 of i.i.d. nonnegative r.v.'s with common df i?p
close to Fp in the sense that the uniform distance p==p(E1.C1)=p(Ep.Fp)

(see (4.6)) is close to zero. The next theorem says that the distribution of

~ k ~ n -~ _
X = ¥ P/ . CP is close to the Beta B(X,2=X)_distribution w.r.t. the
k.n'p i=1 I i=1 i P P

uniform distance. In the sequel c denotes absolute constants which may be
different in different places, and c(...) denotes quantities depending only on

the arguments in the paranthesis.

THEOREM 4.5. For any O<p<w and (E;) i.i.d. with EE“’ =1 and

iEIN

%s: = EE:Z’S)F’ < (8>0)

we have
S

2 Y » 3(2+8)
(4.23) A:= Eur[.) p(Xk'n_p.Xk.mp) < c(8.m8.p)p .

Sketch of the proof: The proof is based on the relationship between

metrics and the choice of the "natural” metric Cz (see (4.2)).

{
>
¥

X



Claim 1. (The regularity of the uniform distance under convolutions):

~ k k n n
P P P P
p(xk.n.p'xk.n.p) & p(;§1 Ci . ;51 Ci 4 p(;=§+1 ci ' i=E+1 ci )

<n p((1.C1) b

Claim 2. (Estimate from above for the “traditional” metric p by the

“appropriate” metric ,): Let n>p, EC‘: = ECN’:. oi =Var (C':) <. Then

o W S op 2/3 _P\W-1/3 173, 1 g 1 U
p(|§1cl.l§1ci)530p (2m (1 =) Ca (_/F.‘ '§1Z|. 7= |§1Zl)'
P_ c TP_eZP
where Zl:= c' L 1 Z::EQ .
c i o

Claim 3. (The metric (;2 is "ideal” of order 2 (see (4.10)):

n

(i Tz, -L % Fyer (z.3
= ? i - eom, o hAk

2 yn =101 A=
Claim 4. (Estimate from below of p by Cz). If Mg < o, then
il
0,(Z,.Z,) sc(8,m,.p)p2*? .
Combining all claims we get the required inequality. o

In the case p = o, we in fact change the summation scheme of i.i.d.
r.v.'s (see Claim 3) with the maxima scheme of i.i.d. r.v.'s. In this case the

“ideal” metric will be the weighted uniform distance
- @ 3
(4.24) pu(X.Y) =sup x IFx(x) FY(x)I.
(1281, (1291, [1301, (781, [23]. Clearly, for any nonnegative independent
r.v.'s {X‘} and (Y'} and positive constants c,. similarly to (4.10) we have

n n n o«
(4.25) pa('V c X V1 clY') < |§1c' pa(X'.YI) .

=1 i l'i:
For the necessary inequalities between p and P WE refer to [1291, [23],

[(781.

One may want to obtain stronger results than in Theorem 4.3 by exa-

~

mining the deviation between Xk i and Xk - in terms of the total varia-

tion distance

(4.26) o(X,Y)=o(Pr ,Pr )= sup [Pr(X€A) -Pr(YeA)]|.
AEB(R)

- -



THEOREM 4.6. For O<p< o the following holds:

o(X §

k k ~ n ~
p Py, P p
n.k.p n.k.p)$°(|§1cl'|-§1cl ) O(l=k2#1 Cl & SRE

n
Eer &

i +1

If EC‘:'=EEIPJ=ENJI. i=1,2, j=1,2, for some independent normal r.v.'s N| and

if for some r > 2 the pseudomoments

v =u (L, N,)= IIxIrIFC?(x) - FNI(x)I dxsac<ow,
then

(4.27) sup o(X X ) <Ala)n~ 172, o

k<sn k.,n,p k,n,

The proof is similar to that of Theorem 4.4, but the "ideal metric is

different”, here we need the so-called ideal smoothing metric of order r
(4.28) v (X,Y)= sug h"6(X+hZ,Y +h2Z),
r h>

where Z is N(O,1)-distributed and independent of X and Y ([92], [87],
[971). One can easily check that

n n n r
(4.29) vr(‘l:‘I c,X,s |§1 c,Y)s ‘§1 Icll v.(X.Y,).
where {X') and {Yl) are independent (cf. (4.10)).

Next we shall use these “characterization” results to study the stabili-
ty in de Finetti's theorem. In the paper of Diaconis and Freedman [26]
two “"continuous"” examples of de Finetti theorems are considered: Let { be
chosen at random on the surface of the 2-sphere 02'n= ={x € R™: lez = n}
(resp. the simplex S, : = {x eER": Zx, = nh. Then L ,....L_ are, for k fixed,
in the limit as n » o independent standard normals (resp. exponentials).
Diaconis and Freedman obtained a right order bound on the variation
distance between the law of (C1.....Ck) and the law of k independent stan-
dard normals (resp. exponentials). We will extend Diaconis’ and Freedman's
results considering { being chosen "at random"” on the surface of the "p-
sphere” O _ ={x€ R™: lgl Ix,|P=n} for O<p<w and O_ ,={xe€ R", |§1 Ix,| =n).
By this random choice on the surface we mean the measure (up to normali-
zation) arising from a desintegration of the Lebesgue measure w.r.t. the
surface {x € R"; Elxllp = t} parametrized by t. This uniform distribution is

relevant for applications to physics in connection with the theorem of Liouville.

,25,



For p=1,2,o this is identical with the geometric surface measure. Without
loss of generality we consider the positive parts of Op , Namely Sp ==

{x€ Op o xiZO). We start with the case p= .

Let C1.....C be i.i.d. uniformly (0,1)-distributed, then (C1,....Cn) is con-

n

n n n

V C =s uniform on S :={x€R; V x =s}.
=1 I <«,S.Nn 2 o |

ditionally given N X

n,co (o)
Let P¢J for 6>0 be the law of (0C1....,0Cn) and let Qn.s'k be the law
of (n,.....n ), where n=(n1.....nn) is uniform on S_ < n In the next theorem

we shall evaluate the deviation between Q:“”)

and PX'® in terms of the
s.k s

total variation distance o(Q‘®’  pK:®):= sup IQ(:’S) L (A) - P:"”(A)I. B~

n,s,k’ s AES
being the Borel sets in R*.
() pk,oy _ k
THEOREM 4.7. o(Qnsk.Ps )-;. a

Let Cn be the class of distributions of X = (X1.....Xn) on IR': which share

with the i.i.d. uniforms the property that given M: ='£/1 X|=s. the conditional

joint distribution of X is uniform on S !
c,s,n

Clearly P:"”eCn; so is Pu n=IP:'°°u.(do) for any probability ¢ on (0,w).
As a consequence of Theorem 4.7 we get the finite form of the de Finetti-

Theorem:

COROLLARY 4.1. If PE€ Cn, then there is a g such that for all k<n,

o(P ,P )sh. where P _is the P-law of the first k-coordinates (X_,....X. ).
k' uk’  n k 1 k

In particular, one gets the infinite de Finetti-type characterization of
scale mixtures of i.i.d. uniform variables (cf. Diaconis and Freedman [25],

Example 2.5).

COROLLARY 4.2. Let P be a probability on R® with P_ being the P-law
of the first n coordinates. Then P is a uniform scale mixture of i.i.d. uni-

form variables, if and only if Pn € Cn for every n. o

Following the same idea we may consider the case p € (0,o). While for
the case p = = we use the stability results for maxima of i.i.d. r.v.'s in the

case p € (0,o) we apply Theorem 4.3 and its stability versions, for details
see [94].
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THEOREM 4.8. For O<p<ow

(p) pk.p 1 3 e'/12
(4.30) O(Q (§.) 1/p) s s [1+§ k + ( > +1)p+
(& +J&(1+£))‘_ sl W
2 12 2 ' n 24 2

= a

The order in (4.30) is essentially % This result is asymptotically sharp

as follows from

THEOREM 4.9. For O<p<w, £ 50 holds:

(p) k P _1 _Nn2 k k
(4.31) go(Qnsk. (5_)‘/9)"7!5“ No.1ln +o (=),

where NO 1 is a standard normal random variable.

EXAMPLE 4.4. Approximation by compound Poisson distributions
A famous problem of Kolmogorov on the uniform rate of approximation of
sums of i.i.d. r.v.’s w.r.t. the class of infinitely divisible distributions was
solved finally by Arak in 1981. While the optimal uniform approximation rate

w.r.t. the "usual” accompanying laws is of order n~ /3

., the optimal order is
n"2/3_ But the problem to construct the best approximations (in particular

compound Poisson approximations) is still unsolved.
Let X1.....Xn be independent, real values r.v.'s with df Fl, 1<ix<n, of
the form
(4.32) Fl=(1-p|)E°+p|V'. OSp'sL
where E_ is the one point df concentrated at zero and V. is any df on R'.

For the sum Sn = Z X the usual accompanying approximation by a compound

Poisson distributed random variable is given by the parameters
n n Pj
(4.33) u=i'=£1pl. V=i§17 Vv,
of the compound Poisson distributed random variable §n. For this choice,

which is very common in risk theory, one knows several bounds for the uni-

form and total variation metric, in particular:

~ n 2
(4.34) o(Sn.Sn) Sj_‘_z_‘.1 G
(4.35) p(S S )sc 123: P
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In the i.i.d. case FI=F, Yi
(4.36) p(S .S )sen V3
n n

(for relevant.references cf. [991]).

Motivated by risk theory a natural metric for this approximation problem is

in terms of the stop-loss distance of order s

_ £ (x-t)S _
(4.37) ds(X.Y)-sthlé = d(F (x) - F_(x))]

sl
=sup o7 [EXX-0F -E(Y- 03], sEN.

It turns out that d_ has good topological and metric properties (cf. [991)
allowing e.g. to derive a Berry-Esseen theorem for ds in the case of i.i.d.
r.v.'s. W.r.t. the problem of approximation by compound Poisson distributi-
ons a different choice of parameters than those in (4.33) leads to better
and more stable approximtion results. Let C‘ be r.v.'s with distributions Vi.
a, =EC, b, = EC;?. define:

= __Pib =P
(4.38) u, = m. u = o

and consider the choice of parameters of the compound Poisson distribution

n
$4:59) =0 Ve S F“lcl
Then we obtain that:
(4.40) ES =ES and Var S =Var §
n n n n

in contrast to the choice in (4.34) where Var (Sn) is smaller than Var (gn).
For the approximation which turns out to be very good in simulations, the

following bounds have been established in Rachev and Riischendorf [991].

THEOREM 4.10. For the choice of parameters as in (4.39) holds:
(4.41) d(s §)s—2 {Zpb ;
a) 3 15=n 0 i~ i=1p| ot

b) (4.42) d_(s .S )< ;E

If c,zo, then
~ n 2
c) (4.43) d1(Sn.Sn) < '51 P T,

where 1 =a +A v +max (Aayv,2av +1+vp)
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~ 1 .
d) (4.44) dz(Sn.Sn) 3 Py &
3 a’ .
P A i A= i
Ti'Ebi*zal*EA:a;+p|4bi'A| Py~ =t
(4.45) 9,05,;8 yet. 8 2.
* 1=0r"n W= ;=1pl i

In the proof of Theorem 4.10 we use some relations of the ds metrics

to other metrics and apply e.g. the following inequality:

4 s
(4.46) d,(X)Y) < = y’dz(/..Yf :

n

which is a consequence of a smoothing inequality for ds. Note that for the
usual choice of the parameters as in (4.33) one can not even assure the fi-
niteness of dz(Sn.gn). For the usual choice of the parameters a bound for

d1(Sn.§n) of a similar type as in (4.43) has been given before by Gerber
[42].

EXAMPLE 4.5. Approximation of dependent sequences of random variables.
One method of proving central limit theorems resp. invariance principles for
dependent sequences is to approximate these sequences in a first step by a
sequence with simpler structure as e.g. by an independent or a martingale
sequence (cf. Berkes and Philipp [9], Eberlein (311, [321, the book of Phi-
lipp and Stout (cf. [1081)). We shall consider two situations of this type.

In the first example we approximate a weakly dependent (p-mixing) se-
quence by an independent sequence. The notion of ¢-mixing dependence al-
lows to give a natural formulation of the approximation in terms of the total
variation distance (cf. (2.15)). If the weak dependence assumption is for-
mulated in other terms (as e.g. the “very weak Bernoulli-condition"), then
also different formulations of the approximation distance are more natural
(cf. [1081). In the second example we consider the approximation by a
martingale sequence. Since the martingale property is by definition in terms
of conditional expectations it seems natural to use the minimizing property
of expectations w.r.t. the L2-distance and to formulate an approximation

result in terms of the minimal' L®-distance. Some further general aspects
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of the approximation by dependent sequences as e.q. Markov-sequences are
discussed in [108]. A systematic investigation of the natural choice of

metrics in these problems is still missing.

4.1. Weakly Dependent Sequences
Let X = (X ) be a sequence of random variables with values in universally

measurable separable metric space (Sk.dk) satisfying a ¢-mixing condition

(4.47) IP(Xk EA,. (X1.....Xk_1) €B )5 P(Xk € Ak)P((X1.....Xk_1) € Bk)l

< @ PUX ,..X,_)EB,)

for A €8 .B €3 ® .. ®®, . n € N. The following result improves upon
a result in Berkes and Philipp [9].

THEOREM 4.11. [108]. There exist stochastic processes Y = (Yk).
Z = (Zk) with

a) XSY.

b) {Zk} independent, Zk 2Xk. k€N,

c) P(Zk#Yk)svk. VKkEN.

4.2. Martingale Approximation

Let X = (X,,....X ) be any sequence of real r.v.'s in L2(P) and let

A C‘l[2 C ... CA_C A be a sequence of oc-algebras such that X, is

uk-measurable. 1 < k < n. We consider the problem to find an optimal ap-

proximation of X by a martingale Y = (Yk.'llk) w.r.t. the L2-distance

1<k=n
(4.49) L =EIX-YI2 = £ E(X-Y)2.

This problem was solved by Riischendorf [1081].

THEOREM 4.12. The optimal approximation of X by a martingale (Yk,ﬂk)

is given by

= 3 L
(4.50) Y= X+ B E(X, A
Y o=—1 _[X. + T (E(X,|%)-EX.|% N]+Y
k n-k+1 k 2=k+1 2 k 2 k-1 k-1"

o
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5. The Structure of “ldeal” Metrics

In the previous sections we considered several examples of “natural"
("ideal”) metrics. Since almost any approximation problem has its own na-
tural metric, the classification problem for ideal metrics is a difficult task.
Zolotarev [122], [128] considered the “ideal” metrics for the basic sche-
mes in probability theory, summation and maxima of i.i.d. r.v.'s. ldeal me-
trics for noncommutative operation between random elements (as random

motions) are considered in [53], [97].

Further we present a simple classification of ideal metrics for summa-

tion and maxima of i.i.d. r.v.'s.

Let (U, Il ) be a separable Banach space with norm | I and Borel o-
algebra B =B(U) and let £ = E(U) be the set of all random variables on a
non-atomic probability space (Q,%A,Pr) with values in U. Then the set P =
P(U) of all distributions (Prx: X €ZX)} coincide with the set M, (U,B) of all
probability measures on (U,B). A function u: £ x £ » [(0,0] is called a
probability metric (p metric) (cf. (1221, p. 374, [91], [93]) if for XYZeZ®

1. Pr(X=Y)=1-u(X,Y) =0,
(5.1) 2. u(X,Y) = u(Y,X),

3. u(X,2) su(X,Y) +ulY,2).
u is called a simple metric if )(1g Xz. Y1g Y2 implies u(X1.X2)=u(Y1.Y2) and
compound otherwise. A simple metric induces a (usual semi-) metric

u: P (U) x P(U) > [0,0] and vice versa.

Considering the rate of convergence problem for the CLT Zolotarev
(121 introduced the notion of ideal metrics w.r.t. summation of i.i.d. r.v.'s.
A metric u is called a compound (r,+)-idel metric (ideal or order r > O w.r.t.
summation), if and only if for all X,Y,Z €%X.c € R', the following holds:
(5.2) Vo PIX#Z, Y% Z)< XY,

2. uleX,cY) =lc|" ulx,Y).

u is called a simple (r,+)-ideal metric if 1. is satisfied for any Z independent
of X and Y.
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A consequence of the (r,+)-ideality of u is the estimate:
n n n
(5.3) (I X E e Y < e lmuiX,Y)
for any < € R' and any r.v.'s (XJ). (Yj). If uis a simple (r,+)-ideal metric,
then (X1.....Xn} as well as (Y1.....Yn} are supposed to be independent r.v.'s.
In particular, if X‘. X2,... are i.i.d. r.v.'s and Y(a) has a strictly symmetric
stable distribution with parameter « € (0,2] and y is a simple (r,+)-ideal

metric of order r > «, then one gets from (5.3)
| e

-1/ & o
(5.4) uln 151 Xi,Y(a )<n u.(X1,Y(u )i

) )
which gives a precise estimate in the CLT under the only assumption that
u(X1,Y(u)) ¢ . (Under additional assumptions one can improve the order of

(5.4) using the minimal metric Bp. see (2.12), [98]).

In several Banach spaces (e.g. in Banach function spaces) one has a
natural maximum operation x v y. W.r.t. the operation v one defines simi-
larly the notion of compound and of simple (r,v)-ideal metrics assuming
condition 2. in (5.2) only for positive c. Especially, if u is a simple (r,v)-

ideal metric on R' and if Z(m is a a-max-stable r.v. on R' (i.e. FZ (x)

) ()

= exp {-x" %}, x 2 0), then

-L
"=

)<n u(x1.2(a))

(5.5) un™V® VX2

i=1 ()

for any i.i.d. r.v.'s X,: for example u=2p, r=min (1,p).

Further, we shall construct some ideal metrics for summation and for
maxima and discuss the problem formulated by Zolotarev [1271, p. 300 to
construct metrics which are ideal w.r.t. both operatons simultaneously. As
is immediately clear from (5.3) - (5.5) one gets as a consequence, rate of
convergence results in the CLT for sums and maxima of i.i.d. r.v.'s. It will
be interesting to compare the new results with clasicial results in terms of
e.g. the Prohorov distance and also w.r.t. the assumptions in these theo-
rems. We will point out the importance of the Lp-metrics (see (2.8)) in
these kinds of problems and especially obtain an improvement of Zolotarev's

classical estimate of the rate of convergence w.r.t. the Prohorov distance

=3 —



for 1 < « ¢ 2. We will show that Zolotarev's problem has essentially a ne-

~

gative answer. However, in the range O < a < 2, the minimal metrics Zp = Lp
(in spite of being only ideal of order min (1,p)) behave like "doubly ideal"
metrics of order r = 1 + a - a/p 2 1 for 0 ¢ a < p £ 2. For the detailed

proofs, see Rachev and Riischendorf [98].

5.1. Ideal Metrics and Rate of Convergence for Summation

Recall the definition of Lp-metrics and their minimal metrics 2p=tp. see
(2.18), (2.19). For X,YEX(U) =%

(5.6) L (X.Y) = (ElIX - Y|P)™IN17R) 0 p¢ o,

L_(X.Y) =ess sup [IX-YI|,

na

(5.7) zp(x.v)=inf<Lp(>?.\7); XEx, ¥2v), Ocpson.

Note that Zp(X.Y) ¢ @ (0 < p £ does not imply the finiteness of p-th
moments of [IXl and [IYl; for example on R' a sufficient condition for
£, (XY) ¢ (12p ¢o)is x (X.Y): = [IxIPT'IF_(x) - F_(x)]dx < @. The ad-
vantage of exploring the difference moment condition xp(X,Y) < @ in Berry-
Esseen type estimates was demonstrated by Hall [46]. Since Lp is a
compound (r,+)-ideal metric with r = min (p,1), zp is a simple (r,+)-ideal
metric [122], [91]. Therefore, from (5.4) one obtains for i.i.d. r.v.'s, (X}

and for Y(a). the a-stable r.v., the estimate:

i o)
(5.8) e (VY E XY ds<n %2 (X.Y ).
P i=1 | () P-4 (e¢)

which is useful only for Oca¢p<1.

In the following remark we will discuss the results obtained by means
of Zolotarev's ideal metric Cr. (Recall that C2 for U = R was defined by
(4.2).)

REMARK 5.1.
a) It is easy to see that there is no nontrivial compound (r,+)-ideal metric

#, when r> 1. Since the compound (r,+) ideality would imply u(X,Y) =

(XX YY) o 1T UXLY), VEN, e, w(X.Y)E (0.0} for all

n n

X,Y € £(U), see the discussion in [54].
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b)  Zolotarev [121] - [127] found a simple (r,+)-ideal metric of any order

r>1, namely: If r=m+a, O<ca21, meEN, then:

(5.9) g_(X.Y) = sup {IECF(X) - FOD L 1™ (00 - £ ™ (g)] < Ix -y,

£ denoting the Fréchet-derivative of order m, see (4.2) for r=2,

U=R, Il lI=11.

We next show that the minimal metric Zp. in spite of being only a simple
(rp.+)—ideal metric, Ty = min (1,p), it acts as an ideal (r,+) metric of order
r=1l+a-a/pfor0<«as<p=x?2 We formulate this result for Banach spaces
U of type p (cf. [521, [1201]).

THEOREM 5.1. If U is of type p, 1<p<2 and O<a<p<2, then for any
idd. rvss X, X € E(U) with E(X'—Y(a))=0 and for the strictly symmetric

stable r.v. Y(a the following holds:

)

)

(5100 2 (n~"/* £ X,Y, )sBYPal/PVay (x v .
p i=1 1" () P p 1" ()

where B1=1 and B'_J=18p3’2/(p-1)1/2 for 1<p=<2.

From Strassen-Dudley's representation of the Prohorov distance (see
Section 2) one obtains the relation nP*' < (Zp)p. m: = n,. The last inequali-

ty implies the following corollary.

COROLLARY 5.1. Under the assumptions of Theorem 5.1, for 1 < p < 2,
0O ¢a<p <2 we have

1 1 B, P

- n =T ol = =
(5.11) wn™ VT X,Y,  <BPTTaPTT T @ p (x .y PHT
=11 P AT Cee)

(a)

Theorem 5.1 and Corollary 5.1 are another example of the two stage
approach to an approximation problem described in the previous section. We
first solve the approximation problem in terms of the "natural® metric 2
(see (5.10)) and then if we want to see the result in terms of the "classic"
metric ® we construct inequalities. Similarly one can use Cr instead of 2
and then compare Cr with m, [121]1, [8]1, but the results cited above im-

prove those in [121] and [8], see also [98].

Open Problem 5.1. Find "ideal metrics” for rate of cnvergence of "sto-
chastic convolutions”, see [10], [43], [63], (641, [116], [117], (791, [62],
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(118]. Clearly, such ideal metrics will supply the right order estimates in

the CLT for “"stochastic” convolutions.

5.2. Ideal Metrics and Rate of Convergence for Maxima

For the maxima of r.v.'s several simple (r,v)-ideal metrics are known for
any r > O, implying by (5.5) the rate of convergence of order 1 - r/a (cf. [129],
(781, [231]). In the following example we construct for any r > 0 a compound
(r,v)-ideal metric. This shows an essential difference between summation

and maxima of r.v.'s.

EXAMPLE 5.1. (A compound (r,v)-ideal metric)
For U=R’ and any O<p<w define for X.YE E£(R")

([ P rp-1,4.19q
(5.12) A, X =T 98 LIxI™ )

and

- r
Ar'm(X.Y) = 5231 [x] ‘Px,Y(") ;

where q = min (1, —;— ) and Py Y(x) =Pr(X £x<Y)+Pr(Y < x ¢ X). One can
easily check that A_ 5 is a compound (r min (p,1),v)-ideal metric for 0 < p < w,
0 < r ¢ o. The corresponding minimal metric X'_ 5 (see (2.13)) is a simple

(r min (p,1),v)-ideal metric which one can check by the representation

N =( [ [y|rP-1 - P 4y)Q
(5.13) Ar'p(X.Y)-—(_L | x| |Fx(x) FY(X)I dx)", 0<¢p<¢ w,

B>

- r _
m(X.Y)-EgR | x| lFx(x) FY(x)I

r.

(cf. [83], [86]).

From (5.5) one obtains for a simple (r,v)-ideal metric u that u(xrz(“)) <@

. . “1/o 1-r/
implies u(n™ "% N XiiZyy) €0 r “u(X1.Z(a ¥s

) )

~

For u.=Ar_ & it was shown by Omey and Rachev [78] that also the con-

verse relation is correct, i.e. the rate in (5.5) is of right order.

We next want to investigate the properties of the Lp-metrics (cf. 5.6)
w.r.t. maxima. We consider for O < A € o the Banach space U = Ax e
(x: (E.€) x (0.A) > (R.B; lixll, , < )} where (E.€.u) is a measurable

space and



*
il {(le(t)l)‘ de®)”>  for 0¢A ¢
x -
AL ess sup |[x(t)] for A=

with A* = max (X,1) and define for x,y € U, x vy to be the pointwise maximum,
x vy(t) =x(t) vy(t), t € E. For related limit results for a-max stable processes
see [23]). In the case A =, A u 'S not separable but since the ess sup [X(t)]

is measurable this does not cause difficulties.

The estimate (5.8) is interesting for p<1 only; for 1<ps<X < one can

improve it as follows:

THEOREM 5.2. [98] Let 1<p<A <, then for X1.....Xnef(/\)‘ u) i.i.d.
holds

(5.14) e (n"V® VU X,Z )P Ve (x 7
p i=1 1" (a p 1 (o

) )
Comparing (5.14) with (5.8) we see that actually zp “acts” in this important

case as a simple (e« + 1 - a/p, v)-ideal metric.

QOpen Problem 5.2. Smith [113], Cohen [15], Resnick [102], and Balkema
and de Haan [2] consider the univariate case (X.X1.X2.... € X(R)) of gene-

ral normalized maxima

pla, Y, X, b, ¥) £ eX, N)By (M), n=1.2.....8, (n)0.
In order to extend these type results to the multivariate case (X,X1.X2.... €
X(Ax.u)) using the theory of probability metrics, one needs to generalize
(5.5) by determining metrics Uq and Eo in X(Ak.u) such that for any

X1.X2.Y € f(Ax.u) and c > 0
uo(c(X1vY),c(X2vY)) < ¢(C)E°(X1,X2).

where ®:[0,®)- [0,®) is a suitably chosen strictly increasing continuous
function, ®(0) =0.

5.3. Doubly Ideal Metrics

We now investigate the question of the existence and construction of doubly
ideal metrics posed by Zolotarev [127]. As we have shown in Section 5.1
and 5.2, Zp are ideal metrics of order min (1,p) < 1 for both operations si-

multaneously. Let U be a Banach space with maximum operation v.
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(Doubly ideal metrics). A probability metric g on X(U) is called
a) (r,l)-ideal, if u is compound (r.+)-ideal and compound (r,v)-ideal;
b) (r,Il)-ideal, if 4 is compound (r,v)-ideal and simple (r,+)-ideal;
c) (r,ll)-ideal, if y is simple (r,v)-ideal and simple (r,+)-ideal.

Lp. O <p < o, is an example of a (min (1,p),l)-ideal metric. we have
seen in Section 5.1 that there does not exist a (r,|)-ideal metric for r » 1.
Zp is a (r,lll)-ideal metric of order r = min (1,p). We now show that Zolota-

rev's question on the existence of a (r,ll) or a (r,lll)-ideal metric has es-

sentially a negative answer.
THEOREM 5.3. (98] Let r > 1 and let ¢ be a (r,lll)-ideal metric in
P(R') and assume that y satisfies the following regularity conditions:

Gl lIf Xn (resp. Yn) converges weakly to a constant a (resp. b), then

Tim w(X_,Y ) 2u(a,b);

n= o

C2. ula,b)=0ea=b.
Then for any integrable X,Y € Z(R) holds: u(X,Y) € {0,}. o

REMARK 5.2. Condition C 1 seems to be quite natural. Let e.g. F be a
class of non-negative lower semicontinuous functions on RZ and ¢: [0,c0) -
[0,o) be continuous, nondecreasing. Define the minimal metric

w(X.Y) =inf (o ( sup Ef(X.Y; X2x, Yv).
fe

Then u is lower semicontinuous on Z(R') x £(R"), i.e. (Xn.Yn)—i"-» (X,Y)),
implies ILn_wu(Xn.Yn)zu(X.Y); so especially C1 is fulfilled.

Nevertheless we shall show next that for O <« « < 2 the metrics ﬂp for

1¢<ps2"act” as (r,ll)-ideal metrics in the rate of convergence problem for
£ (Z ,27)-0,
P n n
where

Z =n_1/u
n k

n<>s

«_ -1/ ) o _. e _ D e
1Sk'zn'" kYq Sy and Sk_1§1 X Sk_|§'1 X
are sums of i.i.d. r.v.'s. The order of ideality is r=2a+1-a/p>2a and,

. =
therefore, we obtain a rate of convergence n® /%,
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We consider the case that X} {Xr} are i.i.d. r.v.'s in (U, ]l D= (Zp.ll ||p).

s n
where for x ={xY}e Bp. I|x||p=(_2'.1 IxPP)1/P  Eor X,y € Zp we define xvy=
. . j=
x(j)vy(j))

THEOREM 5.4. [98] Let O<a<ps<2, 1<p<2 and E(X,-X7)=0, then
under the conditions formulated above holds
i I
2 (Z Z%)< ERYVPRVR (P Ry iy ey
P N n p-1 P p 11

In particular for the Prohorov metric ® we have

! - 1lo-8) B
n(Z ,Z%) < (B )P*1 BP*! qP*1 10 X7 pp+T (x x*).
n'n p-1 o} p ) (e

Theorem 5.4 has some interesting consequences for the approximation
of queuing systems (cf. [98]).
As we have seen there is no selection rule that choses the “natural” (“ideal",
“appropriate”) metric. The only way to find out what will be the “"natural”
metric for the given approximation problem is to know more about the

properties of metrics and here the following basic research directions arise:

Description of the basic structure of metrics (semimetrics, uniformities)

in the space of probability measures and random variables.

Analysis of the topologies in the space of probability measures, generated
by different types of p-metrics. This analysis can be carried out with the

help of compactness criteria for different metrics.

Characterization of p-metrics which are "natural" ("suitable”, "ideal")

w.r.t. the given approximation problem.

IV. Investigation of the main relationships between different types of metrics
(semimetrics, uniformities, topologies) in the space of probability measrues
and random variables.

V. Solution of the Kantorovich- resp. Fréchet-type optimization problems aris-

ing in the construction of minimal metrics or in transportation problems.
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