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Abstract. This paper proposes a framework for the valuation and the management of

complex life insurance contracts, whose design can be described by a portfolio of embedded

options, which are activated according to one or more triggering events. These events are in

general monitored discretely over the life of the policy, due to the contract terms. Similar

designs can also be found in other contexts, such as counterparty credit risk for example.

The framework is based on Fourier transform methods as they allow to derive convenient

closed analytical formulas for a broad spectrum of underlying dynamics. Multidimension-

ality issues generated by the discrete monitoring of the triggering events are dealt with

efficiently designed Monte Carlo integration strategies. We illustrate the tractability of the

proposed approach by means of a detailed study of ratchet variable annuities, which can be

considered a prototypical example of these complex structured products.
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1. Introduction

In times of uncertainty, severe market fluctuations and very low interest rates such as the

ones currently experienced by the large majority of the world economies, classical insurance

contracts offering a guaranteed principal and a minimum interest rate are becoming less

and less attractive. Indeed, the insurance industry focus has shifted to more sophisticated

policies capable of providing higher returns to beat inflation, by giving the opportunity to

participate in the growth of the economy. Examples of such contracts are represented by

structured annuities such as fixed indexed annuities and registered index-linked annuities

(RILA), which are a mix of standard fixed and variable annuities. RILAs in particular have

been driving the 2019 annuity market to the highest annual sales since 2008, according to

the Secure Retirement Institute.

This broad class of structured products presents a high degree of complexity as in general

they offer opportunities for growth - up to a prespecified ceiling - based on the performance

of a stock market index, paired with downside protection in the form of either a guaran-

teed floor or a buffer. Further, as insurance contracts, these products also offer protection

against biometric risks, such as death, and the possibility of early termination of the policy

(surrender).
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The payoff design of these products can be generally described by a portfolio of embedded

options which are activated according to whether certain triggering events, such as death or

surrender, occur. These events are usually discretely monitored by the issuers, and might be

partially dependent on the sources of risk affecting the underlying of the embedded options,

which implies that these policies are effectively path-dependent multi-asset derivatives. Sim-

ilar schemes are also present in other contexts, such as counterparty credit risk for example,

as relevant quantities such as Credit Value Adjustments (CVA) and Debt Value Adjustments

(DVA) can be broadly described in similar terms, the positive exposure being the embed-

ded option and the default of the counterparty representing the triggering event (see, for

example, Ballotta et al., 2019, and references therein). Such sophisticated schemes call for

equally sophisticated modelling approaches, advanced valuation techniques, and innovative

numerical strategies for the management of the policies and the risks they entail.

In light of the above, the aim of this paper is to propose a realistic integrated model of

the underlying risks affecting these complex structured products, in our specific case these

being the financial risk (i.e. performance of the reference index) and the insurance risk (i.e.

mortality and surrender), for the development of a market consistent framework for their

valuation and management. We cast our stochastic model in a hybrid setting in order to

accommodate for both the dependence between the equity and the fixed income market, and

between the financial risks and surrender risk. In this context, Fourier transform methods

are successfully employed for the pricing of such structured products, as explicit expressions

for the valuation formulas can be obtained even in a fairly general setting as the one put

forward in this paper. The key feature enabling this is the separation of the underlying

stochastic dynamics and the payoff function, as highlighted in Eberlein et al. (2010).

When Fourier transform techniques are applied to path-dependent products such as the

ones under consideration, a significant curse of dimensionality can be encountered due to

the resulting high-dimensional Fourier integrals which need to be computed. The relevant

dimension depends on the frequency with which the triggering event, i.e. early termination,

is allowed based on the terms of the contract. From the computational point of view, we

solve this dimensionality problem by means of Monte Carlo integration with importance

sampling, as deterministic quadrature methods can in practice be implemented for at most

3 dimensions, which are generally inadequate for the typical maturities of VA contracts. For

accurate valuation, care has to be paid to the choice of the importance sampling distribution,

which is intrinsically linked to the shape of the surrender intensity function. Our choice is

motivated by the fact that the rate of convergence of Monte Carlo integration is affected

only by the number of iterations, rather than the dimensionality of the integral. Further nu-

merical efficiency can be gained by interpolating some key quantities linked to the integrated

cumulant functions of the driving processes.

We illustrate the methodology by considering ratchet variable annuities, which represent

a prototypical example of the structured insurance products described above. In order to

provide sufficient distributional flexibility to realistically capture the relevant dynamics, we

employ time-inhomogeneous Lévy processes as in Ballotta et al. (2020) for the joint model

of interest rate and equity risks, and insurance risk. In terms of financial modelling, this

choice is consistent with the recent advances in the quantitative finance literature, which

point towards stochastic models beyond Brownian motions. Further, such modelling for
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the financial market is particularly indicated in the current conditions: the large exposures

of life insurance companies to movements in interest rates, due to their large holdings of

fixed income securities, could depress significantly their solvency position, especially during

a global economic recession such as the one expected post Covid–19 (see Yong, 2020, for

example).

Further, we capture surrender risk via an intensity-based approach, which takes into ac-

count both the policyholder personal contingencies, and the spread between the return offered

by the policy and the one offered on the market for equivalent products. This modelling ap-

proach recognizes that the decision of surrendering the insurance policy is not necessarily

optimal from a strict financial point of view, as it could be impacted by personal contin-

gencies as well. We note that for insurance companies offering variable annuities contracts,

gaining insight into the surrender behaviour of policyholders is of particular importance

because it can cause significant liquidity pressure.

To this purpose, we offer a general stochastic model which combines the two recognised

theories put forward in the literature in order to explain early termination decisions, i.e. the

Interest Rate Hypothesis and the Emergency Fund Hypothesis. The former links the reasons

for surrendering to the evolution of the financial markets, so that a rational (in the financial

sense) policyholder would actively switch to higher yield products; the latter suggests that

surrender activity can increase during periods of economic duress as well. For example, it is

perceived by the industry as well as by regulators that the income loss due to the current

Covid–19 pandemia might alter the policyholder behaviour, and the corresponding surren-

der probabilities (Yong, 2020). We also observe that surrender modelling is particularly

challenging due to lack of reliable data on actual termination causes, and consequent depen-

dence on expert judgement. Therefore it is a potential source of risk which requires careful

management.

Finally, mortality risk is modelled relying on an intensity-based approach, and indepen-

dence of the financial risk under the risk neutral measure Q. In this context, we mention

the contribution of Dhaene et al. (2013) showing that in general independence under the

objective measure P - which is not relevant for our purposes - does not imply independence

under Q. However, the QP-rule by Artzner et al. (2020), which is motivated by a fundamen-

tal theorem on insurance-finance arbitrage, allows to preserve this independence. See also

Section 3.2 for a more detailed discussion.

By means of the developed computational procedures, we explore the role of the contract

parameters in controlling for the risk/return tradeoff in the policy. This can prove useful to

both the insurer and the policyholder in order to gain insight into the terms of the scheme.

We conclude this Introduction with a brief review of the literature closely related to this

topic, which lies at the intersection of insurance, financial engineering and computational

finance, highlighting the innovative points that we contribute.

The pricing of life insurance contracts in presence of financial risk has been studied quite

extensively in the literature and traces back to Brennan and Schwartz (1976) and Boyle and

Schwartz (1977). More recent contributions include Bacinello and Ortu (1996), Grosen and

Jørgensen (2002), Bacinello et al. (2011), Deelstra and Rayée (2013), Giacinto et al. (2014)

and Gudkov et al. (2019) amongst others. Bacinello et al. (2011) also offer an extensive

overview of the benefits offered by Variable Annuities, such as the Guaranteed Minimum
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Accumulation Benefit, the Guaranteed Minimum Death Benefit, and the Guaranteed Min-

imum Withdrawal Benefit, to mention a few. Ratchet designs have been discussed also in

Lin and Tan (2003) and Kijima and Wong (2007). Modelling based on Lévy processes for

the valuation of life insurance policies has been introduced by Ballotta (2005), and further

explored in Ballotta (2009, 2010), Bacinello et al. (2016), Kélani and Quittard-Pinon (2017)

and Alonso-Garcia et al. (2018) amongst others.

With respect to the above mentioned contributions, our model formulation distinguishes

itself for the fact that the stochastic dependence between interest rate markets and stock mar-

kets is explicitly modelled in a non-diffusive setting accommodating time-varying volatility

effects, following the hybrid construction of Eberlein and Rudmann (2018). These features

are essential for long dated contracts such as the structured annuities under consideration.

Modelling mortality in a stochastic setting traces back to Milevsky and Promislow (2001)

who adopt an intensity-based approach. Extensions have been proposed in the literature, and

we cite, amongst many, the works of Dahl (2004), Biffis (2005) and Dahl and Møller (2006),

who all work in the setting of affine diffusion processes. In this respect, we follow these

indications and adopt an affine model based in which mortality risk is assumed independent

of the financial risk, in line with the large majority of the literature.

As far as surrender modelling is concerned, contributions in the literature can be broadly

classified in two categories. The first one tackles the surrender from the contingent claim

point of view by valuing these early termination rights using the theory of American and

Bermudan options (see, for example, Albizzati and Geman, 1994, Tanskanen and Lukkarinen,

2003, and the already mentioned Bacinello et al., 2011, 2016, Alonso-Garcia et al., 2018

and references therein). The second class of models, on the other hand, starts from the

premise that the exercise of the surrender option is not necessarily the result of an optimal

stopping problem, as the decision can be characterised by a degree of non-rationality due

to personal motivations. Furthermore, it does not seem reasonable to expect that the large

majority of annuity holders can closely monitor the financial market, and consider these life

insurance policies as speculative instruments. Thus, the surrender decision is modelled as an

exogenous factor via an intensity-based approach, which can be linked to both movements in

the interest rate curve (Interest Rate Hypothesis), as well as non financial causes (Emergency

Fund Hypothesis). Contributions in this class are the ones, for example, of Kolkiewicz and

Tan (2006), Le Courtois and Nakagawa (2013), Loisel and Milhaud (2011) and Russo et al.

(2017). This modelling choice is also consistent with market practice - see, for example,

CEIOPS (2007) and Ducuroir et al. (2016).

Our contribution belongs to this latter stream of models and considers a stochastic in-

tensity driven by more general processes, with explicit dependence on the dynamics of the

financial markets, which attempts at unifying the arguments from both the Interest Rate

Hypothesis and the Emergency Funds Hypothesis. Our formulation is also fairly general in

terms of the shape of the intensity function, which leaves a certain degree of freedom for

insurance companies to match their data and experience concerning early termination.

Transform methods have a long tradition in mathematics, and have become common in

financial engineering. Some early contributions to the latter field include Carr and Madan

(1999) and Raible (2000). A systematic study of the mathematical assumptions required for
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the use of the Fourier method is offered in Eberlein et al. (2010). The application of trans-

form valuation approaches to different option contracts with and without path-dependence

features has been studied in Cai and Kou (2012), Sesana et al. (2014), Cai et al. (2015),

Fusai et al. (2016), Cui et al. (2017) to mention a few. For applications aimed at enhancing

Monte Carlo simulation schemes, we refer to for example Broadie and Kaya (2006) and Cai

et al. (2017).

We contribute to the discussion in this field by illustrating the application of Monte

Carlo integration for the computation of the relevant high-dimensional Fourier integrals.

Efficiency is gained by a suitable application of importance sampling on the one side, and

interpolation for the reduction of the computational burden on the other side. We note that

dimension reduction techniques for high-dimensional pricing integrals have been proposed in

Wang (2006) and Wang and Tan (2013); however, these consider only dynamics driven by

Brownian motions.

The paper is organized as follows. In section 2 we introduce the model for the financial

market. Section 3 presents the contract features of the ratchet VA, and introduces the

required modelling assumptions regarding mortality and surrender risk. We present the

closed analytical formulas in section 4, and the numerical analysis in section 5. Section 6

concludes. Some additional material is offered in the Appendices.

2. The financial market

In this section we present the hybrid financial model for the joint dynamics of interest

rates and equity prices. For this purpose, we consider two independent time-inhomogenous

Lévy processes L1 = (L1
s)s≥0 and L2 = (L2

s)s≥0 - the interested reader can refer to Appendix

A for the necessary definitions and assumptions.

Market incompleteness generated by such processes as drivers is addressed by standard

practice of fixing the pricing measure via calibration, using market quotes for traded deriva-

tives.

The model of the fixed income market is based on the approach in Eberlein et al. (2005) (see

also Eberlein and Raible, 1999); thus, the relevant quantities of interest are the instantaneous

forward rates (f(t, T )0≤t≤T≤T ∗), which, for a deterministic and bounded function f(0, T ),

are described by

f(t, T ) = f(0, T ) +

∫ t

0
α(s, T )ds−

∫ t

0
σ1(s, T )dL1

s. (1)

The price (St)0≤t≤T ∗ of a generic equity index is, on the other hand, given by

St = S0 exp
(∫ t

0
r(s)ds+

∫ t

0
σ2(s)dL2

s +

∫ t

0
β(s)dL1

s − ω(t)
)

; (2)

the dependence with the dynamics of the forward rate is captured explicitly by β(·), and

implicitly by the (integrated) short rate r(t). This short rate is defined by equation (1) for

T = t. Without loss of generality, we assume S0 = 1.

The dynamics in equations (1) and (2) depend on σ1(·, ·), σ2(·), β(·) which model the

volatility of the quantities of interest, and are assumed to be continuous functions. Further-

more, the two dynamics depend on α(·) and ω(·) which ensure the martingale property for

discounted asset prices. We discuss these quantities in more details in the following.
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The volatility functions need to satisfy certain boundedness conditions in order to ensure

the existence of exponential moments. Let M1 and M2 be the constant M from Assumption

A.1 corresponding to the driving processes L1 = (L1
s)s≥0 and L2 = (L2

s)s≥0 respectively.

Then, we assume that σ2(·) is positive, and at the same time that σ2(·) and β(·) satisfy

|β(s)| ≤ M1

7
, σ2(s) ≤ M2

2
. (3)

Concerning the conditions on σ1(·, ·), we first need to define the price of a zero coupon bond

with maturity T at time t ≤ T as B(t, T ) = exp
(
−
∫ T
t f(t, s)ds

)
. Due to Fubini’s theorem

and equation (1), the bond price can be written as

B(t, T ) = B(0, T ) exp

(∫ t

0
(f(s, s)−A(s, T ))ds+

∫ t

0
Σ(s, T )dL1

s

)
,

with

A(s, t) :=

∫ t

s
α(s, u)du, Σ(s, t) :=

∫ t

s
σ1(s, u)du.

Therefore, we assume σ1(·, ·) such that

Σ(s, T ) ≤ M1

7
, 0 ≤ s ≤ T (4)

to guarantee sufficient integrability in the proofs in the following sections.

Finally, in order to guarantee an arbitrage free market, we choose (using (A.2))

A(s, T ) = θ1
s(Σ(s, T )), 0 ≤ s ≤ T, (5)

for the discounted bond prices to form Q-martingales; similarly, the discounted stock prices

satisfy the martingale condition under Q if

ω(t) =

∫ t

0

(
θ2
s(σ2(s)) + θ1

s(β(s))
)
ds, (6)

which follows from (A.2) and the independence of the two driving processes L1 = (L1
s)s≥0

and L2 = (L2
s)s≥0.

This class of hybrid models has been studied in Eberlein and Rudmann (2018), who also

provide the details of the calibration procedure.

3. Variable annuities: benefits and insurance modelling

3.1. The VA contract. A variable annuity (VA) is a type of annuity contract sold by

insurance companies, the payoff of which can vary based on the performance of an underlying

reference fund. VAs provide the policyholder a variety of benefits, including the so-called

Guaranteed Minimum Accumulation Benefit (GMAB), and a Death Benefit (DB), which

applies in case of early death of the policyholder.

A typical feature of these contracts is the periodic reset (ratchet), in the sense that the

return to the policyholder is credited periodically based on a percentage of the realized

performance of the underlying. Furthermore, VAs typically offer a downside protection to

the policyholder by means of a guaranteed minimum rate; at the same time insurers might

apply an upside limit in form of a cap to the credited return.

The contract can also include the right to cancel the policy before its contractual expiry

date - the so-called surrender - and receive a pre-determined amount, which we refer to as
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the Surrender Benefit (SB). As surrenders represent a significant risk for the VA issuers,

insurance companies usually impose penalties and charges aimed at reducing the amount

available to the policyholder, making this option less appealing.

In the following we assume that the contract notional I > 0 is fully invested in the index

with price process St. The maturity of the contract is set at T ∈ (0, T ∗], whilst we denote

by τm(x) the remaining lifetime of an x years old policyholder, and by τ s the random time

of the policyholder surrender.

In details, define t := (t0, t1, . . . , tN )> with t0 = 0, and tN = T ; at maturity T the GMAB

pays to the policyholder

ZT := I
(
1 +

N∑
j=1

max(ϕ,min(γ, ξRtj ))
)
;

Rtj := (Stj−Stj−1)/Stj−1 is the return during the period [tj−1, tj ] of the asset St, j = 1, . . . , N ,

the positive constants γ and ϕ are the cap and floor rates which refer to the ratchet periods

[tj−1, tj ], ξ ∈ (0, 1) is the participation rate. A close inspection of this payoff function reveals

that the GMAB can be decomposed in a risk-free component represented by the guaranteed

floor rate, and a sequence of call options on the return rate Rt

ZT = I

1 +N ϕ+

N∑
j=1

(
ξRtj − ϕ

)+
−

N∑
j=1

(
ξRtj − γ

)+

 . (7)

This payoff, however, can only be claimed if the policyholder is still alive at time T and did

not exercise the surrender option before. Thus, the associated cash-flow at maturity is

GMAB(T ) = 1{τm(x)>T}1{τs>T}ZT . (8)

The DB retains a similar payoff structure; however, as this is paid (to the beneficiaries) in

case of early death of the policyholder, monitoring of this event is required. To this purpose,

define t̃ := (t̃0, t̃1, . . . , t̃N ′)
> with 0 = t̃0 < t̃1 < . . . < t̃N ′ = T , and t̃i denoting the time

points at which mortality is monitored by the insurer over the lifetime of the contract. Let

us define `(t̃i) = max{j|tj ≤ t̃i}. Then, in case of death in the interval [t̃i−1, t̃i[, the DB pays

Zt̃i := I
(
1 +

`(t̃i)∑
j=1

max(ϕ,min(γ, ξRtj )) + (t̃i − `(t̃i))ϕ
)
,

for t̃i ∈ t̃, i = 1, . . . , N ′. A decomposition in a risk-free part and a portfolio of options similar

to the one noted in the GMAB applies also in this case. Consequently, the DB cash-flow is

DB(t̃i) = 1{t̃i−1≤τm(x)<t̃i}1{τm(x)<τs}Zt̃i , (9)

as this is payable only in case of no early surrender.

Finally, in case of early surrender, the right of refund is restricted to the current value of

the policyholder share in the underlying index reduced by a compulsory surrender penalty,

as previously discussed (see also Bacinello et al., 2010, Le Courtois and Nakagawa, 2013, for

similar designs). Thus, define t̄ := (t̄0, t̄1, . . . , t̄K)> with 0 = t̄0 < t̄1 < . . . < t̄K < T , and let

us assume that premature surrender is possible only after the first year at any time point

t̄i ∈ t̄ with i = 1, . . . ,K − 1, and t̄1 = 1 year. Then the policyholder receives the amount

ISt̄iP (t̄i),
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with P (t̄i) denoting the proportion of the current index value that the policyholder is entitled

to, so that 1− P (t̄i) amounts to the actual surrender penalty. In particular, we model this

proportion P via an increasing function P : [0, T ] → (0, 1] such that P (T ) = 1. As the

surrender option can be exercised only if the policyholder is still alive (i.e., {τ s < τm(x)}),
should surrender occur at time t̄i, the corresponding cash-flow is

SB(t̄i) = 1{τs=t̄i}1{τs<τm(x)}ISt̄iP (t̄i). (10)

We conclude the description of the VA contract by specifying the hierarchy of the three

time scales t, t̄, and t̃. First we assume that t̄ ⊂ t̃, so that any surrender time t̄i is contained

in {t̃1, . . . , t̃N ′}. This is a very natural assumption since death of the policyholder might be

monitored by the insurer at the end of every month or every quarter, whereas surrender of

the contract might be allowed only at the end of each year, or with the exception of year 1

each half year, during the life of the contract.

Concerning t, the typical contract design provides for annual ratcheting which would mean

ti = i. However, shorter ratchet periods such as crediting of the performance of the reference

fund every six months could be of interest as well. Therefore, we assume only that with the

exception of possible time points ti before the end of the first year - recall that surrender is

not allowed during the first year - all time points ti are contained in t̄.

In terms of valuation, the payoff functions (8) – (10) highlight the need for a model

not only for the financial market, but also for the random quantities τm and τ s capturing

mortality and surrender risk respectively. The modelling of these insurance risks is covered

in the following sections.

3.2. Modelling of mortality risk. As mentioned in the Introduction, we adopt a stochastic

intensity-based approach for mortality, obtained by superimposing a given initial curve for

mortality rates and a stochastic process modelling the random improvements and fluctuations

of mortality trends.

To this purpose, as τm(x) denotes the random time describing the remaining lifetime of

an x years old individual, the survival probability is

Q (τm(x) > t) = EQ
(
e−
∫ t
0 λ

m
u (x+u)du

)
. (11)

In the above, λmt (x + t), t > 0, denotes the stochastic intensity associated to τm for an

individual aged x+ t at time t. We define it as

λmt (x+ t) = λm,0(x+ t)ξt, (12)

with λm0 (x) = λm,0(x), for an initial curve of the mortality intensity, λm,0, and a process ξt

such that ξ0 = 1, capturing the mortality improvements from time 0 to time t for a person

aged x+ t.

The initial curve is assumed to follow the standard Gompertz-Makeham model, that is

λm,0(x+ t) =
1

q
e

(
x+t−z

q

)
, z ≥ 0, q > 0.

The process for the mortality improvement ratio ξt follows a generalized Ornstein-Uhlenbeck

process of the form

dξt = κ(exp(−λt)− ξt)dt+ dWt, λ ∈ R
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for W = (Ws)s≥0 a Brownian motion independent of (L1, L2). It follows that for any

0 ≤ t ≤ T
Q(τm(x) > t) = exp

(
Ax(t) +Bx(t)λm0 (x)

)
; (13)

Ax(t), Bx(t) are functions of the parameters of the models for λm,0(x+t) and ξt; their explicit

expressions are provided in the (online) Appendix D.

A few considerations are in order. The adopted specification of the process ξt does not

guarantee that the mortality intensity is positive; however as noted already in Escobar et al.

(2016), for the chosen parameters (see Section 5) the probability of this event is of order 10−5

and therefore negligible. Furthermore, one possible generalization could replace the Brownian

motion W by a positive Lévy process L3 = (L3
s)s≥0 independent of (L1, L2). The survival

probability (11) can then be derived using the theory of affine processes as described, for

example, in Eberlein and Kallsen (2019), Chapter 6. Another possible generalization could

be the extension to multi-factor mortality models. We leave these to further research.

Furthermore, in this construction we assume independence between demographic and

financial risks under the risk-neutral measure Q. In this regard, we note the following.

There is an agreement in the actuarial literature that independence between mortality risk

and financial risks under the objective measure P is a reasonable assumption in many cases.

However, a change to an equivalent martingale measure, such as the pricing measure Q, could

introduce dependence under this martingale measure, see Dhaene et al. (2013) for a detailed

discussion. On the other hand, the QP-rule by Artzner et al. (2020), which is motivated by

a fundamental theorem on insurance-finance arbitrage, suggests keeping as many properties

of the objective measure as possible. In particular, the QP-rule implies that independence

between the biometric and the financial risks translates into independence also under the

equivalent measure used for the valuation of life insurance products. We conclude by also

noting that many other equivalent measures have this property, although not all of them.

3.3. Modelling of surrender risk. In the following we adopt an intensity-based approach

to model the policyholder surrender behaviour. Specifically, we assume that the policy-

holder’s decision to end prematurely the insurance contract is affected by personal and

financial considerations, although this decision might not be necessarily optimal from the

point of view of financial theory.

The surrender intensity is defined by two components, a deterministic baseline given by

a constant C > 0, and a dynamic component. The baseline captures surrender behaviours

induced by personal contingencies and any other non-economic cause. For the definition of

the dynamic part, we consider a process D(t) defined as

D(t) = Yt − p(t) +

∫ T

t
f(t, s)ds− δT, 0 ≤ t ≤ T, (14)

capturing the spread between the return guaranteed to the policyholder at maturity in case of

no surrender on the one hand, and the surrender benefit plus any return offered by reinvesting

in the fixed income market on the other hand. In more details, in (14), the guaranteed return

in case of no surrender is represented by δT , with δ = log(1 +Nϕ)/T , i.e. the continuously

compounded rate equivalent to the floor rate ϕ accumulated up to maturity T . The return

in case of surrender consists of the benefit at the time of surrender, which is determined by

the (log-)return of the equity index, Yt = logSt, net of any charges and penalties (captured
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by the term p(t) = − logP (t)), plus the rates at which this amount can be reinvested in the

fixed income market until maturity T .

As specified above, we assume that surrender is allowed at time points t̄i, i = 1, . . . ,K−1.

Based on the definitions of C and D(t), the surrender intensity λs is constructed as a variable

which is constant on each interval [t̄i, t̄i+1) for i = 1, . . . ,K − 1. Specifically, we set

λs(t) = β h(D(t̄i)) + C, for t̄i ≤ t < t̄i+1, (15)

and λs(t) = 0 for t ∈ [0, t̄1) ∪ [t̄K , T ]. The parameter β ∈ [0, 1] measures the extent of

the impact of the conditions in the financial market on the policyholder decision to leave

the VA scheme. The function h(·) is assumed non-negative and continuous, and satisfying

additional integrability conditions in the following sense. We define for l = 1, . . . ,K − 1 and

∆t̄l := t̄l − t̄l−1 the function

fl(x) = e−β∆t̄l+1h(x),

and require the integrability of both fl and f̂l, with f̂ denoting the Fourier transform of a

generic function f . Possible examples are h(x) = x2 and h(x) = |x|.
Finally, the conditional probability that surrender does not occur until t̄i is

Q(τ s ≥ t̄i|FL
1,L2

t̄i
) = exp

(
−
∫ t̄i

0
λs(u)du

)
, (16)

for all 1 ≤ i ≤ K − 1, and

Q(τ s ≥ t|FL
1,L2

t ) = Q(τ s =∞|FL
1,L2

t )

= exp
(
−
∫ t̄K

0
λs(u)du

)
, (17)

for t̄K−1 < t. Here
(
FL

1,L2

t

)
t≥0

denotes the filtration which is generated by the driving

processes (L1
t )t≥0 and (L2

t )t≥0. Note that the right hand side of Equation (17) is measurable

with respect to FL
1,L2

t̄K−1
due to the definition of λs(t) on the interval [t̄K−1, t̄K).

At this stage, we observe that an important decision in the modelling process concerns

the choice of the function h(x), as this influences the reaction of the surrender model to the

changes in the current market conditions. Although the approach offered in this paper is

quite general, we consider the case of non-negative functions h(·), as the above mentioned

parabolic and modulus functions, as a way of combining together the two recognized theories

in the literature attempting to explain the surrender behaviour, i.e. the Interest Rate Theory

and the Emergency Fund Theory (see for example Knoller et al., 2016).

In short, according to the former theory, both higher and lower interest rates (such as

the ones currently observed in all major economies) can represent strong incentives for the

policyholder to surrender in order to be able to either switch to higher yield investments, or to

exploit advantageous refinancing opportunities respectively. The Emergency Fund Theory,

on the other hand, puts forward the idea of surrender as a way to regaining sufficient financial

resources following individual income shocks.

A few final considerations are in order. Firstly, consistently with the literature in the field

(see for example Milhaud et al., 2011, Knoller et al., 2016, Nolte and Schneider, 2017, and

references therein), the intensity functions λs and λm are independent due to the assumed

independence between demographic and financial risks. Secondly, our construction differs

from the ones put forward by Le Courtois and Nakagawa (2013), Escobar et al. (2016) and
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Russo et al. (2017) for example, due to the non-Gaussian dynamics of the risk drivers L1

and L2. Finally, our approach generalizes Ballotta et al. (2020) as the intensity function λs

uses a generic non-negative function h(·).

4. Fourier-based market consistent valuation

In this section we derive closed form valuation formulas for the VA components introduced

in Section 3 based on the theory of Fourier transforms.

On the basis of the risk-neutral valuation principle, the value at time t = 0 of each contract

component is

PGMAB = EQ

[
e−
∫ T
0 r(u)du GMAB(T )

]
, PDB =

N ′∑
i=1

EQ

[
e−
∫ t̃i
0 r(u)duDB(t̃i)

]
and

PSB =

K−1∑
i=1

EQ

[
e−
∫ t̄i
0 r(u)duSB(t̄i)

]
.

As the value PVA of the variable annuity is the sum of the values of its constituents,

PVA = PGMAB + PDB + PSB. (18)

We mention that in the literature on valuation of life insurance contracts, fees aimed at

covering the cost of the guarantees and other management expenses are considered as well,

see for example Bacinello et al. (2011), Kélani and Quittard-Pinon (2017) and references

therein. However, in the following we focus instead on risk-neutral valuation. The proposed

model, though, can be adapted to cater for these additional features by introducing a fee

rate applied to the fund value.

4.1. Guaranteed minimum accumulation benefit. We provide in Theorem 4.1 an ex-

plicit representation for the value PGMAB, which is numerically efficient as it reduces the

task to the computation of two integrals. In the interest of readability, the corresponding

integrand functions M and N are defined in Appendix B.1.

Theorem 4.1. The value PGMAB is given by

PGMAB = Q(τm(x) > T )B(0, T )I

(1 +N ϕ)A1 + ξ
N∑
j=1

(
A2,j

(
ϕ

ξ

)
−A2,j

(
γ

ξ

))
with

A1 =
e−C(t̄K−t̄1)

(2π)K−1
e−
∫ T
0 A(s,T )ds

∫
RK−1

M(u, T )du,

A2,j(κ) =
e−C(t̄K−t̄1)

(2π)K
e−
∫ T
0 A(s,T )ds

∫
RK

N(u, j, κ, T )du,

and A(s, T ) as in (5).

Remark 4.1 (Some preliminaries). We note that in the given setting the following result

holds in virtue of the explicit formula for the bond price B(t, T )

−
∫ T

t
f(t, s)ds =

∫ t

0
r(s)ds−

∫ T

0
f(0, s)ds−

∫ t

0
A(u, T )du+

∫ t

0
Σ(u, T )dL1

u. (19)
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In addition, by setting t = T in (19), we obtain

0 =

∫ t

0
r(s)ds−

∫ t

0
f(0, s)ds−

∫ t

0
A(s, t)ds+

∫ t

0
Σ(s, t)dL1

s; (20)

Further, equation (19) together with equation (2) allows the following explicit representation

of D(t)

D(t) =

∫ t

0
r(s)ds+

∫ t

0
σ2(s)dL2

s +

∫ t

0
β(s)dL1

s − ω(t)− p(t) +

∫ T

t
f(t, s)ds− δT

= −p(t)− δT +

∫ T

0
f(0, s)ds+

∫ t

0
A(s, T )ds−

∫ t

0
Σ(s, T )dL1

s (21)

+

∫ t

0
σ2(s)dL2

s +

∫ t

0
β(s)dL1

s − ω(t).

Proof of Theorem 4.1. Our starting point is the payoff function (8). The independence be-

tween τm(x) and the financial market implies that

PGMAB = EQ

[
e−
∫ T
0 r(u)du1{τm(x)>T}1{τs>T} ZT

]
= Q(τm(x) > T )EQ

[
e−
∫ T
0 r(u)duZTEQ

(
1{τs>T}|F

L1,L2

T

)]
.

By (17)

PGMAB = Q(τm(x) > T )EQ

[
e−
∫ T
0 r(u)due−

∫ t̄K
0 λs(u)du ZT

]
.

Let QT be the T -forward measure, i.e.

dQT

dQ
=

1

B(0, T )B(T )
, (22)

with B(t) = exp
(∫ t

0 r(s)ds
)

, and ET the corresponding expectation. Then

PGMAB = Q(τm(x) > T )B(0, T )ET
[
e−
∫ t̄K
0 λs(u)du ZT

]
.

It follows from (7) that

ET
[
e−
∫ t̄K
0 λs(u)du ZT

]
= I(1 +N ϕ)ET

[
e−
∫ t̄K
0 λs(u)du

]
+Iξ

N∑
j=1

ET

[
e−
∫ t̄K
0 λs(u)du

(
Rtj −

ϕ

ξ

)+
]

−Iξ
N∑
j=1

ET

[
e−
∫ t̄K
0 λs(u)du

(
Rtj −

γ

ξ

)+
]

=: I(1 +N ϕ)A1 + Iξ
N∑
j=1

(
A2,j

(
ϕ

ξ

)
−A2,j

(
γ

ξ

))
, (23)



13

with obvious definitions in the last line. As λs is a step function (see (15)), it follows that

A1 = e−C(t̄K−t̄1)ET
[K−1∏
i=1

e−β∆t̄i+1h(D(t̄i))

]
= e−C(t̄K−t̄1)ET

[
fK−1(D(t̄1), . . . , D(t̄K−1))

]
,

with fK−1(x1, . . . , xK−1) :=
∏K−1
l=1 fl(xl) as defined in (B.1). As

f̂K−1(y1, . . . , yK−1) =
K−1∏
l=1

f̂l(yl) (24)

and f̂l is integrable by assumption, we conclude that f̂K−1 as a function on RK−1 is integrable

which is a necessary requirements for its inversion. By Theorem 3.2 (and Remark 3.1) in

Eberlein et al. (2010) - note that dampening of the function is not required in this case -

ET
[
fK−1(D(t̄1), . . . , D(t̄K−1))

]
=

1

(2π)K−1

∫
RK−1

M̃(iu)f̂K−1(−u)du, (25)

with

M̃(iu) := ET
[
eiu1D(t̄1)+...+iuK−1D(t̄K−1)

]
,

for any u = (u1, . . . , uK−1). Representation (21) above and the definition of wl in equation

(B.2) imply

M̃(iu) = exp

(
i

K−1∑
l=1

ulwl

)
ET
[

exp
(

i

K−1∑
l=1

ul

(∫ t̄l

0
σ2(s)dL2

s +

∫ t̄l

0
(β(s)− Σ(s, T ))dL1

s

))]
.

(26)

As

B(t) =
1

B(0, t)
exp

(∫ t

0
A(s, t)ds−

∫ t

0
Σ(s, t)dL1

s

)
. (27)

(see (20)), the explicit form of the density of QT is

dQT

dQ
= exp

(
−
∫ T

0
A(s, T )ds+

∫ T

0
Σ(s, T )dL1

s

)
.

It follows that the expectation in (26) can be written as

EQ

[
exp

(∫ T

0
Σ(s, T ))dL1

s −
∫ T

0
A(s, T )ds

)
× exp

(
i

K−1∑
l=1

(∫ t̄l

0
ulσ2(s)dL2

s +

∫ t̄l

0
ul(β(s)− Σ(s, T ))dL1

s

))]

= e−
∫ T
0 A(s,T )dsEQ

[
exp

(∫ T

0
E(s, u, T )dL1

s +

∫ T

0
F (s, u)dL2

s

)]
,

with E and F as in (B.4). As the two driving processes are independent, and the integrands

are left-continuous functions, the expression above is nothing but

exp
(
−
∫ T

0
A(s, T )ds+

∫ T

0
θ1
s(E(s, u, T ))ds+

∫ T

0
θ2
s(F (s, u))ds

)
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in virtue of equation (A.2). With D(u, T ) defined in (B.4), M̃(iu) in (26) is

M̃(iu) = D(u, T ) exp
(
−
∫ T

0
A(s, T )ds+

∫ T

0
θ1
s(E(s, u, T ))ds+

∫ T

0
θ2
s(F (s, u))ds

)
.

By plugging this representation of M̃(iu) in (25) the result for A1 follows.

We turn our attention to the term

A2,j(κ) = ET
[
e−
∫ t̄K
0 λs(u)du

(
Rtj − κ

)+
]
. (28)

As Rtj = exp(Ytj − Ytj−1)− 1, the same arguments as above lead to

A2,j(κ) = e−C(t̄K−t̄1)ET
[
fK−1(D(t̄1), . . . , D(t̄K−1))

(
eYtj−Ytj−1 − 1− κ

)+
]

= e−C(t̄K−t̄1)ET
[
F (D(t̄1), . . . , D(t̄K−1), Ytj − Ytj−1)

]
,

for

F (x1, . . . , xK) := fK−1(x1, . . . , xK−1) (exK − 1− κ)+ .

We note that the second factor of F is unbounded for large xK ; therefore, integrability has to

be recovered via dampening. To this purpose, define g(x1, . . . , xK) := F (x1, . . . , xK)e−rxK ,

with 1 < r < 2; further, let

gK(xK) := (exK − 1− κ)+ e−rxK ,

then, gK and consequently also g are integrable functions. The Fourier transform of gK is

ĝK(y) =
(1 + κ)e(iy−r) log(1+κ)

(iy − r + 1)(iy − r)
=

(1 + κ)iy−r+1

(iy − r + 1)(iy − r)
, y ∈ R.

ĝK is integrable as |ĝK(y)|C = (1 +κ)e−r log(1+κ)(((1− r)2 +y2)(r2 +y2))−1/2. It follows that

ĝ(y1, . . . , yK) = f̂K−1(y1, . . . , yK−1)
(1 + κ)iyK−r+1

(iyK − r + 1)(iyK − r)
, (29)

and therefore ĝ is integrable. Theorem 3.2 in Eberlein et al. (2010) can again be applied

with R := (0, . . . , 0, r) ∈ RK , and it allows to express the expectation above as a Fourier

integral in RK , i.e.

ET
[
F (D(t̄1), . . . , D(t̄K−1), Ytj − Ytj−1)

]
=

1

(2π)K

∫
RK

Ñj(R+ iu)F̂ (iR− u)du, (30)

with Ñj(R+ iu) defined as

Ñj(R+ iu) := ET
[
eiu1D(t̄1)+...+iuK−1D(t̄K−1)+(iuK+r)(Ytj−Ytj−1 )

]
.

Using (20), the increments of Yt can be written in the form

Ytj − Ytj−1 =

∫
]tj−1,tj ]

r(s)ds+

∫
]tj−1,tj ]

σ2(s)dL2
s +

∫
]tj−1,tj ]

β(s)dL1
s − (ω(tj)− ω(tj−1))

= w̃tj −
∫ tj

0
Σ(s, tj)dL

1
s +

∫ tj−1

0
Σ(s, tj−1)dL1

s

+

∫
]tj−1,tj ]

σ2(s)dL2
s +

∫
]tj−1,tj ]

β(s)dL1
s.
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Thus, as above, using the notation from (B.4), we derive by switching back to the original

risk neutral measure

Ñj(R+ iu) = EQ

[
eiu1D(t̄1)+...+iuK−1D(t̄K−1)+(iuK+r)(Ytj−Ytj−1 )−

∫ T
0 A(s,T )ds+

∫ T
0 Σ(s,T ))dL1

s

]
= D̃(u− iR, j, T )e−

∫ T
0 A(s,T )ds

× EQ

[
exp

(∫ T

0
Ẽ(s, u− iR, j, T )dL1

s +

∫ T

0
F̃ (s, u− iR, j)dL2

s

)]
.

Observe that as 1 < r < 2, and in virtue of (3) and (4), rσ2(s) ≤M2 and |rβ(s)−rΣ(s, tj)+

rΣ(s, tj−1) + Σ(s, T )| ≤ 6M1/7 + M1/7 = M1. This implies that the real part of the

integrand in both stochastic integrals is bounded by M1 and M2 respectively. Consequently,

by independence of the driving processes and the left-continuity of the integrands, the last

expectation can be conveniently computed according to (A.2). The result is

Ñj(R+ iu) = D̃(u− iR, j, T )e−
∫ T
0 A(s,T )ds

× exp
(∫ T

0
θ1
s(Ẽ(s, u− iR, j, T ))ds+

∫ T

0
θ2
s(F̃ (s, u− iR, j))ds

)
. (31)

ĝ and F̂ are related by

ĝ(u) =

∫
RK

ei〈u,x〉e−〈R,x〉F (x)dx = F̂ (u+ iR),

and therefore

F̂ (iR− u) = ĝ(−u) = f̂K−1(−u1, . . . ,−uK−1)
(1 + κ)1−iuK−r

(iuK + r − 1)(iuK + r)
. (32)

The result follows by substitution of (31) and (32) into (30). �

4.2. Death benefit. Similarly to the GMAB case, we provide a numerically efficient repre-

sentation for the value of the death benefit

PDB =

N ′∑
i=1

EQ

[
e−
∫ t̃i
0 r(u)duDB(t̃i)

]
.

The main result is offered in the following theorem (in the interest of readability, the corre-

sponding integrand functions N0, M j,i and N j,i are defined in Appendix B.2).

Theorem 4.2.

PDB = I
∑

i: t̃i≤t̄1

Q(τm(x) ∈ [t̃i−1, t̃i))B(0, t̃i)

(1 + t̃iϕ) + ξ

`(t̃i)∑
l′=1

(
Ai,l′

(
ϕ

ξ

)
−Ai,l′

(
γ

ξ

))
+I

K−2∑
j=1

∑
i: t̃i∈(t̄j ,t̄j+1]

Q
(
τm(x) ∈ [t̃i−1, t̃i)

)
B(0, t̃i)

(1 + t̃iϕ)A1
j,i + ξ

`(t̃i)∑
l′=1

(
A2
j,i,l′

(
ϕ

ξ

)
−A2

j,i,l′

(
γ

ξ

))
+I

∑
i:t̃i∈(t̄K−1,T ]

Q
(
τm(x) ∈ [t̃i−1, t̃i)

)
B(0, t̃i)

(1 + t̃iϕ)A1
K−1,i + ξ

`(t̃i)∑
l′=1

(
A2
K−1,i,l′

(
ϕ

ξ

)
−A2

K−1,i,l′

(
γ

ξ

)) ,
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with

Ai,l′ (κ) =
e−
∫ t̃i
0 A(s,t̃i)ds

2π

∫
R
N0(u, l′, κ, t̃i)du,

A1
j,i =

e−C(t̄j+1−t̄1)

(2π)j
e−
∫ t̃i
0 A(s,t̃i)ds

∫
Rj

M j,i(u, T )du,

A2
j,i,l′(κ) =

e−C(t̄j+1−t̄1)

(2π)j+1
e−
∫ t̃i
0 A(s,t̃i)ds

∫
Rj+1

N j,i(u, l′, κ, T )du,

for j ∈ {1, . . . ,K − 1}.

The proof of Theorem 4.2 is built along similar arguments as the ones used for the proof

of Theorem 4.1 and is, therefore, deferred to (the online) Appendix C.

4.3. Surrender benefit. We conclude by focusing on the valuation of the third component

of the VA contract, namely the surrender benefit

PSB =

K−1∑
i=1

EQ

[
e−
∫ t̄i
0 r(u)duSB(t̄i)

]
.

As in the previous sections, the definition of the integrand functions (M i and N i) in the

representation offered in the following theorem is deferred to Appendix B.3.

Theorem 4.3. The value PSB has the explicit representation

PSB = I

K−1∑
i=1

P (t̄i)Q(τm(x) > t̄i)(B
1
i −B2

i ),

with B1
1 = 1 and

B1
i =

e−C(t̄i−t̄1)

(2π)i−1

∫
Ri−1

M i(u, T )du,

for i ∈ {2, . . . ,K − 1}, and

B2
i =

e−C(t̄i+1−t̄1)

(2π)i

∫
Ri

N i(u, T )du

for i ∈ {1, . . . ,K − 1}.

Proof. Given the payoff function in equation (10), the relevant expression for all surrender

time points t̄i is

EQ

[
e−

∫ t̄i
0 r(s)ds1{τs=t̄i}1{τs<τm(x)}St̄i)

]
= Q(τm(x) > t̄i) EQ

[
e−

∫ t̄i
0 r(s)ds1{τs=t̄i}St̄i

]
. (33)

Observe that 1{τs=t̄i} = 1{t̄i≤τs} − 1{t̄i+1≤τs}. Consequently in virtue of equation (16), (33)

can be written as

EQ

[
e−
∫ t̄i
0 r(s)ds1{τs=t̄i}1{τs<τm(x)}St̄i

]
= Q(τm(x) > t̄i) EQ

[
e−
∫ t̄i
0 r(u)duSt̄ie

−
∫ t̄i
0 λs(u)du

]
− Q(τm(x) > t̄i) EQ

[
e−
∫ t̄i
0 r(u)duSt̄ie

−
∫ t̄i+1
0 λs(u)du

]
.

For short, we denote the first expectation by B1
i and the second one by B2

i . Let QS,i, i =

1, . . . ,K − 1 be the spot probability measure defined by

dQS,i

dQ
= e−

∫ t̄i
0 r(u)duSt̄i . (34)
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Note that this defines indeed a density process as the discounted stock price e−
∫ t
0 r(u)duSt is

a Q-martingale. Using this new measure B1
i and B2

i simplify to

B1
i = EQS,i

[
e−
∫ t̄i
0 λs(u)du

]
, (35)

B2
i = EQS,i

[
e−
∫ t̄i+1
0 λs(u)du

]
. (36)

The above expressions are well-defined as λs(u) for t̄i ≤ u < t̄i+1 is defined by D(t̄i) and

consequently is FL1,L2

t̄i
-measurable. The calculation of expectation (35) follows the same ar-

gument used for the calculation of A1 in the proof of Theorem 4.1. B1
1 = 1 as by construction

λs(u) = 0 for u ∈ [0, t̄1). For i ∈ {2, . . . ,K − 1}, we get

eC(t̄i−t̄1)EQS,i

[
e−
∫ t̄i
0 λs(u)du

]
= EQS,i

[
f i−1(D(t̄1), . . . , D(t̄i−1))

]
, (37)

with f i−1(x1, . . . , xi−1) :=
∏i−1
l=1 fl(xl). The latter expectation is

1

(2π)i−1

∫
Ri−1

M̃ i−1(iu)f̂ i−1(−u)du, (38)

for

f̂ i−1(u1, . . . , ui−1) =
i−1∏
l=1

f̂l(ul),

and M̃ i−1(iu) defined as

M̃ i−1(iu) = EQS,i

[
eiu1D(t̄1)+...+iui−1D(t̄i−1)

]
.

It follows from (21) that

M̃ i−1(iu) = EQ

[
eiu1D(t̄1)+...+iui−1D(t̄i−1)+

∫ t̄i
0 σ2(s)dL2

s+
∫ t̄i
0 β(s)dL1

s−ω(t̄i)

]
= exp

(
i

i−1∑
l=1

ul(−p(t̄l)− δT +

∫ T

0
f(0, s)ds+

∫ t̄l

0
A(s, T )ds− ω(t̄l))

)

×EQ
[

exp

(
i
i−1∑
l=1

(∫ t̄l

0
ulσ2(s)dL2

s +

∫ t̄l

0
ul(β(s)− Σ(s, T ))dL1

s

)
+

∫ t̄i

0
σ2(s)dL2

s +

∫ t̄i

0
β(s)dL1

s − ω(t̄i)

)]
.

Using (B.6) and (A.2), the last expectation becomes

EQ

[
exp

(∫ t̄i

0
Ei(s, u, T )dL1

s +

∫ t̄i

0
F i(s, u)dL2

s

)]
= exp

(∫ t̄i

0

(
θ1
s(E

i(s, u, T )) + θ2
s(F

i(s, u))
)
ds
)

The representation of B1
i in the Theorem follows from (38) as

M̃ i−1(iu) = Di(u, T ) exp
(∫ t̄i

0

(
θ1
s(E

i(s, u, T )) + θ2
s(F

i(s, u))
)
ds
)
.



18

The expression for B2
i is obtained by the same argument as

B2
i = e−C(t̄i+1−t̄1)EQS,i

[
f i(D(t̄1), . . . , D(t̄i))

]
. (39)

�

Using the same mathematical tools, we can derive the term structure of the probability

of surrender. For this purpose, we consider the complement probability

Q (τ s ≥ t̄i) = EQ

[
exp

(
−
∫ t̄i

0
λs(u)du

)]
,

which follows from equation (16).

Proposition 4.4. The probability of no surrender before t̄i is given by

Q (τ s ≥ t̄i) =
e−C(t̄i−t̄1)

(2π)i−1

∫
Ri−1

M̄ i(u, T )du, (40)

with

M̄ i(u, T ) = Di−1,i(u, T ) exp

(∫ t̄i

0

(
θ1
s

(
Ei(s, u, T )− β(s)

)
+ θ2

s (Fi−1(s, u))
)
ds

)
f̂ i−1(−u),

Di−1,i(u, T ) and Fi−1(s, u) defined in (B.5), and Ei(s, u, T ) is given in (B.6).

Proof. Exploiting the structure of the surrender intensity λs, we obtain

Q (τ s ≥ t̄i) = e−C(t̄i−t̄1)EQ

[
f i−1(D(t̄1), . . . , D(t̄i−1))

]
with f i−1(x1, . . . , xi−1) :=

∏i−1
l=1 fl(xl). The proof follows now the same lines as for the

derivation of B1
i in the previous proof. The only difference being we now operate under the

risk neutral measure Q instead of the spot measure QS,i. �

5. Numerical analysis and Results

5.1. Setup. In this section we discuss the numerical implementation of the results obtained

in section 4. We stress that Theorems 4.1 – 4.3 hold for a large variety of driving processes

within the class of Lévy processes, such as hyperbolic, Normal Inverse Gaussian, Variance

Gamma and CGMY; for illustration purposes the following assumptions are in place.

The financial market. We choose as a relevant Lévy process the Normal Inverse Gaussian

(NIG) process with cumulant function

θ(u) = µu+ δ′
(√

(α′)2 − (β′)2 −
√

(α′)2 − (β′ + u)2
)
, −α′ − β′ < u < α′ − β′,

for µ ∈ R, δ′ > 0, 0 ≤ |β′| < α′. The parameter α′ controls the steepness of the density (and

therefore its tail behaviour), β′ controls the skewness of the distribution, whilst δ′ is the scale

parameter; the location parameter µ is instead set to zero, without loss of generality.

Further, we assume a simplified Vasiček structure for the function σ1(s, T ) so that for

a > 0

σ1(s, T ) =

{
ae−a(T−s), s ≤ T
0, s > T

Σ(s, T ) =

{
1− e−a(T−s), s ≤ T
0, s > T

.

For the equity part, we assume σ2(s) = σ2 > 0 and β(s) = b ∈ R.
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Figure 1. Term structure of surrender probabilities. ‘Intensity 1’: h(x) = x2.
‘Intensity 2’: h(x) = |x|. Parameters: Table 1.

The surrender intensity function. Although the setting is fairly general concerning the func-

tion of the spread D(t) in the construction of the surrender intensity, for illustration purposes

we focus on the cases h(x) = x2 and h(x) = |x|. The resulting versions are labelled ‘Intensity

1’ and ‘Intensity 2’ respectively.

It follows in the first case (‘Intensity 1’) that

fl(x) = e−β∆t̄l+1h(x) = e−β∆t̄l+1x
2
,

which implies, by recognizing a rescaled Gaussian distribution, that

f̂l(y) =

√
π

β∆t̄l
exp

(
− y2/(4β∆t̄l)

)
, y ∈ C. (41)

In the second case (‘Intensity 2’) instead,

fl(x) = e−β∆t̄l+1h(x) = e−β∆t̄l+1|x|;

a straightforward integration shows that

f̂l(y) =
2β∆t̄l+1

y2 + (β∆t̄l+1)2
, y ∈ C. (42)

Note that this result could also be recovered in virtue of the properties of the Cauchy

distribution.

We note that in both specifications the function h(x) is non-negative and U-shaped, but

characterised by a different rate of growth. This is reflected in the resulting term structure

of surrender probabilities shown in Figure 1. This will allow us to assess the impact on the

value of the VA and its components of expert judgement concerning the choice of the shape

of the surrender intensity.

Parameters. All numerical experiments refer to contracts with a parameter setting as in

Table 1. Various values of the participation rate, ξ, and the cap rate, γ, are considered in

the following analysis.



20

Table 1. Parameters for the Variable Annuity contract. Reference process: NIG.
Financial Market Model parameters - source: Eberlein and Rudmann (2018). Mor-
tality Model parameters - source: Escobar et al. (2016).

Variable Annuity Financial Market Model Surrender Model Mortality Model

L1
t L2

t

I 100 α′ 4 5.73 β 0.05 q 12.1104
T 10 years β′ -3.8 -2.13 C 0.01 z 76.139
ϕ 0.0105 δ′ 1.34 8.3 κ 0.4806
P (t̄l) 0.95 + 0.05t̄l/T a 0.0020898 - λ 0.0195
∆tj = ∆t̄l 1 year σ2 - 0.1818 σ 0.0254
t̃i − t̃i−1 6 months b - 0.0065

The parameters of the financial model are taken from the calibration exercise in Eberlein

and Rudmann (2018). Further, for illustration purposes, we consider the case of a VA policy

with annual ratchet reset schedule; surrender and mortality are instead monitored annually

and semi-annually respectively. We observe though that the results presented in section 4

hold for any other choice of the relevant time grids.

All experiments are run in parallel on the Camber cluster at City, University of London.

5.2. Implementation. Theorems 4.1 – 4.3 offer analytical pricing formulas in terms of

multidimensional integrals; the dimensionality depends on the maturity of the policy and

the frequency with which the surrender event is monitored. For example, for the case under

consideration of a 10 year contract with annual surrender monitoring, the pricing formulas are

expressed in terms of integrals with up to 9 dimensions. VA with longer maturities - which is

usually the case - and/or higher monitoring frequency will be characterised by integrals with

more dimensions. As deterministic quadrature methods, such as global adaptive quadrature,

can be implemented in practice for integral with at most 3 dimensions (see Brandimarte,

2013, for example), we adopt Monte Carlo integration with importance sampling for the

computation of the valuation formulas in Theorems 4.1 – 4.3. Monte Carlo integration

is based on the construction of random grids in the hyperspace, paired with interpreting

the integral as an expected value (see Brandimarte, 2013, for further details). Thus, the

multidimensional integral over the domain Ω ⊂ Rd

I =

∫
Ω
f(x)dx

is approximated by

IMC =
1

M

M∑
i=1

f(xi)

p(xi)
,

i.e. by evaluating the function f(x) at M points, x, drawn randomly in Ω with a probability

density p(x). The approximation error is measured by the (unbiased) sample variance∑M
i=1 (Ii − IMC)2

M − 1
.

Consequently, the rate of convergence crucially depends on the sample size M instead of the

dimension of the integral.

In order to speed up convergence, we adopt importance sampling as the most adequate

variance reduction technique to tackle oscillatory integrand functions, such as the ones in

Theorems 4.1 – 4.3. In Figure 2 we illustrate the case of the integrand functions defining
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Figure 2. M(u, T ) and N(u, j, ϕ/ξ, T ) - Theorem 4.1. Intensity 1: h(x) = x2.
Intensity 2: h(x) = |x|. Maturity T = 3, j = 1, ξ = 0.7; other parameters: Table 1.
Top panels: real and imaginary part of M(u, T ). Bottom panels: real and imaginary
part of N(u, j, ϕ/ξ, T ).

a 3 years GMAB for both surrender intensity versions considered in this section. We note

that, although all functions are centered around the origin, the M(·) and N(·) functions

generated under ‘Intensity 2’ are more strongly peaked and faster decaying. These different

shapes and oscillatory behaviours are primarily due to the different Fourier transforms f̂

involved (see eq. (41) and (42)), which can be linked to a rescaled Gaussian and Cauchy

distribution, respectively. Consequently, the choice of the importance sampling distribution

changes according to the adopted surrender intensity.

In details, for h(x) = x2, i.e. for ‘Intensity 1’, we choose the multivariate Gaussian

distribution with zero mean, independent components, and a given variance matrix, which

is treated as a parameter. Thus, for d > 0 indicating the required dimension,

p(x) =

d∏
j=1

1

(2πs2
j )

1/2
e
−

x2
j

2s2
j .

Numerical experiments show that relatively small biases and standard errors for GMAB and

DB can be obtained by using the same variance for the first K − 1 dimensions fixed at

s2
j = (0.5)2, j = 1, . . . ,K−1, and increasing this value to s2

K = (2.1)2 for the Kth dimension,
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as to cater for the oscillatory behaviour induced by the Fourier transform of the option

payoff. As far as the SB is concerned, the variance is fixed at 0.16 across all dimensions.

For the case of h(x) = |x|, i.e. for ‘Intensity 2’, we adopt instead the multivariate Cauchy

distribution with independent components, zero location parameter, and a scale parameter

set at 0.05 for all dimensions, so that

p(x) =
d∏
j=1

sj

π
(
x2
j + s2

j

) , sj = 0.05, j = 1, . . . , d.

Numerical experiments show that this choice minimizes the Monte Carlo standard error.

In order to test the accuracy of the Monte Carlo integration procedure introduced above,

we first use our proposed algorithms to price a short term contract, for which integration

via standard quadrature packages is possible. Therefore, we consider the case of a 3 year

GMAB; as K = 2, and the surrender dates t̄l are annually spaced, the expressions for A1

and A2,· in Theorem 4.1 are given by one- and two-dimensional integrals respectively, which

can be computed by any standard software package.

Results for the GMAB are reported in the first five columns of Table 2 for both intensity

functions considered in this paper (panel A and B respectively). The Table reports values

obtained with Monte Carlo integration, as well as the corresponding values from deterministic

quadrature methods. We also report measures of the accuracy of the Monte Carlo integral,

IMC , both in terms of the absolute value of the bias expressed as percentage of the value

obtained by quadrature IQ, i.e.

100×
|IMC − IQ|

IQ
,

and the percentage standard error

100× 1

IMC

√∑M
i=1(Ii − IMC)2

M(M − 1)
.

The numerical results confirm the quality of the procedure as all biases and standard

errors are below 0.5%, and this also applies to the value of the full contract. Similar results

are obtained for both the DB and SB (see Table E.1 in (online) Appendix E).

We then consider a 10-year contract (for which deterministic quadrature methods are no

longer of practical use); results are presented in Table 3. At this stage, we note from the

first five columns the low standard errors characterizing the values of all the components

of the VA regardless of the model chosen for the surrender intensity. However, such a low

error is achieved at the cost of a high CPU time, especially in the case of the DB component.

This is primarily due to the computation of the quantities
∫ T

0 θ1
s(E(s, u, T ))ds,

∫ T
0 θ1

s(Ẽ(s, v−
iR, j, T ))ds in Theorems 4.1 and the analogous integrals in Theorems 4.2 and 4.3.

For the purpose of speeding up the computations, we tabulate these integrals over a grid

of values once for use in all simulations. Specifically, for the first integral we consider a grid

of values z =
∑K−1

l=1 ul1{0≤s≤t̄l}. For the second integral, we consider a 2-D grid of values

(z1, z2), with z1 =
∑K−1

l=1 vl1{0≤s≤t̄l}, z2 = vK . The integrals in Theorems 4.2 and 4.3 are

dealt with in a similar manner. Then, we use spline interpolation during the Monte Carlo

iterations, with linear extrapolation. We label this routine MCi for convenience.

In order to assess the quality of this new approximation, we recalculate the values of

the components of GMAB, DB and SB for the short maturities examples. The results are
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Table 2. Benchmarking Monte Carlo integration with importance sampling:
GMAB, maturity T = 3 years. Cap rate: γ = 0.05, participation rate ξ = 0.7.
Other parameters: Table 1. ‘Quadrature’: Matlab built-in functions integral,
and integral2. ‘MC’: Monte Carlo integration. ‘MCi’: Monte Carlo integration
with interpolation. Bias/standard error expressed as percentage of the actual value.
Monte Carlo iterations: 100 batches of size 106.

GMAB
A. Intensity 1

Quadrature MC bias % std. err. % MCi bias % std. err. %

A1 0.9867 0.9867 0.0015 0.0050 0.9867 0.0008 0.0050
A2,1(ϕ/ξ) 0.0887 0.0887 0.0050 0.1494 0.0888 0.1016 0.1447
A2,2(ϕ/ξ) 0.0889 0.0889 0.0095 0.1489 0.0890 0.1056 0.1443
A2,3(ϕ/ξ) 0.0893 0.0892 0.0102 0.1484 0.0894 0.1040 0.1437
A2,1(γ/ξ) 0.0667 0.0667 0.0394 0.1986 0.0668 0.1994 0.1932
A2,2(γ/ξ) 0.0669 0.0669 0.0324 0.1978 0.0670 0.2010 0.1924
A2,3(γ/ξ) 0.0672 0.0672 0.0315 0.1970 0.0673 0.1992 0.1916

GMAB 102.7713 102.7666 0.0046 0.0512 102.7669 0.0044 0.0515

B. Intensity 2

Quadrature MC bias % std. err. % MCi bias % std. err. %

A1 0.9799 0.9799 0.0006 0.0008 0.9799 0.0001 0.0008
A2,1(ϕ/ξ) 0.0880 0.0879 0.1031 0.1282 0.0883 0.3597 0.1238
A2,2(ϕ/ξ) 0.0883 0.0882 0.1027 0.1275 0.0882 0.0598 0.1235
A2,3(ϕ/ξ) 0.0886 0.0886 0.1022 0.1269 0.0886 0.0595 0.1229
A2,1(γ/ξ) 0.0661 0.0660 0.1443 0.1807 0.0664 0.3964 0.1746
A2,2(γ/ξ) 0.0664 0.0663 0.1440 0.1794 0.0664 0.0834 0.1740
A2,3(γ/ξ) 0.0667 0.0666 0.1433 0.1785 0.0667 0.0829 0.1731

GMAB 102.0682 102.0686 0.0004 0.0147 102.0721 0.0039 0.0147

shown in the final three columns of Tables 2, and confirm that MCi offers a comparable

degree of accuracy. For the case of the 10 year VA, Table 3 (final four columns) highlights

the significant computational advantage of the interpolation procedure, which is achieved

maintaining the standard errors in the same range of magnitude.

5.3. Analysis. Given the complex design of the ratchet variable annuity, we employ the

MCi scheme to analyse some of the contract features and the consequent management im-

plications. Thus, we focus in particular on the impact of the alternative constructions of the

surrender intensity, and the role of the participation rate and the cap rate.

From Table 3, we observe that the SB is more expensive by more than 25% under ‘Intensity

2’ compared to ‘Intensity 1’. These results offer an insight into the impact of the surrender

model risk, i.e. the risk of losses resulting from using inadequate modelling assumptions.

As ‘Intensity 2’ attributes more weight to the risk of early termination, the corresponding

values of the GMAB and DB are lower compared to ‘Intensity 1’, although this difference is

smaller and ranges between 3% to 5%.

In Table 4 we study the impact of varying cap and participation rates. As in our construc-

tion the payoff of the surrender benefit does not depend on these parameters, we focus on
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Table 3. Variable Annuity contract and its components: T = 10 years. Value,
standard errors and CPU time (expressed in seconds and referred to the average
time of 1 batch of 106 iterations across 100 batches of the same size). MC: Monte
Carlo integration. MCi: Monte Carlo integration with interpolation. Parameters:
Table 1; cap rate: γ = 0.05, participation rate ξ = 0.7.

A. Intensity 1

MC MCi
GMAB DB SB VA GMAB DB SB VA

Value 83.1489 12.8546 15.4517 111.4551 83.1423 12.8547 15.4432 111.4402
Std. Err. (%) 0.2518 0.0458 0.0521 0.1881 0.2577 0.0435 0.0521 0.1925

CPU (sec.) 1493.30 6463.70 358.53 8315.53 125.66 706.30 36.21 868.18

B. Intensity 2

MC MCi
GMAB DB SB VA GMAB DB SB VA

Value 78.9747 12.4468 19.4509 110.8725 78.9745 12.4483 19.4515 110.8743
Std. Err. (%) 0.0512 0.0078 0.0132 0.0366 0.0515 0.0079 0.0132 0.0367

CPU (sec.) 917.36 6160.61 229.42 7307.39 76.02 548.76 24.74 649.52

Table 4. Cap rate vs participation rate: GMAB and DB. Monte Carlo integration
with interpolation. Parameters: Table 1.

A. Intensity 1
GMAB DB

ξ 0.3 0.5 0.7 0.9 1 0.3 0.5 0.7 0.9 1

0.05 81.0250 82.4851 83.1423 83.5408 83.6763 12.6637 12.7944 12.8547 12.8892 12.9015
γ 0.075 84.3277 87.3370 88.8007 89.6653 89.9523 12.9467 13.2147 13.3454 13.4219 13.4492

0.2 89.2550 99.6493 106.6142 111.2983 113.0813 13.3685 14.2652 14.8754 15.2904 15.4493

B. Intensity 2
GMAB DB

ξ 0.3 0.5 0.7 0.9 1 0.3 0.5 0.7 0.9 1

0.05 76.9293 78.3300 78.9745 79.3427 79.4731 12.2654 12.3905 12.4481 12.4811 12.4928
γ 0.075 80.0400 82.9219 84.3230 85.1552 85.4326 12.5376 12.7942 12.9193 12.9924 13.0185

0.2 84.7203 94.5085 101.1225 105.5918 107.3008 12.9444 13.8055 14.3918 14.7881 14.9401

Figure 3. Sensitivity Analysis: participation rate ξ, cap rate γ. Left-hand-side
panel: GMAB. Mid-panel: DB. Right-hand-side panel: VA. Intensity 1. Parameters:
Table 1.
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the values of the GMAB and the DB components. The case ‘Intensity 1’ is also illustrated

in Figure 3, in which we show the corresponding value of the full VA policy as well.

The participation rate ξ represents a key parameter for the marketability of the annuity

contract; however, the results in Table 4 show that the reward to the policyholder of the

participation in the growth of the economy is significantly affected by the cap rate γ written

by the insurance company. Indeed, in presence of a tight cap rate, the value of the benefits

are almost unaffected by ξ: for γ = 0.05 the change in value of the GMAB between the case of

a policyholder offered a 30% participation rate and one offered a 100% participation is 3.3%.

Relaxation of the cap rate, on the other hand, can significantly enhance the attractiveness

of the benefits: moving the cap rate from 0.05 to 0.075 results already in a 6.7% difference

between the two policies. This difference is even more significant if we apply a cap γ = 0.20,

which could be considered almost as a ‘no-cap’ case, as it rises to 26.7%. The insurance

company on the other hand would be more exposed to the market risk: the ratchet feature

locks in the returns at the end of every year, and adequate reserves need to be set aside to

meet the liability at expiration. This can prove quite challenging in fast changing market

conditions. Similar considerations hold for the DB part of the policy.

These results show that the cap rate γ is an important ‘knob’ for the insurer to fine tune

the level on the tradeoff between the risk exposure generated by these products, and the

return and effective marketability of the products themselves.

6. Conclusions

We proposed a framework for the valuation and management of complex life insurance

contracts, which we illustrate by means of a detailed study of ratchet variable annuities. We

investigate the tradeoff between the insurer’s risk exposure and the marketability of these

products. Our analysis highlights in particular the role of cap rates.

Variable insurance products provide an income stream during retirement and other benefits

for policyholders; however, they are usually characterized by complex designs, which can

be associated with high risks. Hence, the recent decision of the Securities and Exchange

Commission (SEC) to offer a prospectus which could help investors to better understand

such sophisticated policies (SEC, 2020). The proposed methodology could represent a valid

support for the development of such overviews, as it would give the opportunity to gain

insights into the role of certain key parameters, and the impact of expert knowledge in the

modelling of the surrender behaviour.
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Appendix A. Time-inhomogenous Lévy processes.

Let (Ω,F ,F, Q) be a filtered probability space, with a filtration F = (Ft)t∈[0,T∗], for a given

finite time horizon T ∗ > 0, satisfying the usual conditions. The probability measure Q is interpreted

as a risk-neutral martingale measure. We consider a time-inhomogeneous Lévy process, L, with

characteristic function

EQ

[
eiuLt

]
= exp

(∫ t

0

(
iubs −

1

2
csu

2 +

∫
R

(
eiux − 1− iux

)
Fs(dx)

)
ds

)
. (A.1)

Assume that the local characteristics (bs, cs, Fs)s∈[0,T∗] satisfy the integrability condition∫ T∗

0

(
|bs|+ cs +

∫
R

(min {|x|2, 1})Fs(dx)

)
ds <∞.

Note that we do not need any truncation function h such as 1{|x|≤1} in (A.1) as we always assume

that the exponential moments of a certain order exist in the following sense.

Assumption A.1 (Exponential moments). There exist positive constants M and ε such that for

each u ∈ [−(1 + ε)M, (1 + ε)M ] ∫ T∗

0

∫
{|x|>1}

eux Fs(dx)ds <∞.

The above assumption is satisfied by all standard processes typically used in mathematical finance

such as hyperbolic, Normal Inverse Gaussian, Variance Gamma and CGMY processes.

We further consider the cumulant function of L,

θs(z) = bsz +
1

2
csz

2 +

∫
R

(ezx − 1− zx)Fs(dx),

which is defined for any z ∈ C such that Re(z) ∈ [−(1 + ε)M, (1 + ε)M ]. For those z ∈ C,

EQ[exp(zLt)] <∞ and

EQ
[

exp(zLt)
]

= exp

(∫ t

0

θs(z)ds

)
.

Finally, for any left-continuous function f : R+ → C with |Re(f)| ≤M , the following holds

EQ

[
exp

(∫ t

0

f(s)dLs

)]
= exp

(∫ t

0

θs(f(s))ds

)
, (A.2)

where the integrals are defined component-wise for the real and imaginary part. For the derivation of

this formula, see Eberlein and Raible (1999). As the Riemann sums which are used to approximate

the stochastic integral are defined on the basis of predictable step functions, the proof still holds for

left-continuous functions f . A more general version of this formula is given by Proposition 4.8 in

Eberlein and Kallsen (2019); the proof exploits the explicit form of the local characteristics of the

stochastic integral. See also Example 4.18 in Eberlein and Kallsen (2019) for further details.

Appendix B. Auxiliary functions for the Theorems in Section 4

B.1. Functions for Theorem 4.1. For i = 1, . . . ,K, let us define the function f i on Ri

f i(x1, . . . , xi) =

i∏
l=1

fl(xl). (B.1)

Let

wl :=

∫ t̄l

0

A(s, T )ds+

∫ T

0

f(0, s)ds− δT − ω(t̄l)− p(t̄l) (B.2)
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for l = 1, . . . ,K − 1 and

w̃tj :=

∫
]tj−1,tj ]

f(0, s)ds+

∫ tj

0

A(s, tj)ds−
∫ tj−1

0

A(s, tj−1)ds− (ω(tj)− ω(tj−1)), (B.3)

for j = 1, . . . , N .

Further, define R := (0, . . . , 0, r) ∈ RK , with 1 < r < 2, and let for all 0 ≤ s ≤ T , and u ∈ RK−1,

v ∈ CK , j = 1, . . . , N

D(u, T ) := exp
(

i

K−1∑
l=1

ulwl

)
,

D̃(v, j, T ) := D(v1, . . . , vK−1, T ) exp
(

ivKw̃tj

)
,

E(s, u, T ) := Σ(s, T ) + i(β(s)− Σ(s, T ))

K−1∑
l=1

ul1{0≤s≤t̄l},

Ẽ(s, v, j, T ) := E(s, v1, . . . , vK−1, T ) + i
(
β(s)1{tj−1<s≤tj} + Σ(s, tj−1)1{0≤s≤tj−1}

−Σ(s, tj)1{0≤s≤tj}
)
vK ,

F (s, u) := iσ2(s)

K−1∑
l=1

ul1{0≤s≤t̄l}, (B.4)

F̃ (s, v, j) := F (s, v1, . . . , vK−1) + iσ2(s)1{tj−1<s≤tj}vK ,

M(u, T ) := D(u, T ) exp

(∫ T

0

(
θ1
s(E(s, u, T )) + θ2

s(F (s, u))
)
ds

)
f̂K−1(−u),

N(v, j, κ, T ) := D̃(v − iR, j, T ) exp

(∫ T

0

(
θ1
s(Ẽ(s, v − iR, j, T )) + θ2

s(F̃ (s, v − iR, j))
)
ds

)

×f̂K−1(−v1, . . . ,−vK−1)
(1 + κ)1−ivK−r

(ivK + r − 1)(ivK + r)
, for v ∈ RK .

B.2. Functions for Theorem 4.2. For j ∈ {1, . . . ,K − 1}, let R := (0, . . . , 0, r) ∈ Rj+1 with

1 < r < 2, u ∈ Rj , and v ∈ Cj+1. For 0 ≤ s ≤ T , j ∈ {1, . . . ,K − 2} and all i ∈ {1, . . . , N} such that

t̄j < t̃i ≤ t̄j+1, as well as for j = K − 1 and all i such that t̄K−1 < t̃i ≤ T , let

Dj,i(u, T ) := exp

(
i

j∑
l=1

ulwl

)
,

D̃j,i(v, l′, T ) := Dj,i(v1, . . . , vj , T ) exp
(

ivj+1w̃tl′

)
,

Ej,i(s, u, T ) := Σ(s, t̃i) + i(β(s)− Σ(s, T ))

j∑
l=1

ul1{0≤s≤t̄l},

Ẽj,i(s, v, l
′, T ) := Ej,i(s, v1, . . . , vj , T )

+ i
(
β(s)1{tl′−1<s≤tl′} + Σ(s, tl′−1)1{0≤s≤tl′−1} − Σ(s, tl′)1{0≤s≤tl′}

)
vj+1,

Fj(s, u) := iσ2(s)

j∑
l=1

ul1{0≤s≤t̄l}, (B.5)

F̃j(s, v, l
′) := Fj(s, v1, . . . , vj) + iσ2(s)1{tl′−1<s≤tl′}vj+1,
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M j,i(u, T ) := Dj,i(u, T ) exp
(∫ t̃i

0

(
θ1
s(Ej,i(s, u, T )) + θ2

s(Fj(s, u))
)
ds
)
f̂ j(−u)

N j,i(v, l′, κ, T ) := D̃j,i(v − iR, l′, T ) exp

(∫ t̃i

0

(
θ1
s(Ẽj,i(s, v − iR, l′, T )) + θ2

s(F̃j(s, v − iR, l′))
)
ds

)

×f̂ j(−v1, . . . ,−vj)
(1 + κ)1−ivj+1−r

(ivj+1 + r − 1)(ivj+1 + r)
, for v ∈ Rj+1.

Furthermore, we define for t̃i ≤ t̄1, l′ ≤ `(t̃i), 0 ≤ s ≤ t̃i and u ∈ R

Ẽ0(s, u, l′, t̃i) := Σ(s, t̃i)

+ i
(
β(s)1{tl′−1<s≤tl′} + Σ(s, tl′−1)1{0≤s≤tl′−1} − Σ(s, tl′)1{0≤s≤tl′}

)
u,

F̃0(s, u, l′) := iσ2(s)1{tl′−1<s≤tl′}u,

N0(u, l′, κ, t̃i) := exp
(
(r + iu)w̃tl′

)
exp

(∫ t̃i

0

(
θ1
s(Ẽ0(s, u− ir, l′, t̃i)) + θ2

s(F̃0(s, u− ir, l′))
)
ds

)

× (1 + κ)1−iu−r

(iu+ r − 1)(iu+ r)
.

B.3. Functions for Theorem 4.3. For wl from Equation (B.2), 0 ≤ s ≤ T , i ∈ {2, . . . ,K − 1},
u ∈ Ri−1, and v ∈ Ri, we define

Di(u, T ) := exp

(
i

i−1∑
l=1

ulwl − ω(t̄i)

)
,

D̃i(v, T ) := Di(v1, . . . , vi−1, T ) exp
(

i viwi

)
,

Ei(s, u, T ) := i(β(s)− Σ(s, T ))

i−1∑
l=1

ul1{0≤s≤t̄l} + β(s),

Ẽi(s, v, T ) := Ei(s, v1, . . . , vi−1, T ) + i(β(s)− Σ(s, T ))vi,

F i(s, u) := iσ2(s)

i−1∑
l=1

ul1{0≤s≤t̄l} + σ2(s), (B.6)

F̃ i(s, v) := F i(s, v1, . . . , vi−1) + iσ2(s)vi,

M i(u, T ) := Di(u, T ) exp
(∫ t̄i

0

(
θ1
s(E

i(s, u, T )) + θ2
s(F

i(s, u))
)
ds
)
f̂ i−1(−u),

N i(v, T ) := D̃i(v, T ) exp
(∫ t̄i

0

(
θ1
s(Ẽ

i(s, v, T )) + θ2
s(F̃

i(s, v))
)
ds
)
f̂ i(−v).
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Appendix C. Proof of Theorem 4.2

Proof. By definition,

PDB =

N ′∑
i=1

EQ

[
e−

∫ t̃i
0 r(u)duDB(t̃i)

]
.

As the mortality intensity is independent of the financial market, we obtain that

EQ

[
e−

∫ t̃i
0 r(u)duDB(t̃i)

]
= Q(τm(x) ∈ [t̃i−1, t̃i))EQ

[
e−

∫ t̃i
0 r(u)du1{τs≥t̃i}Zt̃i

]
.

We distinguish two cases, t̃i ≤ t̄1 and t̄1 < t̃i, and start with the detailed description of the second

case.

For j ∈ {1, . . . ,K − 2} and i such that t̄j < t̃i ≤ t̄j+1, as well as for j = K − 1 and i such that

t̄K−1 < t̃i ≤ T , we work along the same line as in the proof of Theorem 4.1, and get

EQ

[
e−

∫ t̃i
0 r(u)du1{τs≥t̃i}Zt̃i

]
= EQ

[
e−

∫ t̃i
0 r(u)du1{τs≥t̄j+1}Zt̃i

]
= EQ

[
e−

∫ t̃i
0 r(u)due−

∫ t̄j+1
0 λs(u)duZt̃i

]
= I(1 + t̃iϕ)EQ

[
e−

∫ t̃i
0 r(u)due−

∫ t̄j+1
0 λs(u)du

]
(C.1)

+I

`(t̃i)∑
l′=1

EQ

[
e−

∫ t̃i
0 r(u)due−

∫ t̄j+1
0 λs(u)du

(
ξRtl′ − ϕ

)+
]

−I
`(t̃i)∑
l′=1

EQ

[
e−

∫ t̃i
0 r(u)due−

∫ t̄j+1
0 λs(u)du

(
ξRtl′ − γ

)+
]
.

The t̃i-forward measure Qt̃i is given by

dQt̃i

dQ
=

1

B(0, t̃i)B(t̃i)
. (C.2)
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Denoting the expectation with respect to Qt̃i by E t̃i the quantity in equation (C.1) is

IB(0, t̃i)

(1 + t̃iϕ)E t̃i
[
e−

∫ t̄j+1
0 λs(u)du

]
+ ξ

`(t̃i)∑
l′=1

E t̃i

[
e−

∫ t̄j+1
0 λs(u)du

(
Rtl′ −

ϕ

ξ

)+
]

−ξ
`(t̃i)∑
l′=1

E t̃i

[
e−

∫ t̄j+1
0 λs(u)du

(
Rtl′ −

γ

ξ

)+
]

= IB(0, t̃i)

(1 + t̃iϕ)A1
j,i + ξ

`(t̃i)∑
l′=1

A2
j,i,l′

(
ϕ

ξ

)
− ξ

`(t̃i)∑
l′=1

A2
j,i,l′

(
γ

ξ

) , (C.3)

with an obvious notation in the last line. We note that

eC(t̄j+1−t̄1)A1
j,i = E t̃i

[
f j(D(t̄1), . . . , D(t̄j))

]
, (C.4)

with f j(x1, . . . , xj) =
∏j
l=1 fl(xl). As in (25), we obtain that the expectation in (C.4) can be

represented as
1

(2π)j

∫
Rj

M̃ j
i (iu)f̂ j(−u)du, (C.5)

with

f̂ j(u1, . . . , uj) =

j∏
l=1

f̂l(ul),

and M̃ j
i (iu) defined as

M̃ j
i (iu) = E t̃i

[
eiu1D(t̄1)+...+iujD(t̄j)

]
.

In virtue of (27), the Radon-Nikodym density (C.2) has explicit representation

dQt̃i

dQ
= exp

(
−
∫ t̃i

0

A(s, t̃i)ds+

∫ t̃i

0

Σ(s, t̃i)dL
1
s

)
. (C.6)

Consequently, it follows from (21),

M̃ j
i (iu) = EQ

[
eiu1D(t̄1)+...+iujD(t̄j)−

∫ t̃i
0 A(s,t̃i)ds+

∫ t̃i
0 Σ(s,t̃i)dL

1
s

]

= exp
(

i

j∑
l=1

ulwl −
∫ t̃i

0

A(s, t̃i)ds
)

×EQ
[

exp

(
i

j∑
l=1

(∫ t̄l

0

ulσ2(s)dL2
s +

∫ t̄l

0

ul(β(s)− Σ(s, T ))dL1
s

)
+

∫ t̃i

0

Σ(s, t̃i)dL
1
s

)]
.

This last expectation is well defined in virtue of (4), and can be written as

EQ

[
exp

(∫ t̃i

0

Ej,i(s, u, T )dL1
s +

∫ t̃i

0

Fj(s, u)dL2
s

)]
= exp

(∫ t̃i

0

(
θ1
s(Ej,i(s, u, T )) + θ2

s(Fj(s, u))
)
ds
)
,

due to (B.5) and equation (A.2). Therefore, with Dj,i(u, T ) defined in (B.5) we have

M̃ j
i (iu) = Dj,i(u, T )e−

∫ t̃i
0 A(s,t̃i)ds exp

(∫ t̃i

0

(
θ1
s(Ej,i(s, u, T )) + θ2

s(Fj(s, u))
)
ds
)
.

Finally, combining (C.4) with (C.5) and the definition of M j,i(u, T ) in (B.5), we deduce that

A1
j,i =

e−C(t̄j+1−t̄1)

(2π)j
e−

∫ t̃i
0 A(s,t̃i)ds

∫
Rj

M j,i(u, T )du.
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Now we turn our attention to A2
j,i,l′(κ). We note that

eC(t̄j+1−t̄1)A2
j,i,l′(κ) = E t̃i

[
hj+1

(
D(t̄1), . . . , D(t̄j), Ytl′ − Ytl′−1

)]
, (C.7)

for hj+1(x1, . . . , xj+1) := f j(x1, . . . , xj)(e
xj+1 − 1 − κ)+, with f j(·) given above. In order to ensure

integrability, let us define H(x1, . . . , xj+1) := hj+1(x1, . . . , xj+1)e−rxj+1 , for some 1 < r < 2, and

Hj+1(xj+1) := (exj+1 − 1− κ)+e−rxj+1 .

Then, Hj+1 as well as H are integrable. Moreover, elementary integration shows that for all y ∈ R

Ĥj+1(y) =
(1 + κ)e(iy−r) log(1+κ)

(iy − r + 1)(iy − r)
=

(1 + κ)iy−r+1

(iy − r + 1)(iy − r)
.

Observe that |Ĥj+1(y)|C = (1 + κ)e−r log(1+κ)(((1− r)2 + y2)(r2 + y2))−1/2, thus, Ĥj+1 is integrable.

Therefore, combining the last result with the integrability of f̂ j , we deduce that Ĥ is integrable, and

Ĥ(y1, . . . , yj+1) = f̂ j(y1, . . . , yj)
(1 + κ)iyj+1−r+1

(iyj+1 − r + 1)(iyj+1 − r)
. (C.8)

Therefore, it follows from Theorem 3.2 in Eberlein et al. (2010) that

E t̃i
[
hj+1

(
D(t̄1), . . . , D(t̄j), Ytl′ − Ytl′−1

)]
=

1

(2π)j+1

∫
Rj+1

Ñ j+1
i,l′ (R+ iu)ĥj+1(iR− u)du, (C.9)

for R = (0, . . . , 0, r) ∈ Rj+1, 1 < r < 2, and Ñ j+1
i,l′ (R+ iu) defined as

Ñ j+1
i,l′ (R+ iu) := E t̃i

[
e

iu1D(t̄1)+...+iujD(t̄j)+(iuj+1+r)(Yt
l′
−Yt

l′−1
)]
. (C.10)

Consequently, using (C.6), we have

Ñ j+1
i,l′ (R+ iu)

= EQ

[
e

iu1D(t̄1)+...+iujD(t̄j)+(iuj+1+r)(Yt
l′
−Yt

l′−1
)−

∫ t̃i
0 A(s,t̃i)ds+

∫ t̃i
0 Σ(s,t̃i)dL

1
s

]

= exp
(

i

j∑
l=1

ulwl + (iuj+1 + r)w̃tl′ −
∫ t̃i

0

A(s, t̃i)ds
)

×EQ
[

exp

(
i

j∑
l=1

(∫ t̄l

0

ulσ2(s)dL2
s +

∫ t̄l

0

ul(β(s)− Σ(s, T ))dL1
s

)
+ (iuj+1 + r)

(∫
]tl′−1,tl′ ]

σ2(s)dL2
s +

∫
]tl′−1,tl′ ]

β(s)dL1
s

−
∫ tl′

0

Σ(s, tl′)dL
1
s +

∫ tl′−1

0

Σ(s, tl′−1)dL1
s

)
+

∫ t̃i

0

Σ(s, t̃i)dL
1
s

)]
.

Using the definitions from (B.5), the above can be rewritten as

Ñ j+1
i,l′ (R+ iu) = D̃j,i(u− iR, l′, T )e−

∫ t̃i
0 A(s,t̃i)ds

×EQ
[

exp
(∫ t̃i

0

Ẽj,i(s, u− iR, l′, T )dL1
s +

∫ t̃i

0

F̃j(s, u− iR, l′)dL2
s

)]
.

Observe that, due to 1 < r < 2, as well as (3) and (4), rσ2(s) ≤ M2 and |rβ(s) − rΣ(s, tl′) +

rΣ(s, tl′−1) + Σ(s, t̃i)| ≤ 6M1/7 +M1/7 = M1. Thus, using the independence of the driving processes

and (A.2), the above expectation can be explicitly calculated

Ñ j+1
i,l′ (R+ iu) = D̃j,i(u− iR, l′, T )e−

∫ t̃i
0 A(s,t̃i)ds

× exp
(∫ t̃i

0

θ1
s(Ẽj,i(s, u− iR, l′, T ))ds+

∫ t̃i

0

θ2
s(F̃j(s, u− iR, l′))ds

)
.(C.11)
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On the other hand, we observe that for any u ∈ Rj+1,

Ĥ(u) =

∫
Rj+1

ei〈u,x〉e−〈R,x〉hj+1(x)dx = ĥj+1(u+ iR).

Consequently, we deduce that

ĥj+1(iR− u) = Ĥ(−u) = f̂ j(−u1, . . . ,−uj)
(1 + κ)1−iuj+1−r

(iuj+1 + r − 1)(iuj+1 + r)
. (C.12)

Plugging (C.11) and (C.12) in (C.9), and using the definition of N j,i(u, l′, κ, T ) in (B.5), it

follows that

A2
j,i,l′(κ) =

e−C(t̄j+1−t̄1)

(2π)j+1
e−
∫ t̃i
0 A(s,t̃i)ds

∫
Rj+1

N j,i(u, l′, κ, T )du.

Now we consider the case t̃i ≤ t̄1 for i ∈ {1, . . . , N ′}. Observe that

EQ

[
e−
∫ t̃i
0 r(u)du1{τs≥t̃i}Zt̃i

]
= EQ

[
e−
∫ t̃i
0 r(u)duZt̃i

]
,

from which it follows that

EQ

[
e−
∫ t̃i
0 r(u)du1{τs≥t̃i}Zt̃i

]

= IB(0, t̃i)
(

(1 + t̃iϕ) +

`(t̃i)∑
l′=1

E t̃i
[(
ξRtl′ − ϕ

)+]
−
`(t̃i)∑
l′=1

E t̃i
[(
ξRtl′ − γ

)+])

= IB(0, t̃i)

(1 + t̃iϕ) + ξ

`(t̃i)∑
l′=1

(
Ai,l′

(
ϕ

ξ

)
−Ai,l′

(
γ

ξ

)) ,

with the definition

Ai,l′(κ) = E t̃i
[(
Rtl′ − κ

)+]
= E t̃i

[
h1(Ytl′ − Ytl′−1

)
]

for the function h1(x) = (ex−1−κ)+. In order to enforce the integrability of h1 we consider

for some 1 < r < 2 the dampened function H1(x) = h1(x)e−rx, and apply Theorem 2.2 in

Eberlein et al. (2010) to get

E t̃i
[
h1

(
Ytl′ − Ytl′−1

)]
=

1

2π

∫
R
N i
l′(r + iu)ĥ1(ir − u)du, (C.13)

with

N i
l′(r + iu) := E t̃i

[
e

(r+iu)(Ytl′−Ytl′−1
)]
.

Now we use the explicit forms of the density dQt̃i

dQ and the increment Ytl′ − Ytl′−1
(see proof

of Theorem 4.1) to obtain

N i
l′(r + iu) = exp

(
(r + iu)w̃tl′ −

∫ t̃i

0
A(s, t̃i)ds

)
× EQ

[
exp

(∫ t̃i

0
Σ(s, t̃i)dL

1
s + (r + iu)

(∫
]tl′−1,tl′ ]

σ2(s)dL2
s +

∫
]tl′−1,tl′ ]

β(s)dL1
s

−
∫ tl′

0
Σ(s, tl′)dL

1
s +

∫ tl′−1

0
Σ(s, tl′−1)dL1

s

))]
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from which it follows that

N i
l′(r + iu) = exp

(
(r + iu)w̃tl′ −

∫ t̃i

0
A(s, t̃i)ds

)
× EQ

[
exp

(∫ t̃i

0
Ẽ0(s, u− ir, l′, t̃i)dL

1
s +

∫ t̃i

0
F̃0(s, u− ir, l′)dL2

s

)]
.

The last expectation can be computed using formula (A.2), which returns

exp
(∫ t̃i

0
θ1
s(Ẽ0(s, u− ir, l′, t̃i))ds+

∫ t̃i

0
θ2
s(F̃0(s, u− ir, l′))ds

)
.

As

ĥ1(ir − u) =
(1 + κ)1−iu−r

(iu+ r − 1)(iu+ r)
, (C.14)

we finally obtain

Ai,l′(κ) =
e−
∫ t̃i
0 A(s,t̃i)ds

2π

∫
R
N0(u, l′, κ, t̃i)du.

�

Appendix D. Analytic expression of the survival probability

In reference to the stochastic mortality model set up in Sections 3.2 and 5, the relevant expressions

for the survival probability in (13) are

Ax(t) :=
c1 exp(c2t)

c3(c2 + c3)
[1− exp(−(c2 + c3)t)] +

1

4

(c4
c3

)2 exp(2c5t)

c5
[1− exp(−2c5t)]

−
(c4
c3

)2 exp(2c5t)

2c5 + c3
[1− exp(−(2c5 + c3)t)]− c1 exp(c2t)

c2c3
[1− exp(−c2t)]

+
1

4

(c4
c3

)2 exp(2c5t)

c3 + c5
[1− exp(−2(c3 + c5)t)],

Bx(t) :=
1

c3
[exp(−c3t)− 1],

and

c1 :=
κ

q
exp

(x− z
q

)
, c2 :=

1

q
− λ, c3 := κ− 1

q
, c4 :=

σ

q
exp

(x− z
q

)
, c5 :=

1

q
,

(see Escobar et al., 2016).

Appendix E. Further numerical results

In order to perform a sensible comparison, we consider a 5 year DB, and a 4 year SB. Due to the

number of terms involved in the computation of the DB, we only consider the terms in the second

summation of Theorem 4.2. Concerning the SB, we note that the first term in the sum defining

PSB in Theorem 4.3 is composed by a constant (B1
1), and a one-dimensional integral (B2

1), which is

obtained by deterministic quadrature and therefore is not considered in this benchmarking exercise.

Results are reported in Table E.1.



6

Table E.1. Benchmarking Monte Carlo integration with importance sampling:
DB: maturity T = 5 years; SB: maturity T = 4 years. Cap rate: γ = 0.05, participa-
tion rate ξ = 0.7. Other parameters: Table 1. ‘Quadrature’: Matlab built-in func-
tions integral, and integral2. ‘MC’: Monte Carlo integration. ‘MCi’: Monte
Carlo integration with interpolation. Bias/standard error expressed as percentage of
the actual value. Monte Carlo iterations: 100 batches of size 106.

DB (T = 5 years)
A. Intensity 1

Quadrature MC bias % std. err. % MCi bias % std. err. %

A1
1,2 0.9865 0.9864 0.0071 0.0057 0.9864 0.0084 0.0056

A2
1,2,1(ϕ/ξ) 0.0887 0.0886 0.0663 0.1548 0.0886 0.0306 0.1560

A2
1,2,2(ϕ/ξ) 0.0888 0.0888 0.0699 0.1558 0.0888 0.0236 0.1569

A2
1,2,1(γ/ξ) 0.0667 0.0666 0.1132 0.2048 0.0667 0.0703 0.2063

A2
1,2,2(γ/ξ) 0.0669 0.0668 0.0627 0.2059 0.0669 0.0083 0.2074

B. Intensity 2

Quadrature MC bias % std. err. % MCi bias % std. err. %

A1
1,2 0.9797 0.9797 0.0009 0.0007 0.9797 0.0006 0.0007

A2
1,2,1(ϕ/ξ) 0.0880 0.0880 0.0319 0.1156 0.0884 0.4314 0.1135

A2
1,2,2(ϕ/ξ) 0.0882 0.0882 0.0207 0.1153 0.0882 0.0148 0.1139

A2
1,2,1(γ/ξ) 0.0661 0.0661 0.0476 0.1632 0.0664 0.4883 0.1602

A2
1,2,2(γ/ξ) 0.0664 0.0664 0.0320 0.1625 0.0664 0.0167 0.1605

SB (T = 4 years)
A. Intensity 1

Quadrature MC bias % std. err. % MCi bias % std. err. %

B1
2 0.9871 0.9872 0.0030 0.0031 0.9872 0.0029 0.0031

B2
2 0.9717 0.9718 0.0046 0.0047 0.9718 0.0047 0.0047

B. Intensity 2

Quadrature MC bias % std. err. % MCi bias % std. err. %

B1
2 0.9806 0.9806 0.00001 0.0007 0.9806 0.00002 0.0007

B2
2 0.9579 0.9578 0.0007 0.0012 0.9579 0.0007 0.0012
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