The Blackwell Prediction for 0 – 1 Sequences and a Generalization

Hans Rudolf Lerche

Department of Mathematical Stochastics University of Freiburg

> DAG Stat 2013, Freiburg March 19, 2013

> > ©Lerche, Uni. Freiburg, 1 ◀ 🗗 প � ↔

Classical Blackwell Prediction

Prediction for $d \ge 3$

Classical Blackwell Prediction

Let $x_1, x_2, x_3, ...$ be a infinite 0-1 sequence, not necessarily stationary or even random.

We wish to sequentially predict the sequence:

Guess x_{n+1} , knowing x_1, x_2, \ldots, x_n .

Of interest are algorithms which predict well for **all** 0-1 sequences.

One of them is the Blackwell algorithm.

Classical Blackwell Prediction Prediction

for $d \ge 3$

A prediction sequence $y_1, y_2, y_3, ...$ is a random 0-1 sequence with y_{n+1} being the predicted value of x_{n+1} .

Some further notation:

$$\overline{x}_n = \frac{1}{n} \sum_{i=1}^n x_i, \quad \text{the relative frequency of "1" in} \\ \text{the sequence } x_1, x_2, x_3, \dots, x_n,$$

 $\gamma_i = \mathbb{1}_{\{y_i = x_i\}},$ the success indicator for the *i*-th outcome,

 $\overline{\gamma}_n = \frac{1}{n} \sum_{i=1}^n \gamma_i$, the relative frequency of correct prediction up to *n*.

©Lerche, Uni. Freiburg, 2 ▲ 🗗 ▶ 🔈 ର 👁

Classical Blackwell Prediction Prediction for $d \ge 3$

A plausible deterministic prediction scheme:

$$y_{n+1}^{det} = \begin{cases} 1 & \text{if } \overline{x}_n > \frac{1}{2} \\ 0 & \text{if } \overline{x}_n \le \frac{1}{2} \end{cases} \quad \text{for } n \ge 1,$$
$$y_1^{det} = 1.$$

Its strength: Let $0 \le p \le 1$.

If x_1, x_2, x_3, \ldots are independent Bernoulli (p), then for $(y_n^{det}; n \ge 1)$

$$\overline{\gamma}_n \to \max(p, 1-p) \quad \text{for } n \to \infty$$

by the law of large numbers. Bernoulli (1713).

Its Weakness: For 1, 0, 1, 0, 1, 0, ... $\bar{\gamma}_n = \frac{1}{n}$ for all $n \ge 1$.

Classical Blackwell Prediction Prediction for $d \ge 3$

©Lerche, Uni. Freiburg, 3 ◄ 🗗 ► 🔈 ۹. 🗠

Classical Blackwell Prediction Prediction for $d \ge 3$

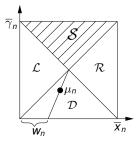
Question: Does there exist a prediction procedure with

 $\overline{\gamma}_n
ightarrow \max(p, 1-p)$ as $n
ightarrow \infty$

for all infinite 0 - 1 sequence ?

©Lerche, Uni. Freiburg, 4 ଏ 🗗 ୬ ଏ େ

Blackwell algorithm: Let $\mu_n = (\overline{x}_n, \overline{\gamma}_n) \in [0, 1]^2$ and $\mathcal{S} = \{(x, y) \in [0, 1]^2 \mid y \ge \max(x, 1 - x)\}.$



Classical Blackwell Prediction for $d \ge 3$ References

 y_{n+1} is chosen on the basis of μ_n according to the conditional probabilities

$$y_{n+1} = \begin{cases} 0 & \text{if } \mu_n \in \mathcal{L} \\ 1 & \text{if } \mu_n \in \mathcal{R} \\ 1 & \text{with probability } w_n \text{ if } \mu_n \in \mathcal{D} \end{cases}$$

When μ_n is in the interior of S, y_{n+1} can be chosen arbitrarily. Let $y_1 = 1$.

d denotes the Euclidean distance in \mathbb{R}^2 and d(x, A) the distance from point *x* to the set *A*.

Theorem 1

For the Blackwell-algorithm applied to any infinite 0-1 sequence x_1, x_2, x_3, \ldots the sequence $(\mu_n; n \ge 1)$ converges almost surely to S, i.e. $d(\mu_n, S) \to 0$ almost surely as $n \to \infty$.

Classical Blackwell Prediction

Prediction for $d \ge 3$

References

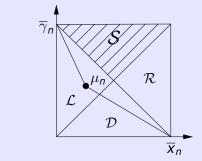
Remark

The theorem has minimax character. For every 0-1 sequence the Blackwell-algorithm is at least as successful as for *iid* Bernoulli-variables. But for those it does the best possible.

Proof

Let $d_n = d(\mu_n, S)$.

Case 1: $\mu_n \in \mathcal{L}$



Classical Blackwell Prediction Prediction for $d \ge 3$

References

Then $d_{n+1} = \frac{n}{n+1} d_n$.

Case 2: $\mu_n \in \mathcal{R}$ Then $d_{n+1} = \frac{n}{n+1}d_n$.

©Lerche, Uni. Freiburg, 7 ◀ 🗗 ▸ 🕫 ९ 🖓

Case 3: $\mu_n \in \mathcal{D}$ We have $\mu_{n+1} = \frac{n}{n+1}\mu_n + \frac{1}{n+1}(x_{n+1}, \gamma_{n+1})$ and $P(\gamma_{n+1} = 1 \mid x_{n+1} \text{ and past until } n) = \begin{cases} 1 - w_n & \text{if } x_{n+1} = 0 \\ w_n & \text{if } x_{n+1} = 1. \end{cases}$ $\overline{\gamma}_n$ \mathcal{S} line T 1 – *w*_n

 μ_n

 $1 - W_n$

 $\frac{W_n}{\overline{X}_n}$

Classical Blackwell Prediction Prediction for $d \ge 3$

The conditional expectation of μ_{n+1} is closer to T than μ_n .

Wn

©Lerche, Uni. Freiburg, 8 ◀ 🗗 প � 🖓

It holds (*)
$$E\left(d_{n+1}^2 \mid \text{past}(n)\right) \leq \left(\frac{n}{n+1}\right)^2 d_n^2 + \frac{1}{2(n+1)^2}$$
 for $\mu_n \in \mathcal{D}$
with $d_n = d(\mu_n, S)$.

Classical Blackwell Prediction

Prediction for $d \ge 3$

References

©Lerche, Uni. Freiburg, 9 ◀ 🗗 ▸ প ৭. 🕫

It holds (*)
$$E\left(d_{n+1}^{2} \mid \text{past}(n)\right) \leq \left(\frac{n}{n+1}\right)^{2} d_{n}^{2} + \frac{1}{2(n+1)^{2}}$$
 for $\mu_{n} \in \mathcal{D}$
with $d_{n} = d(\mu_{n}, S)$.
We have $\mu_{n+1} = \frac{n}{n+1}\mu_{n} + \frac{1}{n+1}(x_{n+1}, \gamma_{n+1})$.
 $d_{n+1}^{2} = d(\mu_{n+1}, S) \leq \left\|\mu_{n+1} - \left(\frac{1}{2}, \frac{1}{2}\right)\right\|^{2}$
 $= \left\|\frac{n}{n+1}\left(\mu_{n} - \left(\frac{1}{2}, \frac{1}{2}\right)\right) + \frac{1}{n+1}\left[(x_{n+1}, \gamma_{n+1}) - \left(\frac{1}{2}, \frac{1}{2}\right)\right]\right\|^{2}$
 $= \left(\frac{n}{n+1}\right)^{2} d_{n}^{2} + \frac{1}{2(n+1)^{2}} + \frac{2n}{(n+1)^{2}}\left\langle\mu_{n} - \left(\frac{1}{2}, \frac{1}{2}\right), (x_{n+1}, \gamma_{n+1}) - \left(\frac{1}{2}, \frac{1}{2}\right)\right\rangle$

Classical Blackwell Prediction for $d \ge 3$ References

©Lerche, Uni. Freiburg, 9 ◀ 🗗 ▸ প ৭. 🕫

It holds (*)
$$E\left(d_{n+1}^{2} \mid \text{past}(n)\right) \leq \left(\frac{n}{n+1}\right)^{2} d_{n}^{2} + \frac{1}{2(n+1)^{2}}$$
 for $\mu_{n} \in \mathcal{D}$
with $d_{n} = d(\mu_{n}, S)$.
We have $\mu_{n+1} = \frac{n}{n+1}\mu_{n} + \frac{1}{n+1}(x_{n+1}, \gamma_{n+1})$.
 $d_{n+1}^{2} = d(\mu_{n+1}, S) \leq \left\|\mu_{n+1} - \left(\frac{1}{2}, \frac{1}{2}\right)\right\|^{2}$
 $= \left\|\frac{n}{n+1}\left(\mu_{n} - \left(\frac{1}{2}, \frac{1}{2}\right)\right) + \frac{1}{n+1}\left[(x_{n+1}, \gamma_{n+1}) - \left(\frac{1}{2}, \frac{1}{2}\right)\right]\right\|^{2}$
 $= \left(\frac{n}{n+1}\right)^{2} d_{n}^{2} + \frac{1}{2(n+1)^{2}} + \frac{2n}{(n+1)^{2}}\left\langle\mu_{n} - \left(\frac{1}{2}, \frac{1}{2}\right), (x_{n+1}, \gamma_{n+1}) - \left(\frac{1}{2}, \frac{1}{2}\right)\right\rangle$

Taking conditional expectation $E(. | x_{n+1}, past(n))$ the bracket-term vanishes because of the orthogonality of T and $\mu_n - (\frac{1}{2}, \frac{1}{2})$ and we get (*). But (*) holds also for \mathcal{L} , \mathcal{R} and \mathcal{S} .

Thus $(d_n^2; n \ge 1)$ is a nonnegative almost supermartingale with $E(d_n^2) \le \frac{1}{2n}$. Then $Z_n = d_n^2 + \sum_{i\ge n} \frac{1}{2(i+1)^2}$ is a positive supermartingale with $EZ_n \to 0$. The convergence theorem for supermartingales implies Theorem 1.

©Lerche, Uni. Freiburg, 9 ▲ 🗗 ▶ 🕫 ९ ९

Classical Blackwell Prediction

Riedel's Result on nonequal Weights

Let $(g_n, n \ge 1)$ be a sequence of positive numbers and let $G_n = \sum_{i=1}^n g_i$.

Let
$$\widetilde{x}_n = \frac{1}{G_n} \sum_{i=1}^n g_i x_i$$
 and γ_n as above. Let $\mu_n = (\widetilde{x}_n, \gamma_n)$.

Theorem 2

Assume (i)
$$\sum_{n \ge 1} \left(\frac{g_n}{G_n} \right)^2 < \infty$$
 and (ii) $\sum_{n \ge 1} \left(\frac{g_n}{G_n} \right) = \infty$

Then $d(\mu_n, S) \to 0$ almost surely as $n \to \infty$.

Examples: 1) $g_n = n^{\gamma}$ for some $\gamma > 0$. Then $\frac{g_n}{G_n} = O\left(\frac{1}{n}\right)$. 2) $g_n = e^{\lambda n^{\alpha}}$ for some $\lambda > 0$. Then $\frac{g_n}{G_n} = O\left(n^{\alpha-1}\right)$. Thus: convergence for $0 < \alpha < \frac{1}{2}$.

3) $g_n = e^{\lambda n}$. No convergence !

©Lerche, Uni. Freiburg, 10 ◀ @ ▶ ∽ ९ ९

Classical Blackwell Prediction

Prediction or $d \ge 3$

Sequential prediction of $d \ge 3$ categories

Let x_1, x_2, x_3, \dots be a infinite sequence with outcomes in $D = \{0, 1, \dots, d-1\}.$ Let $\overline{x}_n^{(j)}$ denote the relative frequency of the *j*-th outcome up to *n* and $\overline{x}_n = \left(\overline{x}_n^{(0)}, \overline{x}_n^{(1)}, \overline{x}_n^{(2)}, \dots, \overline{x}_n^{(d-1)}\right).$

Let $y_1, y_2, y_3, ...$ be a sequence of predictors with values in *D* and γ_n the relative frequency of correct predictions.

Question: Is there an algorithm such that

$$\overline{\gamma}_n - \max\left(\overline{x}^{(0)}, \overline{x}^{(1)}, \overline{x}^{(2)}, \dots, \overline{x}^{(d-1)}\right) \to 0$$

for every sequence x_1, x_2, x_3, \ldots with values in *D*?

Classical Blackwell Prediction

Prediction for $d \ge 3$

Open Problem: Let Σ_{d-1} denote the unit simplex in \mathbb{R}^d , let

$$W_d = \Sigma_{d-1} \times [0, 1]$$

and

$$\mathscr{S} = \left\{ (\boldsymbol{q}, \gamma) \in \mathcal{W}_d \mid \gamma \geq \max\left(\boldsymbol{q}^{(0)}, \boldsymbol{q}^{(1)}, \boldsymbol{q}^{(2)}, \dots, \boldsymbol{q}^{(d-1)} \right)
ight\}.$$

Does there exist a generalized Blackwell algorithm such that for every sequence $x_1, x_2, x_3, ...$ with values in $D = \{0, 1, ..., d - 1\}$, it holds

$$(\overline{x}_n, \overline{\gamma}_n) \to \mathscr{S}$$
?

Problem: The argument of Theorem 1 does not carry over directly since there are no right angles in \mathcal{S} . See d = 3.

Exercise: By which factor has one have to stretch the [0, 1]-axis, to get right angles of the cutting planes in the stretched prism?

Classical Blackwell Predictior

Prediction for $d \ge 3$

References

©Lerche, Uni. Freiburg, 12 ◀ 🗗 ▸ 🕫 ९ 🕾

Back to the case with two outcomes:

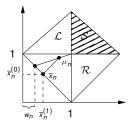
A transformation of the prediction square



Classical Blackwell Prediction

Prediction for $d \ge 3$

References



$$\mu_n = \left(\overline{x}_n^{(0)}, \overline{x}_n^{(1)}\right) + \overline{\gamma}_n(1, 1)$$

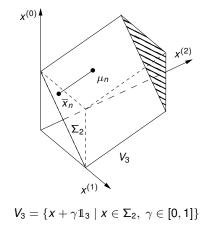
A basis for generalisations to more than two categories.

©Lerche, Uni. Freiburg, 13 ▲ 🗗 ▶ 🔈 ۹. 🗠

Prediction for d = 3

A natural generalization:

Instead $(\overline{x_n}, \overline{\gamma}_n)$ we use $\mu_n = \overline{x}_n + \overline{\gamma}_n \mathbb{1}_3$ with $\mathbb{1}_3 = (1, 1, 1)$.



Classical Blackwell Prediction

Prediction for $d \ge 3$

References

©Lerche, Uni. Freiburg, 14 ◀ 🗗 প � ൞

The geometric structure of V_3

We cut V_3 from each of its upper vertices down to the two lower vertices. This yields 8 pieces of 4 different types. S is the piece on the top.

Prediction

The cutting planes have $s = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$ as joint point and are perpendicular to each other.

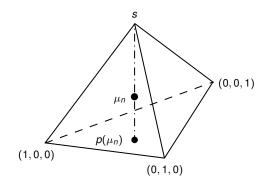
©Lerche, Uni. Freiburg, 15 ଏ 🗗 ► ୬ ର େ

How does the algorithm randomize in the different pieces?

Geometrical interpretation of the randomisation probability

 $p(\mu_n) := (p^{(0)}(\mu_n), p^{(1)}(\mu_n), p^{(2)}(\mu_n))$ as follows:

Type 1: $\mu_n \in$

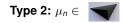


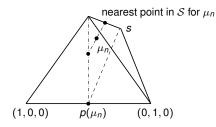
Classical Blackwell Prediction

Prediction for $d \ge 3$

References

©Lerche, Uni. Freiburg, 16 ◀ 🗗 ∽ ۹. 🗠



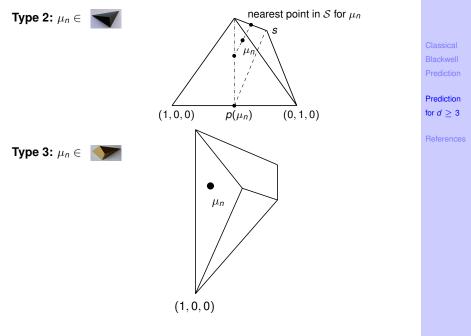


Classical Blackwell Prediction

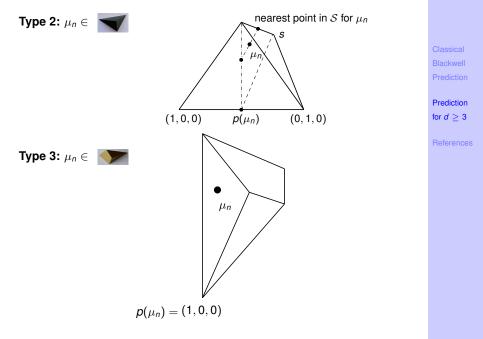
Prediction for $d \ge 3$

References

©Lerche, Uni. Freiburg, 17 ◀ 🗗 ▸ 🔈 ୠ 📀



©Lerche, Uni. Freiburg, 17 ▲ 🗗 ▶ 🔈 ۹. 🗠



©Lerche, Uni. Freiburg, 17 ▲ 🗗 ▶ 🔈 ۹. 🗠

The Result for d = 3

$$\Sigma_2 = \left\{ \left(q^{(0)}, q^{(1)}, q^{(2)}\right) \ \Big| \ q^{(i)} \ge 0, \ \sum_{i=0}^2 q^{(i)} = 1 \right\}$$

 $V_3 \, = \, \Sigma_2 + [0,1] \cdot \mathbb{1}_3 \, , \qquad \mathbb{1}_3 = (1,1,1)$

$$S_3 = \left\{ x + \gamma \mathbb{1}_3 \in V_3 \ \middle| \ \gamma \ge \max\left\{ x^{(0)}, x^{(1)}, x^{(2)} \right\} \right\}$$
$$\mu_n = \overline{x}_n + \overline{\gamma}_n \mathbb{1}_3.$$

Blackwell Prediction

Prediction for $d \ge 3$

References

Theorem 3

Let d = 3. For the generalized Blackwell algorithm it holds:

For every sequence x_1, x_2, x_3, \ldots with values in $\{0, 1, 2\}$

 $d(\mu_n, S_3) \to 0$ almost surely as $n \to \infty$.

©Lerche, Uni. Freiburg, 18 ◀ 🗗 প ৭. ি

The Result for $d \ge 3$

Let
$$\Sigma_{d-1} = \left\{ \left(q^{(0)}, \dots, q^{(d-1)} \right) \ \middle| \ q^{(i)} \ge 0, \ \sum_{i=0}^{d-1} q^{(i)} = 1 \right\}$$

$$V_d = \Sigma_{d-1} + [0, 1] \cdot \mathbb{1}_d, \qquad \mathbb{1}_d = (1, \dots, 1)$$

$$\mathcal{S}_{d} = \left\{ x + \gamma \mathbb{1}_{d} \in V_{d} \mid \gamma \geq \max \left\{ x^{(0)}, \dots, x^{(d-1)} \right\} \right\}$$
$$\mu_{n} = \overline{x}_{n} + \overline{\gamma}_{n} \mathbb{1}_{d}.$$

Theorem 4

Let $d \ge 3$. There exists a generalized Blackwell algorithm such that for every sequence $x_1, x_2, x_3, ...$ with values in $D = \{0, 1, 2, ..., d - 1\}$, it holds that

$$d(\mu_n, S_d) \to 0$$
 almost surely as $n \to \infty$.

©Lerche, Uni. Freiburg, 19 ◀ 🗗 ▸ ∽ ལ ↔

Classical Blackwell Predictior

Prediction for $d \ge 3$

How to randomize?

Let e_i , i = 0, ..., d - 1 denote the standard unit vectors and $\mathbb{1}_d = (1, ..., 1)$. Let E_i denote the affine spaces

$$E_i = A(e_0, \ldots, e_{i-1}, e_i + \mathbb{1}_d, e_{i+1}, \ldots, e_{d-1}), i = 0, 1, \ldots, d-1.$$

They have $n_i = \frac{2}{d} \mathbb{1}_d - e_i$, i = 0, 1, ..., d-1 as normal vectors and intersect all in $s = (\frac{2}{d}, ..., \frac{2}{d})$.

The E_i are pairwise perpendicular to each other and devide V_d in 2^d pieces. μ_n lies in one of these pieces.

Then we have

$$\mathcal{S}_d = \{ z_\gamma = x + \gamma \mathbb{1}_d \in V_d \mid \langle z_\gamma - n_i, n_i \rangle \ge 0, \ \forall i \in D \}$$

with $D = \{0, 1, 2, \dots, d-1\}.$

Classical Blackwell Prediction

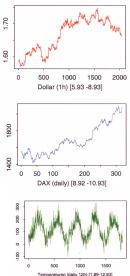
Prediction for $d \ge 3$

The definition of $p(\mu_n) \in \Sigma_{d-1}$

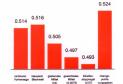
(a) Let
$$\mu_n \notin S_d$$
. Let $\{i_0, \ldots, i_j\}$ be a subset of $\{1, \ldots, n\}$ such that:
 $\langle \mu_n - n_l, n_l \rangle < 0$ for $l = i_0, \ldots, i_j$ with some $0 < j \le d - 1$ and
 $\langle \mu_n - n_l, n_l \rangle \ge 0$ for all other l .
Let $A_1 = A\left(\frac{2}{d}\mathbb{1}_d, \mu_n, e_{i_{j+1}}, \ldots, e_{i_{d-1}}\right)$ and $A_2 = A(e_{i_0}, e_{i_1}, \ldots, e_{i_j})$.
Let $A_1 \cap A_2 = \{p_0\}$. We put $p(\mu_n) = p_0$.
(b) If $\mu_n \in \partial S_d$, let $\nu = \#\{i \in D \mid \mu_n \in E_i\}$.
Then put $p^{(i)}(\mu_n) := \begin{cases} \frac{1}{\nu} & \text{if } \mu_n \in E_i \\ 0 & \text{if } \mu_n \notin E_i \end{cases}$ for $i = 0, \ldots, d - 1$.
(c) If $\mu_n \in S_d \setminus \partial S_d$, then put $p^{(i)}(\mu_n) = \frac{1}{d}$ for $i = 0, \ldots, d - 1$.

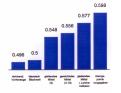
©Lerche, Uni. Freiburg, 21 ୍ୟ 🗗 ৮ ୬ ର େ

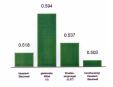
What is harder to predict the US-Dollar, the DAX, or the weather?



Temperaturen (daily,12h) [1.89-12.93 in DeziGradCelsius







Classical Blackwell Prediction

Prediction for $d \ge 3$

©Lerche, Uni. Freiburg, 22 ◀ 🗗 ▸ 🔈 ལ (~

The Puzzle to the Prism

We cut V_3 not only from one vertex of above to two below, but also vice versa.

- How many pieces show up?
- How looks the central piece?

Classical Blackwell Prediction

Prediction for $d \ge 3$

References

©Lerche, Uni. Freiburg, 23 ▲ 🗗 ▶ ∽ ۹ 🗠

References

- Blackwell, D. (1956): An Analog of the Minimax Theorem for Vector Payoffs. Pacific Journal of Mathematics, 6, 1–8.
- Cover, T. M.(1991): Universal Portfolios. Mathematical Finance, 1, 1–29.
- Lerche, H. R., Sakar, J. (1994): The Blackwell Prediction Algorithm for infinite 0-1 sequences and a generalization. In *Statistical Decision Theory and Related Topies V*, Ed.: S.S. Gupta, J.O. Berger, Springer Verlag, 503–511.
- Lerche, H. R. (2012): Blackwell Prediction of Categorical Data. Game Theory and Applications, 15, 139–151 (arXiv:1102.2729).
- Riedel, F. (2008): Blackwell's Theorem with Weighted Averages. Preprint.
- Sandvoss, R. (1994): Blackwell Vorhersageverfahren zur Komplexität von Finanzdaten. Diplomarbeit Universität Freiburg.

Classical Blackwell Prediction

Prediction for $d \ge 3$

Thank you

for your attention !

