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Abstract. We develop a joint model for the S&P500 and the VIX indices with
the aim of extracting forward looking information on the correlation between

the two markets. We achieve this by building the model on time changed Lévy

processes, deriving closed analytical expressions for relevant quantities directly
from the joint characteristic function, and exploiting the market quotes of

options on both indices. We perform a piecewise joint calibration to the option

prices to ensure the highest level of precision within the limits of the availability
of quotes in the dataset and their liquidity. Using the calibrated parameters,

we are able to quantify the leverage effect along the term structure of the VIX

options and corresponding VIX futures. We illustrate the model using market
data on S&P500 options and both futures and options on the VIX.

1. Introduction. Recent years have witnessed the fast development of the market
for products related to the VIX index, as they are widely used in risk management
strategies and as building blocks for other traded instruments (see [30] for example).
These products are also advocated for the construction of optimally structured port-
folios issued by institutional investors (see [8] and references therein). A common
key ingredient across these applications is the correlation between the S&P and the
VIX markets, the quantification of which requires a consistent and tractable model
for both indices.

Thus, in this paper we develop a joint model for the S&P500 and the VIX indices
with the aim of extracting forward looking information on the term structure of the
correlations between the two markets by calibrating to the prices of liquidly traded
derivatives such as S&P500 and VIX options, as well as VIX futures. We achieve
this by using time changed Lévy processes in the spirit of [12, 13, 24] and [7], which
allows to derive closed analytical expressions for the relevant quantities directly
from the joint characteristic function. The latter is available thanks to the affine
property of the construction. Indeed, the class of affine processes has been restated
in terms of time changed Lévy processes by [26]. Thus, we base derivatives pricing
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on Fourier transform techniques (see for example [19]), and data from the CBOE
on S&P500 options and both futures and options on the VIX.

The proposed model is built on purely discontinuous processes by means of a
suitably designed factor construction inspired by [4], which enables the generation of
both stochastic volatility and leverage. The approach is quite flexible concerning the
choice of the driving processes, as the only relevant piece of information required is
their characteristic function. For the purpose of the empirical analysis, we consider a
specification of the proposed setting built on the CGMY process of [11]. Although
the construction could be extended to include diffusion components (see [6] for
further details), the empirical analysis presented for example by [7] highlights their
limited added value in terms of calibration performance.

Models based on affine processes have been used in the literature to price options
on realized variance and VIX by [28, 29], and options on quadratic variation by [27].
Our approach differs as the model is based entirely on discontinuous processes, and
dependence is induced via a factor construction accommodating both leverage and
volatility feedback.

The central contribution of this paper lies in the quantification of the correlation
between the (log-returns of the) S&P500 index and the (square of the) VIX index
using the market consistent information encapsulated by the VIX index itself and
the existing S&P500 and VIX derivatives. The objective is to extract a forward
looking term structure for this correlation over the expiry range of traded contracts.
The recovery of implied correlation between assets using option prices has been
explored in the FX markets by [5, 10] and [2] amongst others; however, to the best
of our knowledge, this is the first study involving two different markets, namely
the S&P and the VIX markets. We envisage the potential for this term structure
of implied correlations to become a relevant market metric, if not even a reference
quantity for new derivative products.

Due to the affine construction of the model, we can also gain a forward looking
insight into the so-called leverage and volatility feedback effects, whereby leverage
indicates the impact on the volatility level of (in general adverse) changes in the log-
returns, whilst volatility feedback refers to the decline in equity returns originated
by anticipated rises in volatility. In this respect, the VIX market provides the ideal
environment to price in such effects. This forward looking approach distinguishes
our paper from other contributions in the literature on leverage and volatility feed-
back which primarily focus on stock and portfolio returns (see for example [15]
amongst others).

An additional contribution of this paper is a new interpretation of the bias be-
tween the VIX index and the conditional mean of the integrated variance. The
general specification of the model in fact allows us to identify the origin of this
bias in the higher order moments of the Lévy process which is time changed in the
dynamics of the S&P500 log-returns. This particular aspect also provides a theo-
retical ground for the ‘fear gauge’ nickname the VIX index is usually referred to in
the industry: by incorporating information on the skewness and excess kurtosis, the
VIX index offers indeed a view on the probability of significant market movements
in the ‘wrong’ direction (see also the discussion in [3]).

This paper also contributes, albeit indirectly, to the growing literature that ex-
plores the joint calibration problem, i.e. the development of models which can
simultaneously reproduce the market volatility surfaces of options on the S&P500
and the VIX indices in addition to the prices of VIX futures. Recent works in this
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direction include [1] and [18] amongst others. Our work, however, differs from these
studies in the way in which we manage the variation in the level of the VIX implied
volatilities from one maturity to the next during the calibration. Motivated by the
observation that a similar variation in scale characterizes the interest rate market
as well (although on a significantly different time scale), we adopt a piecewise ap-
proach similar to [21]. In this way we can extract correlation values consistent with
the maturities available in the market for the relevant contracts.

The results from the empirical analysis show a significant negative implied corre-
lation between the two markets, indicating a clear diversification potential of VIX
instruments, which has important implications for portfolio management decisions.

The paper is organized as follows. In section 2 we develop the model for the
log-return process driving the S&P500 index. In section 3 we obtain an useful
expression for the VIX index based on its representation via the log-contract, and
pricing formulas based on Fourier transform techniques. In section 4 we derive
the analytical expression of the correlation. The term structure of the correlation
is studied in section 5, in which we perform the joint calibration, and section 6
concludes.

2. The model. The formal definition of the VIX index from the Cboe White Paper
[16] is

V̄ (0,∆τ ) = 100×

√√√√ 2

∆τ
er∆τ

∑
i

∆Ki

K2
i

O(Ki)−
1

∆τ

(
FS(0,∆τ )

K0
− 1

)2

,

where r is the risk free interest rate to expiration, O(Ki) is the mid price of out-
of-the-money (OTM) call and put options on the S&P500 with strike Ki and time
to maturity ∆τ fixed at 30 days, FS(0,∆τ ) is the forward index level derived from
index option prices, K0 is the largest available strike below or equal to the forward
index level, and ∆Ki is the interval between strikes computed as (Ki+1 −Ki−1)/2.

For the purpose of pricing derivatives on the VIX, a more convenient expression
for the index can be obtained from the price of the log-contract on the S&P500.
To this aim, let (Ω,F , {Ft}t≥0,P) be a filtered probability space, with P denoting
a risk neutral probability measure1, and denote by S(t) the value of the S&P500 at
time t. An application of the static replication formula implies that the VIX can
be approximated as V̄ (0,∆τ ) = 100× V (0,∆τ ), for

V (t, t+∆τ ) =

√
− 2

∆τ
Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
, (1)

with Et(·) denoting the conditional expectation under the risk neutral measure.
As this equation clarifies the connection to the S&P500 index, in the following we
introduce a model for its price process.

2.1. The general specification. We model the equity index price process with
spot value S(0) as

S(t) = S(0)ert+X(t),

for r the (constant) continuously compounded interest rate, andX(t) a time changed
Lévy process.

1We note that the proposed market model is incomplete and consequently the risk neutral
martingale measure is not unique. Hence, we follow standard practice for incomplete markets and

determine the risk neutral measure through the prices of derivative contracts traded in the market.
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More in details, let L(t) denote the so-called base process, and T (t) be a stochastic
clock, then X(t) = L(T (t)) = (L ◦ T ) (t). In other words, the process X(t) is
obtained by observing the process L(t) on a time scale controlled by T (t). This
construction recognizes that price changes are caused by imbalances in demand and
supply due to trades. Thus, uncertainty originates from both the timing of the
change, which is modelled by the clock T (t) and can be interpreted as business
time, and its magnitude which is captured by the base process L(t).

We assume that the base process is defined as

L(t) = −φJ1
(−iσ1)t+ σ1J1(t),

for a constant σ1. In the above equation, J1(t) is a Lévy process with characteristic
exponent φJ1

(u) and triplet (α1, 0, ν1(dx)), which satisfies the following.

Assumption 1. There exists a constant M̄ such that∫
{|x|>1}

euxν1(dx) < ∞ for all u ∈ [−M̄, M̄ ],

i.e. the exponential moments of J1 are finite.

The above assumption is required to ensure that the price process has finite mo-
ments (see for example [20]) and is satisfied by all purely discontinuous processes
typically used in mathematical finance such as hyperbolic, Normal Inverse Gauss-
ian, generalized hyperbolic, Variance Gamma and CGMY processes, with the only
exception of stable processes.

Assumption 1 implies in particular the finiteness of E (J1(t)), and consequently
J1(t) can be represented as

J1(t) = α1t+

∫ t

0

∫
R
x
(
µJ1 − νJ1

)
(ds, dx),

where µJ1(dt, dx) is the random measure of the jumps of J1 with compensator
νJ1(dt, dx) = ν1(dx)dt, and α1 = E (J1(1)). In other words, Assumption 1 allows
us to use the identity function for truncation. Consequently, the characteristic
exponent is

φJ1(u) = iuα1 +

∫
R

(
eiux − 1− iux

)
ν1(dx).

For later use, we decompose the process J1 = J1,− + J1,+ into the sum of the
(compensated) negative and positive jumps with triplets (α1,−, 0, ν1,−(dx)) and
(α1,+, 0, ν1,+(dx)) respectively.

Under the above assumptions, the process X(t) driving the equity index is given
by

X(t) = −φJ1(−iσ1)T (t) + σ1 (J1 ◦ T ) (t). (2)

For the stochastic clock T (t), we assume that it is absolutely continuous with
activity rate v(t), so that

T (t) =

∫ t

0

v(s−)ds.

In particular, we assume that the activity rate as well is originated by a time changed
Lévy process of the form

v(t) = v(0) + κθt+ (Y ◦ T )(t),
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for κ and θ positive constants and

Y (t) = −κt− η1J1,−(t) + η2J2(t).

In other words,

v(t) = v(0) +

∫ t

0

κ (θ − v(s−)) ds− η1 (J1,− ◦ T ) (t) + η2 (J2 ◦ T ) (t), (3)

in which v(0) > 0, η1 and η2 are non-negative constants, and J2(t) is a purely
discontinuous Lévy process independent of J1(t), with jumps of positive size, and
characteristic exponent φJ2(u). We assume that J2(t) satisfies Assumption 1 as
well, and therefore has characteristic exponent

φJ2
(u) = iuα2 +

∫
R+

(
eiux − 1− iux

)
ν2(dx).

As equation (3) is an implicit equation, we show in section 2.2 that it has a unique
non-negative solution.

We note the following points. Time changes are used to equip Lévy processes
with stochastic volatility features (see for example [12, 7]). Indeed, the conditional
variance of X(t) is proportional to the stochastic clock T (t), and therefore is gov-
erned by the dynamics of the activity rate v(t).

Furthermore, in this construction dependence between the log-returns and their
variance is induced by a factor construction, inspired by the work of [4], in which
the process (J1,− ◦ T ) can be interpreted as the source of systematic risk, whilst
the process (J1,+ ◦ T ) represents the idiosyncratic risk in the dynamics of the log-
returns. In this context, the process (J1,− ◦ T ) could be seen as the transmission
channel of the so-called leverage effect meant as increases in the volatility level due
to negative return movements. The process (J2 ◦ T ) on the other hand could be
interpreted as the main driver of the so-called volatility feedback effect.

Finally, we observe on the one hand that discontinuous dynamics of the log-
returns increase the model ability to generate a consistent skew slope especially
over short maturities as shown for example in [7]. On the other hand, the factor
construction in the design of the volatility process is supported by the study of [25]
amongst others. Hybrid constructions in spirit similar to the one posited in this
paper have been used for interest rate modelling by [22].

We also note the following relationships for use in the remaining sections.

E(Y (1)) = −κ− η1α1,− + η2α2 =: b1 (4)

E(L(1)) = −φJ1
(−iσ1) + σ1α1 =: b2 (5)

Var(Y (1)) = η21Var(J1,−(1)) + η22Var(J2(1)) =: σ̂2
1 (6)

Var(L(1)) = σ2
1Var(J1(1)) =: σ̂2

2 (7)

and

Cov(L(1), Y (1)) = −η1σ1Var(J1,−(1)) =: ρ̂. (8)

Finally, it follows from the given construction (see for example [20], Proposition
4.14) that the trivariate process (v,X, T ) has differential characteristics (B, 0,K)
of the form

B =

κθ
0
0

+

b1
b2
1

 v− =: B0 +B1v− (9)
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K(G) =

(∫
1G(−η1x, σ1x, 0)ν1,−(dx) +

∫
1G(0, σ1z, 0)ν1,+(dz)

+

∫
1G(η2y, 0, 0)ν2(dy)

)
v−, (10)

for any Borel set G, 0 /∈ G, and therefore it is affine. Consequently, the following
holds.

Theorem 1. The affine system (v,X, T ) admits joint conditional characteristic
function

Es

(
eiwv(t)+iuX(t)+izT (t)

)
= eΨ0(w,u,z;t−s)+Ψ1(w,u,z;t−s)v(s)+iuX(s)+izT (s), s < t

with the exponents Ψ0, Ψ1 solutions to the system of ordinary differential equations

Ψ′
0(w, u, z; t− s) = κθΨ1(w, u, z; t− s),

Ψ0(w, u, z; 0) = 0

Ψ′
1(w, u, z; t− s) = iz + φL(u)− κΨ1(w, u, z; t− s)

+φJ1,− (iη1Ψ1(w, u, z; t− s) + uσ1)

−φJ1,−(σ1u) + φJ2
(−iη2Ψ1(w, u, z; t− s)) ,

Ψ1(w, u, z; 0) = iw,

for φL(u) = −iuφJ1
(−iσ1) + φJ1

(σ1u).

Proof. As (v,X, T ) is affine, we obtain

Es

(
eiwv(t)+iuX(t)+izT (t)

)
= eΨ0(w,u,z;t−s)+Ψ1(w,u,z;t−s)v(s)+Ψ2(w,u,z;t−s)X(s)+Ψ3(w,u,z;t−s)T (s).

The exponents Ψ0, Ψ = (Ψ1,Ψ2,Ψ3) satisfy

Ψ′
0(w, u, z; t− s) = ΨB0

Ψ0(w, u, z; 0) = 0,

Ψ′
1(w, u, z; t− s) = ΨB1+

∫
R

(
eΨ(−η1x,σ1x,0)

⊤
− 1−Ψ(−η1x, σ1x, 0)

⊤
)
ν1,−(dx)

+

∫
R

(
eΨ(0,σ1z,0)

⊤
− 1−Ψ(0, σ1z, 0)

⊤
)
ν1,+(dz)

+

∫
R

(
eΨ(η2y,0,0)

⊤
− 1−Ψ(η2y, 0, 0)

⊤
)
ν2(dy),

Ψ1(w, u, z; 0) = iw,

and

Ψ′
2(w, u, z; t− s) = 0, Ψ2(w, u, z; 0) = iu,

Ψ′
3(w, u, z; t− s) = 0, Ψ3(w, u, z; 0) = iz.

The last two sets of equations imply that Ψ2(w, u, z; t− s) = iu and Ψ3(w, u, z; t−
s) = iz. Furthermore, by direct calculation

Ψ′
0(w, u, z; t− s) = κθΨ1(w, u, z; t− s),

Ψ0(w, u, z; 0) = 0,

and

Ψ′
1(w, u, z; t− s) = iz − (κ+ η1α1,−)Ψ1(w, u, z; t− s)− iuφJ1

(−iσ1)
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+iuσ1α1 + η2α2Ψ1(w, u, z; t− s)

+

∫
R

(
e−(Ψ1(w,u,z;t−s)η1−iuσ1)x − 1

+ (Ψ1(w, u, z; t− s)η1 − iuσ1)x
)
ν1,−(dx)

+

∫
R

(
eiuσ1z − 1− iuσ1z

)
ν1,+(dz)

+

∫
R

(
eΨ1(w,u,z;t−s)η2y − 1−Ψ1(w, u, z; t− s)η2y

)
ν2(dy),

Ψ1(w, u, z; 0) = iw.

The result follows from this.

2.2. Existence and non-negativity of the activity rate process v(t). In order
to prove that there is a unique non-negative solution to the implicit equation (3),
we represent v(t) as the solution to an affine martingale problem. For this purpose,
define the linear maps g1 : R− → R+, g1(x) = −η1x and g2 : R+ → R+, g2(x) =
η2x, and the corresponding measure transformations g1(ν1,−)(B) = ν1,−(g

−1
1 (B))

and g2(ν2)(B) = ν2(g
−1
2 (B)). Consider J̃1,−(t) = −η1J1,−(t) and J̃2(t) = η2J2(t),

then it follows that

φJ̃1,−(u) = −iuη1α1,− +

∫
R+

(
eiuz − 1− iuz

)
g1(ν1,−)(dz)

φJ̃2
(u) = iuη2α2 +

∫
R+

(
eiuz − 1− iuz

)
g2(ν2)(dz).

The process J(t) = J̃1,−(t) + J̃2(t) has Lévy measure νJ = g1(ν1,−) + g2(ν2) and
characteristic exponent

φJ(u) = iu (η2α2 − η1α1,−) +

∫
R+

(
eiuz − 1− iuz

)
νJ(dz).

We extract from equations (9) and (10) that the first coordinate of the trivari-
ate process has Lévy-Khintchine triplets (κθ, 0, 0) and (b1, 0, νJ), leading to the
following affine martingale problem

b(t) = κθ + b1v(t−)

K(t, dx) = νJ(dx) v(t−).

As κθ > 0 and νJ is a Lévy measure on the positive half-line which satisfies the
required moment condition, according to Proposition 6.5 in [20] (non-negative case),
this martingale problem has a unique solution v(t) which is non-negative.

3. The VIX dynamics and derivatives pricing. The analysis in section 2 gives
access to a useful expression for the square of V (t, t + ∆τ ) (equation (1)) and its
characteristic function. The latter provides the basis for the development of efficient
pricing routines using Fourier transform techniques, which are instrumental for an
efficient calibration of the model to market quotes.

3.1. The VIX squared and its characteristic function. Equation (1) shows
the link between the VIX index and the log-contract, which in a diffusion setting
leads to the identity between the VIX squared and the variance swap rate. How-
ever, as discussed in [14], when the driving process is a general semimartingale,
the identity with the variance swap rate no longer holds due to a correction term
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incorporating the effects of the jumps. Indeed, we can show that this correction
term represents the higher order moments of the base process L(t).

In virtue of equation (1), we have

V (t, t+∆τ )
2 = − 2

∆τ
Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
.

By construction

Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
= Et (X(t+∆τ )−X(t)) ,

consequently, we obtain from equation (2)

Et

(
ln

S(t+∆τ )

FS(t, t+∆τ )

)
= − φJ1

(−iσ1) Et (T (t+∆τ )− T (t))

+ σ1Et ((J1 ◦ T ) (t+∆τ )− (J1 ◦ T ) (t)) .
As the last conditional expectation in the above equation is equal to

α1Et (T (t+∆τ )− T (t))

(see Proposition 4.14 in [20]), we finally obtain

V (t, t+∆τ )
2 = −2b2

∆τ
Et (T (t+∆τ )− T (t)) .

We note that by means of the above and equation (5), we can write

V (0,∆τ )
2 =

(
Var(L(1)) +

1

3
C3(L(1)) +

1

12
C4(L(1)) + · · ·

)
E (T (∆τ ))

∆τ
,

with Cj(L(1)) denoting the unit time cumulant of order j of the base process.
Therefore, the VIX index V̄ (0,∆τ ) = 100×V (0,∆τ ) carries information concerning
not just the variance of the base process, but also the higher order moments such as
the ones controlling the skewness and excess kurtosis of the distribution of the base
process. Thus, our model offers an insight into the VIX role as the ‘fear gauge’: by
indirectly capturing information about the probability mass in the tails of the log-
return distribution, the VIX index provides a view of the market on the probability
of significant movements in the ‘wrong’ direction.

The conditional expectation of the stochastic clock T (t) can be recovered by dif-
ferentiation of its (log-)characteristic function, which can be obtained from Theorem
1 by setting w = u = 0. To this purpose, let

cj(t− s) = −i
∂

∂z
Ψj(0, 0, z; t− s)

∣∣∣∣
z=0

j = 0, 1,

then by standard rule of calculus, it follows that

Es (T (t)) = c0(t− s) + c1(t− s)v(s) + T (s)

with the affine coefficients c0, c1 solutions to the system of ordinary differential
equations

c′0(t− s) = κθc1(t− s),

c0(0) = 0

c′1(t− s) = 1 + b1c1(t− s),

c1(0) = 0.
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This system can be solved analytically and returns

c0(t− s) = κθ
eb1(t−s) − 1− b1(t− s)

b21
(11)

c1(t− s) =
eb1(t−s) − 1

b1
. (12)

Consequently

V (t, t+∆τ )
2 = −2b2

∆τ
(c0(∆τ ) + c1(∆τ )v(t)) ; (13)

which implies that the characteristic function ϕV 2(h; t) of V (t, t+∆τ )
2 follows from

Theorem 1 by setting w = −2hb2c1(∆τ )/∆τ and u = z = 0. Therefore

ϕV 2(h; t) = E
(
eihV (t,t+∆τ )

2
)
= eA(h;∆τ )+A0(h;t)+A1(h;t)v(0) (14)

with

A(h; ∆τ ) = −ih
2b2
∆τ

c0(∆τ ),

and the exponents A0, A1 solutions to the system

A′
0(h; t) = κθA1(h; t),

A0(h; 0) = 0

A′
1(h; t) = −κA1(h; t) + φJ1,− (iη1A1(h; t)) + φJ2

(−iη2A1(h; t)) ,

A1(h; 0) = −ih
2b2
∆τ

c1(∆τ ).

3.2. The characteristic function of the process X(t). In order to price options
on the S&P500 in this setting, we also require the characteristic function of X(t).
This follows from Theorem 1 by setting w = 0 and z = 0, i.e.

ϕX(u; t) = E
(
eiuX(t)

)
= eD0(u;t)+D1(u;t)v(0), (15)

with the exponents D0, D1 solutions to the system of differential equations

D′
0(u; t) = κθD1(u; t),

D0(u; 0) = 0

D′
1(u; t) = φL(u)− κD1(u; t) + φJ1,− (iη1D1(u; t) + σ1u)

− φJ1,− (σ1u) + φJ2 (−iη2D1(u; t)) ,

D1(u; 0) = 0.

Alternatively, the expression for the characteristic function can be obtained
adopting the leverage neutral measure approach of [13] (see also [7]). To this pur-
pose, let us define

γ(t) = eiuL(t)−φL(u)t;

this process is a martingale starting at 1. Consequently, the time-changed process

M(t) = Mu(t) = (γ ◦ T )(t) = eiuX(t)−φL(u)T (t)

is a martingale too and defines the density process for a complex-valued ‘measure’
M such that

E
(
eiuX(t)

)
= EM

(
eφL(u)T (t)

)
. (16)
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In other words, the change of measure allows us to operate as if the process of the
log-returns were independent of its volatility, i.e. as if there were no leverage (see
[13]).

3.3. Pricing derivatives: a Fourier based approach. Among the available
approaches for option pricing, we adopt the method of [19].

Thus, the prices of call and put options on the S&P500, denoted as πSPX(K, τ),
are computed as

πSPX(K, τ) = e−rτ e
−Rs

π

∫ ∞

0

ℜ
(
e−iusϕX(u− iR; τ)

K1−R−iu

(1−R− iu)(−R− iu)

)
du,

with R > 1 for the case of the call option and R < 0 for the case of the put option
(see [19] for full details on the method), and s = − lnFS(0, τ). The characteristic
function ϕX(·; τ) is given by equation (15).

For the computation of the price of the VIX call option with payoff

C(V̄ (τ, τ +∆τ )) = 100× (V (τ, τ +∆τ )−K)
+
,

we proceed as follows. Given the availability of the characteristic function ϕV 2(·; t),
we first re-express the payoff as

C(V̄ (τ, τ +∆τ )) = 100×
(√

V (τ, τ +∆τ )2 −K
)+

,

and then we derive the Fourier transform f̂ of f(x) = (
√
x−K)

+
. Thus, for z ∈ C

f̂(z) =

∫ ∞

K2

eizx
(√

x−K
)
dx

= − 1

iz

∫ ∞

K2

eizx

2
√
x
dx

where the last equality holds for ℑ(z) > 0. This integral can be solved by substitu-
tion: set y =

√
−izx, then

f̂(z) =
1

(−iz)3/2

∫ ∞

K
√
−iz

e−y2

dy

=

√
π

2(−iz)3/2

(
1− erf(K

√
−iz)

)
, (17)

with erf(·) denoting the error function of a complex argument. Then, the price of
the VIX call option struck at K̄ and expiring at τ is given by

CV IX(K̄, τ) = 100× e−rτ

π

∫ ∞

0

ℜ
(
ϕV 2(u− iR; τ)f̂(iR− u)

)
du (18)

with r the risk free rate of interest and R the dampening factor. Convergence
is ensured for R > 0. The relevant characteristic function, ϕV 2(·; t), is given by
equation (14). VIX put options can be recovered using the put-call parity, so that

CV IX(K̄, τ)− PV IX(K̄, τ) = E
(
e−rτ

(
V̄ (τ, τ +∆τ )− K̄

))
,

and therefore

PV IX(K̄, τ) = CV IX(K̄, τ)− e−rτ
(
FV (0, τ)− K̄

)
. (19)

Finally, VIX futures prices are obtained following a procedure similar to [27] so
that

FV (0, τ) = 100× E(V (τ, τ +∆τ ))
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= 100× 1

2
√
π

∫ ∞

0

1− ϕV 2(iu; τ)

u3/2
du

with ϕV 2(·; t) given by equation (14).
The numerical schemes are implemented in Matlab R2023b. All integrals are

computed by standard quadrature methods fully vectorized for speed, and the rel-
evant differential equations are solved numerically using the Runge-Kutta method.
The computation of the error function of a complex argument is carried out by
means of the algorithm developed by [23].

4. Second order moments of log-return and activity rate processes. Theo-
rem 1 also gives access to the second order moments and co-moments of the relevant
quantities through repeated differentiation. In particular, we focus on the variances
of the log-return process X(t) and the activity rate process v(t), and the covariance
between them.

In order to define the variance of the process X(t), we use the moments of the
base processes defined in equations (4)–(8), and set

d0(t) = σ̂2
2c0(t) + 2ρ̂κθ

b2
b21

(
eb1tt+ t− 2c1(t)

)
+ σ̂2

1κθ
b22
b31

(
2c1(t)− 2eb1tt− t+

e2b1t − 1

2b1

)
,

d1(t) = σ̂2
2c1(t) + 2ρ̂

b2
b1

(
eb1tt− c1(t)

)
+ σ̂2

1

b22
b21

(
e2b1t − 1

b1
− 2eb1tt

)
,

with c0(t) and c1(t) derived in equations (11)–(12). Then, by repeated differentia-
tion of the joint (log-)characteristic function in Theorem 1, we obtain

Var(X(t)) = d0(t) + d1(t)v(0). (20)

Theorem 6.15 in [20] gives access to an alternative derivation of this result. Similarly,
set

q0(t) = κθ
σ̂2
1

2
c21(t)

q1(t) = σ̂2
1e

b1tc1(t),

then

Var(v(t)) = q0(t) + q1(t)v(0). (21)

Finally,

Cov(X(t), v(t)) = p0(t) + p1(t)v(0), (22)

for

p0(t) = κθ
ρ̂

b1

(
eb1tt− c1(t)

)
− κθσ̂2

1

b2
b21

(
eb1tt− e2b1t − 1

2b1

)
p1(t) = eb1t

(
ρ̂t+ σ̂2

1b2
c0(t)

κθ

)
.

A sketch of the proof is offered in Appendix A for the case of the covariance. The
other quantities can be obtained along the same lines.

The expression for the correlation between the log-return process X(t) and the
activity rate process v(t) follows directly. In virtue of equation (13), this is the same
as the correlation between the S&P500 index log-returns and the VIX squared.
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Figure 1. Correlation between X(t) and v(t): sensitivity analysis with
respect to the ‘loading’ coefficients σ1, η1 and η2. Correlation calculated
using equations (20)–(22) for a specific choice of the remaining parame-
ters.

In order to demonstrate the flexibility of the approach, we show in Figure 1 (pa-
rameters available upon request) how the correlation changes for different values
of the parameters σ1, η1 and η2, which control respectively the level of the cor-
relation between the base processes of the log-returns and the activity rate (see
equation (8)), and the impact on the log-returns of the idiosyncratic movements in
the activity rate (see equations (2)–(3)).

5. The term structure of implied correlations. In this section we first cali-
brate this model jointly to market data for options on the S&P500 and the VIX
together with VIX futures. We then use the calibrated parameters to extract the
term structure of implied correlations by applying the results obtained in section 4.

End of day market prices were collected from the CBOE on May 3rd 2023 for
call and put options on both the S&P500 and the VIX indices, together with VIX
futures prices. We use mid option prices obtained from the quoted bid and ask
prices of out of the money (OTM) contracts.

We apply the commonly adopted exclusion filters to the set of option prices, so
that only contracts with positive open interest, bid price and bid-ask spread are
selected. Furthermore, we only consider maturity slices with more than 5 traded
strikes. For the observation date under consideration, this implies that we can use
options on the VIX up to 77 days to expiry as the bulk of liquidity is concentrated
around short maturity contracts. The corresponding market implied volatilities are
shown in the top panels of Figure 2. The VIX futures prices for the corresponding
maturities are shown in the bottom panel of Figure 2 together with the VIX spot
value. The term structure of interest rates is extracted from the USD SOFR curve
on May 3rd 2023.

5.1. The joint objective function and the calibration problem. In order to
obtain a reliable estimation of the implied correlation, we need to ensure that the
model is able to reproduce the market quotes of derivatives as closely as possible.
However, from Figure 2 we note two important features of the implied volatilities in
the VIX market which can represent a challenge for the calibration procedure. In
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Figure 2. A sample of market data. Top-panels: implied volatilities from
the S&P500 market (left-hand side panel), and the VIX market (right-hand

side panel). Bottom panel: VIX futures prices for maturities corresponding to

the ones of VIX options. Source: CBOE. Observation date: May 3rd 2023.

first place, there is a clear difference in the scale of the implied volatilities between
the two markets. Indeed, the level of the VIX implied volatilities is significantly
higher than the one of the implied volatilities in the S&P market. Secondly, the
level of the VIX implied volatilities varies substantially from one maturity to the
next, especially between the first two available maturities, i.e. 7 and 14 days to
expiry.

Furthermore, we note that the correct calibration of VIX futures is necessary in
order to recover consistent VIX implied volatilities by inversion of the Black formula
(see [9]). The inclusion of the futures prices though exacerbates the issue of scale
noted above. Therefore, it is crucial to define an appropriate objective function in
which all the relevant quantities are suitably rescaled to ensure comparability.



86 LAURA BALLOTTA, ERNST EBERLEIN AND GRÉGORY RAYÉE

To this purpose, let

fi(j;ϑ) =

(
πmod
i (j;ϑ)− πeod

i (j)

Voleodi (j)V egai(j)

)2

, i = 1, 2, j = 1, . . . , Ni,

where πeod
i (j) is the end of day mid market price given by the j-th data point

representing either an OTM call or an OTM put option struck at Kj and with
maturity τj , written on the S&P500 for i = 1 and the VIX for i = 2 respectively.
πmod
i (j;ϑ) denotes the corresponding price originated by the model with parameter

set ϑ. In this context, V egai(j) denotes the (Black) Vega computed using the

market implied volatilities Voleodi (j). Ni is the number of option contracts in the
data set.

The ratio between the error of the model price with respect to the market price
and the Vega is used as a first order approximation of the implied volatility error;
this approximation is chosen to both speed up the calibration and avoid potential
bias due to expensive contracts (see for example [17, 7], and references therein). The
normalization via the implied volatility guarantees comparability between the two
markets, given the observed different ranges of implied volatility values for S&P500
and VIX options.

Furthermore, let

f(l;ϑ) =

(
πmod(l;ϑ)− πeod(l)

πeod(l)

)2

,

with πmod(l;ϑ) denoting the price of the VIX futures with maturity τl for l =
1, . . . , NF under the given model, and πeod(l) denoting the corresponding end of
day market prices. NF is the number of VIX futures contracts considered. We
use relative errors for the prices of the VIX futures to ensure consistency with the
option error functions.

Then, the objective function of the joint calibration problem is given by

F (ϑ) =

2∑
i=1

1

Ni

Ni∑
j=1

fi(j;ϑ) +
1

NF

NF∑
l=1

f(l;ϑ).

The rescaling based on the number of contracts accounts for the different sizes of
the respective markets, which could otherwise compromise the fit.

The calibration problem is stated as

min
ϑ

F (ϑ),

with ϑ within the parameter limits of the chosen model.
It remains to address the issue of the variation in the VIX implied volatility

level across maturities. Motivated by the similarity with the interest rate mar-
kets, we adopt a piecewise calibration approach similar in spirit to [21]. To this
purpose, we calibrate separately each maturity interval [τV IX

j , τV IX
j + ∆τ ], for

τV IX
j ∈ {7, 14, 21, 28, 49, 77}, i.e. the maturities of VIX options considered here.

For options on the S&P500, we refer to contracts with maturities τSPX
j coincident

with τV IX
j up to two days, according to availability. Consequently, N1 denotes the

number of options on the S&P500 for all strikes available for maturities τSPX
j and

τV IX
j +∆τ , whilst N2 indicates the number of VIX option contracts for all strikes

available for maturity τV IX
j . The choice to focus on these ‘triangles’ is motivated by

the fact that the VIX by construction encodes information on the forward density
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of the S&P500 log-returns and their variance (see, for example [31], and references
therein).

We note that equation (13) for t = 0 links directly the initial level of the volatility
activity rate v(0) to the square of the spot value of the VIX index. This allows
us to ensure that the model matches exactly the current value of the VIX index.
Anchoring the calibration procedure to the current state of the VIX market also
contributes to speeding up the convergence of the optimization routine.

In the empirical analysis, we assume that the process J1(t) is the CGMY process
of [12] with Lévy density

C

(
e−G|x|

|x|1+Y
1x<0 +

e−Mx

x1+Y
1x>0

)
,

and parameters C,G,M > 0, Y < 2. The corresponding characteristic exponent is

φJ1(u) = CΓ (−Y )
(
(M − iu)

Y −MY + (G+ iu)
Y −GY

)
.

Finally, we assume that the process J2(t) is a Gamma process with characteristic
exponent

φJ2
(u) = β (lnλ− ln(λ− iu)) ,

for β, λ > 0.

5.2. Results. In this section we gauge the performance of the piecewise joint cal-
ibration and extract the term structure of implied correlations between the S&P
and VIX markets.

Consistently with the definition of the calibration objective function F (ϑ), we
measure the model performance using relative errors based on the implied volatility
recovered from the calibrated parameters. Let Volmod

i (j;ϑ) denote this value for
the j-th data point, and define

ei =

Ni∑
j=1

(
Volmod

i (j;ϑ)−Voleodi (j)

Voleodi (j)

)2

, i = 1, 2,

eF =

NF∑
l=1

f(l;ϑ).

We measure the pricing performance separately on each market with

ϵi =

√
1

Ni
ei, i = 1, 2, (23)

ϵF =

√
1

NF
eF , (24)

and on aggregate with

ϵ =

√
1

N
(e1 + e2 + eF ), (25)

for N = N1 +N2 +NF .
We compare the implied volatilities generated by the model to the market ones

for the dataset under consideration in Figure 3, whilst the corresponding perfor-
mance measures are reported in Table 1 (the calibrated parameters are available
upon request). The accuracy of the calibration is comparable across each maturity
interval, but it deteriorates in correspondence of those expiries characterised by
relatively low liquidity.
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Table 1. Joint calibration with piecewise approach. Performance mea-
sures as defined in eqs. (23)–(25).

Maturity interval [7, 37] [14, 44] [21, 51] [28, 58] [49, 79] [77, 107]

ϵ1 5.90% 2.54% 3.65% 3.61% 4.07% 2.64%
ϵ2 2.07% 1.09% 2.49% 1.43% 2.57% 2.95%
ϵF 6.65E-03 1.48E-04 1.71E-03 1.43E-03 0.35% 3.93E-03
ϵ 5.42% 2.30% 3.43% 3.39% 3.76% 2.66%

Figure 3. Joint calibration with piecewise approach. Left-hand-side panel:
implied volatility of S&P500 options expiring at τSPX

j = τV IX
j (up to 2 days).

Centre panel: VIX futures price (vertical line) and implied volatility of VIX
options expiring at τV IX

j . Right-hand-side panel: implied volatility of S&P500

options expiring at τV IX
j +∆τ .

The term structure of the implied correlations is obtained along the range of
maturities of the VIX futures and VIX options; we then interpolate/extrapolate
for each day between the given maturities using a piecewise cubic Hermite inter-
polating polynomial. The result is shown in Figure 4. The correlation between
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Figure 3. (cont.) Joint calibration with piecewise approach. Left-hand-
side panel: implied volatility of S&P500 options expiring at τSPX

j = τV IX
j

(up to 2 days). Centre panel: VIX futures price (vertical line) and implied
volatility of VIX options expiring at τV IX

j . Right-hand-side panel: implied

volatility of S&P500 options expiring at τV IX
j +∆τ .

the log-returns of the S&P500 and the (square) of the VIX index is significantly
negative across the considered time horizon, and it justifies the fact that the VIX
calls are the contracts more heavily traded as they are perceived as ‘disaster in-
surance’. The hump shape of the curve could be linked to the low liquidity level
of the contracts with 28 days to maturity. The result also indicates that the VIX
index and its derivatives have a high diversification potential, and it supports the
recommendations from [8] to include exposures to VIX instruments for the optimal
management of structured portfolios.

Finally, as in virtue of equation (13), the implied correlation between the S&P500
log-returns and the VIX squared coincides with the one between the index log-
returns and the activity rate v(t), i.e. the process of the ‘point-in-time’ variance,
we can gain forward looking information on the strength of the leverage/volatility
feedback effect in the case in which the volatility is priced in directly through the
VIX market.
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Figure 4. Term structure of implied correlations Corr(X(τ), v(τ)) =
Corr(X(τ), V (τ, τ + ∆τ )2) obtained from equations (20)-(22) and the cali-

brated parameters.

6. Conclusions. We have developed a joint model for the S&P500 and the VIX
based on time changed Lévy processes for the valuation of derivatives written on
these indices, and ultimately the quantification of the forward looking implied cor-
relation between the two markets. Due to the affine construction of the model, this
implied correlation also quantifies the leverage and volatility feedback effects. We
stress that, as the parameters are extracted from a joint calibration of derivative
quotes, the obtained result is forward looking in nature.

The investigation based on market quotes shows that the implied correlation is
significantly negative over the horizon of the traded maturities considered in this
paper, indicating the level of diversification that the VIX and its derivatives can
have. This is particularly relevant for portfolio management decisions.
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Appendix A. Proof of Equation (22). We note that

Cov(X(t), v(t)) = − ∂2

∂u∂w
lnE

(
eiwv(t)+iuX(t)

)∣∣∣∣
w=u=0

,

with the relevant joint characteristic function given by Theorem 1 for z = 0. In the
following we write for short Ψj(w, u; t) = Ψj(w, u, 0; t) for j = 0, 1; further, we set
for j = 0, 1

Ψ̃j(w, u; t) =
∂

∂u
Ψj(w, u; t)

Ψ̂j(w, u; t) =
∂

∂w
Ψj(w, u; t)

Ψ̄j(w, u; t) =
∂2

∂u∂w
Ψj(w, u; t).

We denote x = iη1Ψ1(w, u; t) + uσ1 and y = −iη2Ψ1(w, u; t), and we write the
characteristic exponents φJ1,−(ū) and φJ2

(ū) as functions of the argument ū.
By differentiation with respect to u of the system of ODEs in Theorem 1, we

obtain that Ψ̃0(w, u; t) and Ψ̃1(w, u; t) satisfy the following system of ODEs

Ψ̃′
0(w, u; t) = κθΨ̃1(w, u; t) (A.1)

Ψ̃0(w, u; 0) = 0 (A.2)

Ψ̃′
1(w, u; t) =

d

du
φL(u) +

(
−κ+ iη1

d

dū
φJ1,− (x)− iη2

d

dū
φJ2

(y)

)
Ψ̃1(w, u; t)

+σ1
d

dū
φJ1,− (x)− σ1

d

dū
φJ1,− (uσ1) (A.3)

Ψ̃1(w, u; 0) = 0. (A.4)

These ODEs can be used to recover the expected value of X(t) by setting u = w = 0

and hj(t) = −iΨ̃j(0, 0; t), for j = 0, 1 so that

h′
0(t) = κθh1(t)

h0(0) = 0

h′
1(t) = b2 + b1h1(t)

h1(0) = 0.

The above can be solved explicitly leading to h0(t) = b2c0(t) and h1(t) = b2c1(t)
for c0(t) and c1(t) derived in equations (11)–(12). Therefore E (X(t)) = h0(t) +
h1(t)v(0).

By differentiation of the system (A.1)–(A.4) with respect to w, we obtain the
system of ODEs satisfied by Ψ̄0(w, u; t) and Ψ̄1(w, u; t)

Ψ̄′
0(w, u; t) = κθΨ̄1(w, u; t)

Ψ̄0(w, u; 0) = 0

Ψ̄′
1(w, u; t) = iη1σ1

d2

dū2
φJ1,− (x) Ψ̂1(w, u; t)

−
(
η21

d2

dū2
φJ1,− (x) + η22

d2

dū2
φJ2

(y)

)
Ψ̂1(w, u; t)Ψ̃1(w, u; t)

+

(
iη1

d

dū
φJ1,−(x)− iη2

d

dū
φJ2

(y)− κ

)
Ψ̄1(w, u; t)

Ψ̄1(w, u; 0) = 0.
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Setting u = w = 0, the system reduces to

Ψ̄′
0(0, 0; t) = κθΨ̄1(0, 0; t)

Ψ̄0(0, 0; 0) = 0

Ψ̄′
1(0, 0; t) = iρ̂Ψ̂1(0, 0; t) + σ̂2

1Ψ̂1(0, 0; t)Ψ̃1(0, 0; t) + b1Ψ̄1(0, 0; t)

Ψ̄1(0, 0; 0) = 0.

Let us define g1(t) = −iΨ̂1(0, 0; t), p0(t) = −Ψ̄0(0, 0; t) and p1(t) = −Ψ̄1(0, 0; t).
The above system then can be rewritten as

p′0(t) = κθp1(t)

p0(0) = 0

p′1(t) = ρ̂g1(t) + σ̂2
1g1(t)h1(t) + b1p1(t)

p1(0) = 0.

The function g1(t) follows from the derivation of the expected values of v(t) using
a similar argument as for h1(t), which returns g1(t) = eb1t. The expression of the
covariance follows as the above system can be solved explicitly.

An alternative derivation of the result can be obtained by applying Theorem 6.15
in [20].

REFERENCES

[1] E. Abi Jaber, C. Illand and S. Li, The quintic Ornstein-Uhlenbeck model for joint SPX and

VIX calibration, Risk, July (2023), 1-6.

[2] G. Amici, L. Ballotta and P. Semeraro, Multivariate additive subordination with applications
in finance, European Journal of Operational Research, 321 (2025), 1004-1020.

[3] L. Ballotta, Is the VIX just volatility? The Devil is in the (de)tails, Wilmott, March (2024),

18-20.
[4] L. Ballotta and E. Bonfiglioli, Multivariate asset models using Lévy processes and applica-
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