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Abstract. A hybrid model is a model, where two markets are stud-
ied jointly such that stochastic dependence can be taken into account.
Such a dependence is well known for equity and interest rate markets
on which we focus here. Other pairs can be considered in a similar way.
Two different versions of a hybrid approach are developed. Independent
time-inhomogeneous Lévy processes are used as the drivers of the dy-
namics of interest rates and equity. In both versions the dynamics of
the interest rate side is described by an equation for the instantaneous
forward rate. Dependence between the markets is generated by intro-
ducing the driver of the interest rate market as an additional term into
the dynamics of equity in the first version. The second version starts
with the equity dynamics and uses a corresponding construction for the
interest rate side. Dependence can be quantified in both cases by a single
parameter. Numerically efficient valuation formulas for interest rate and
equity derivatives are developed. Using market quotes for liquidly traded
assets we show that the hybrid approach can be successfully calibrated.

1. Introduction

It is a well known fact that equity and interest rate markets mutually in-
fluence each other, as extensively shown in many empirical studies such as
Wainscott [25] and d’Addona and Kind [5], just to mention a few. Conse-
quently both markets should be modelled jointly as soon as interest rates
are assumed to be stochastic. Such a joint model is said to be hybrid when it
allows to take stochastic dependence between the two markets into account.
In this paper we focus on equity and fixed income markets; other combina-
tions such as those which include foreign exchange, can be treated along the
same lines.

The financial as well as the insurance industry have developed a great
variety of hybrid derivatives, structured contracts as well as diversification
products, whose payoffs depend on multiple underliers. They enable the in-
vestor to aim at a return which is greater than the one of the least risky
asset and at the same time they allow to reduce the risk compared to an
investment in a single risky asset. A performance basket which will be dis-
cussed in section 4 is a simple example. One can easily adapt this instrument
to the risk aversion or the risk appetite of an individual investor.

One possibility to implement a hybrid model is to correlate the driving
processes for both markets via an appropriate covariance matrix. This ap-
proach is natural in the framework of diffusions, in which the dependence
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structure is completely determined by covariances. Among the papers which
follow this line of thought we mention Grzelak, Oosterlee and Van Weeren
[16] and Grzelak, Oosterlee and Van Weeren [17] who investigate both, the
combination of the Heston [18] and the Schöbel-Zhu [24] stochastic volatil-
ity models with the Hull-White [20] model for the short rate. Ahlip and
Rutkowski [1] combine the Heston stochastic volatility model with CIR short
rates for the pricing of forward start call options. In another paper Ahlip
and Rutkowski [2] develop a pricing formula for foreign exchange options
under the same combination of a stochastic volatility model with CIR in-
terest rates. In this model the instantaneous volatility is correlated with the
dynamics of the exchange rate, whereas the domestic and foreign short rates
are assumed to be independent of the dynamics of the exchange rate. Con-
cerning the difficulties which arise when correlating Lévy processes directly
we refer to Eberlein and Madan [12] and the references given there.

Hybrid modelling of equity and interest rates is particularly important
when managing long-dated contracts. As long maturities are an intrinsic
feature of many insurance contracts, hybrid models for the joint movements
of equity and fixed income markets are of crucial importance, but at the same
time represent a significant challenge for the valuation and the risk manage-
ment of contracts in the insurance industry. In addition to the long maturity
aspect of such contracts, reference funds of variable annuity contracts – such
as for example participating policies in the UK market – are typically com-
posed of equity and bonds with percentages depending on the risk aversion
of either the policyholder or the portfolio manager. Consequently this cat-
egory of contracts requires de facto a tractable, market consistent hybrid
model. A description of a typical participating policy contract can be found
in Ballotta [3] and Ballotta [4] in which the impact of non-Gaussian dynam-
ics on its fair valuation is analysed. In those studies though the interest rate
is chosen as a constant.

In the present paper we develop two different versions of a hybrid model
which is driven by independent, time-inhomogeneous Lévy processes, for
which the specification of covariance matrices aimed at generating depen-
dence is not necessary.

The first model uses for the bond market the Lévy forward rate approach
of Eberlein and Raible [14], Eberlein, Jacod and Raible [10] and Eberlein
and Kluge [11]. The equity dynamics is given by another exponential model.
Dependence is generated by introducing the process which drives the forward
rate as an additional term in the equity dynamics. A similar idea has already
been used in Eberlein, Madan, Pistorius and Yor [13], where a gamma driven
Ornstein-Uhlenbeck short rate model is combined with a variance gamma
driven model for equity. We call this first approach the hybrid Lévy equity
model.

The second approach starts with the specification of the equity dynamics
as an exponential model with a time-inhomogeneous Lévy driver. For the
interest rate dynamics we specify again the instantaneous forward rate in
which we add now the driver of the equity part as an additional term.
Differently from the first approach, in this specification interest rates and
equity are mutually dependent. In the first setup, in fact, the interest rate



HYBRID LÉVY MODELS: DESIGN AND COMPUTATIONAL ASPECTS 3

model is not affected by the equity dynamics. We call the second approach
the hybrid Lévy forward rate model.

The paper is structured as follows. In section 2 we describe the general
setup for the use of time-inhomogeneous Lévy processes. In section 3 the
first version of the hybrid model is introduced. The model allows to control
the level of dependence via a specific parameter. In section 4 valuation of
derivatives is discussed. We consider interest rate and equity derivatives as
well as a performance basket. In subsection 4.5 we show how this model
can be successfully calibrated to market quotes. Section 5 is devoted to the
second version of the hybrid approach. Valuation of derivatives and cali-
bration are investigated for this model as well. A key point is again the
proper modelling of the dependence between the two markets. Specifically
one can extract market consistent information on the level of dependence
which is, for example, also relevant for the calculation of adequate capi-
tal requirements. Typically capital requirements are computed on the basis
of risk measures strictly connected to dependence in the tails of the joint
distribution.

2. The general setup

The interest rate and equity dynamics will be driven by two independent
time–inhomogeneous Lévy processes L1 = (L1

t )t∈[0,T ∗] and L2 = (L2
t )t∈[0,T ∗],

also called processes with independent increments and absolutely continuous
characteristics (PIIAC) by Jacod and Shiryaev [21]. These processes are
defined on a stochastic basis B := (Ω,F ,F, P ) with filtration F = (Ft)t∈[0,T ∗]

which satisfies the usual conditions (see [21], Definition I 1.2, 1.3). For i =
1, 2 the distribution of Lit is determined by its characteristic function

E[eiuL
i
t ] = exp

( t∫
0

(
iubis−

1

2
cisu

2+

∫
R

(
eiux − 1− iuh(x)

)
F is(dx)

)
ds
)
.

The local characteristics (bis, c
i
s, F

i
s)s∈[0,T ∗] (relative to a truncation function

h) are assumed to satisfy
∫ T ∗

0 (|bis|+ cis +
∫
R(|x|2 ∧ 1)F is(dx))ds < ∞. Later

in the context of modelling markets we shall consider exponentials of the

form (exp(
∫ t

0 f(s)dLis))t∈[0,T ∗]. For the markets to be free of arbitrage these
exponential processes will be forced to become martingales. For this purpose
we assume

Assumption (EM)
There exist constants Mi, εi > 0 such that for u ∈ [−(1 + εi)Mi, (1 + εi)Mi]

T ∗∫
0

∫
{|x|>1}

exp(ux)F is(dx)ds <∞ (i = 1, 2).

Under this assumption the moment generating functionsMLi
t
(u) := E[euL

i
t ]

exist for all u ∈ [−(1 + εi)Mi, (1 + εi)Mi]. Existence of the exponential mo-
ment entails in particular existence of the first moment, the expectation.
As a consequence one can use the identity function h(x) = x as truncation
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function and thus gets – of course with new drift characteristics bis – the
canonical representations in the simple form

Lit =

t∫
0

bisds+

t∫
0

√
cisdW

i
s +

t∫
0

∫
R

x(µi − νi)(ds, dx),

where W i = (W i
t )t∈[0,T ∗] (i = 1, 2) are independent standard Brownian

motions, µi is the random measure of jumps for Li and νi its compensator.
This is the representation which we shall use henceforth since from now on
we shall always assume that (EM) is in force.

The cumulant function θis of Li is then defined for any z ∈ C such that
<z ∈ [−(1 + εi)Mi, (1 + εi)Mi] and has the form

θis(z) = bisz +
1

2
cisz

2 +

∫
R

(ezx − 1− zx)F is(dx).

For these arguments z we have E[| exp(zLit)|] < ∞ and the moment gen-

erating function of Lit has the form E[exp(zLit)] = exp
(∫ t

0 θ
i
s(z)ds

)
. By

replacing z by the argument iu one gets the characteristic function in its
Lévy-Khintchine form. For the theory which will be developed later we
need the following result which is proved in [14] and generalized in [11].
Let f : R+ → C be a continuous function with |<f | ≤M i, then

E
[

exp
( T∫
t

f(s)dLis

)]
= exp

( T∫
t

θis(f(s))ds
)
, (1)

where the integrals are defined component–wise for the real and the imagi-
nary part.

Now let us briefly recap the Fourier approach in derivative pricing which
leads to numerically very efficient valuation formulas. Speed of the numer-
ical algorithms is crucial once one wants to calibrate a model to price or
volatility quotes from the exchanges. For details see [9]. The price at time
0 of an option with maturity t ∈ [0, T ∗] is typically given by an expectation
EQ[f(Ht− s)], where Q is a risk-neutral probability, f represents the payoff
function, H = (Ht)t∈[0,T ∗] is a suitably chosen process and s a log-transform
of the starting value of the underlying. Since payoff functions are often un-
bounded we dampen them first with an exponential function and define
g(x) := e−Rxf(x) for some R ∈ R. Three integrability properties (C1)–(C3)
are needed to get the Fourier formula. The expectation above can then be
written as a Fourier integral

EQ[f(Ht − s)] =
1

π
e−Rs

∞∫
0

<
(
eiusf̂(u+ iR)MHt(R− iu)

)
du. (2)

3. The hybrid Lévy equity model

Two independent time-inhomogeneous Lévy processes L1, L2 as introduced
in the previous section will be used to drive the interest rate and equity
dynamics. The key quantities will be designed as exponentials of stochastic
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integrals with respect to these processes. Those exponentials will be properly
compensated in order to become martingales. For this purpose (EM) will
always be assumed.

3.1. The bond market. For each maturity T ∈ [0, T ∗] and t ∈ [0, T ] we
assume that the dynamics of the instantaneous forward rates is given by
(see Eberlein et al. [10])

f(t, T ) = f(0, T ) +

t∫
0

α(s, T )ds−
t∫

0

σ1(s, T )dL1
s. (3)

Here f(0, T ) is a deterministic, bounded, and in T measurable function
which represents the currently observed rates. The drift coefficient α and the
volatility σ1 are assumed to satisfy the usual measurability and boundedness
conditions (see [10], (2.5)). In order to keep the numerical algorithms as
simple as possible, we will later consider only deterministic functions σ1. The
drift coefficient α will in the risk-neutral setting become a very specific one,
namely a function of σ1 and the cumulant function of the driving process
L1. Recall that the price of a default-free zero coupon bond is related to

the instantaneous forward rate through B(t, T ) = exp
(
−
∫ T
t f(t, s)ds

)
and

therefore – by using the version of Fubini’s theorem for stochastic integrals
– the dynamics for f(t, T ) translates into an equation for the bond prices

B(t, T ) = B(0, T ) exp
( t∫

0

(r(s)−A(s, T ))ds+

t∫
0

Σ(s, T )dL1
s

)
, (4)

where A(s, T ) :=
∫ T
s∧T α(s, u)du and Σ(s, T ) :=

∫ T
s∧T σ1(s, u)du. r(t) :=

f(t, t) denotes as usual the short rate which is implicitly given by the forward
rate dynamics. We will always assume that Σ(s, T ) ≤ M1, where M1 is the
constant from assumption (EM). This guarantees that the exponential of
the stochastic integral has finite expectation. A standard choice for σ1 is the
Vasiček structure

σ1(s, T ) :=

{
σ̂ exp(−a(T − s)), s ≤ T
0, s > T

(5)

with two parameters a 6= 0 and σ̂ > 0, which entails

Σ(s, T ) =

{
σ̂
a (1− exp(−a(T − s))), s ≤ T
0, s > T.

(6)

Often σ̂ is chosen to be |a|. This helps to keep the dimension of the
parameter space as low as possible in calibrating the model to data.

For the money market account B(t) := exp
(∫ t

0 r(s)ds
)

one gets the ex-

plicit equation B(t) = B(0, t)−1 exp(
∫ t

0 A(s, t)ds−
∫ t

0 Σ(s, t)dL1
s).

In order to generate a bond market which is free of arbitrage, one has to
make sure that discounted bond prices B(t)−1B(t, T ) are martingales. This

means that
∫ t

0 A(s, T )ds has to be chosen as the exponential compensator

of
∫ t

0 Σ(s, T )dL1
s. One can easily achieve this goal since for deterministic
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volatility functions σ1 the stochastic integral with respect to L1 has still in-
dependent increments. Therefore its exponential divided by the expectation
of this exponential is a martingale. The latter expectation can be obtained
from (1). The bond market is therefore free of arbitrage if we choose

A(s, T ) = θ1
s(Σ(s, T )) (s ∈ [0, T ]). (7)

This is the drift condition which will be assumed henceforth.

3.2. The equity market. The dynamics of the stock price will be defined
in the following way

lnS(t) = lnS(0) +

t∫
0

r(s)ds+

t∫
0

σ2(s)dL2
s +

t∫
0

β(s)dL1
s −ωh(t). (8)

In this hybrid approach the classical interest rate term
∫ t

0 r(s)ds affects
the stock price via the short rate in an endogenous way, whereas the ad-

ditional term
∫ t

0 β(s)dL1
s allows for an exogenous influence of the fixed in-

come market on the equity market. σ2 is positive and denotes the volatility
of the stock price. Both, σ2 and β, could be chosen as random processes,
but again having numerical aspects in mind we will only consider deter-
ministic functions σ2 and β in the following. They are assumed to satisfy
σ2(s) ≤ M2, |β(s)| ≤ M1, where M1,M2 are the constants from assump-
tion (EM). The drift term ωh(t) is chosen such that the discounted stock
price (B(t)−1S(t))t∈[0,T ∗] becomes a martingale. Following the same argu-
ment as above and exploiting the independence of the driving processes it is

clear that ωh(t) =
∫ t

0 [θ2
s(σ2(s)) +θ1

s(β(s))]ds is the right choice to guarantee
martingality.

Let us analyse the interaction between the two market segments further.
From (8) we derive that

S(t) = d(t) exp(Ht) = d(t) exp(H2
t +H1

t ), (9)

where d(t) := S(0)B(0, t)−1 exp(
∫ t

0 [θ1
s(Σ(s, t))−θ1

s(β(s))−θ2
s(σ2(s))]ds) col-

lects all deterministic terms and Ht := H1
t +H2

t is given by

H1
t :=

∫ t
0 (β(s) − Σ(s, t))dL1

s, H
2
t :=

∫ t
0 σ2(s)dL2

s. According to (3) and (4)
one can write

B(t, T ) = D(t, T ) exp(Xt(T )), (10)

where D(t, T ) := B(0, T )B(0, t)−1 exp(
∫ t

0 (θ1
s(Σ(s, t)) − θ1

s(Σ(s, T )))ds) and

Xt(T ) :=
∫ t

0 (Σ(s, T )− Σ(s, t))dL1
s. Combining (9) and (10) one gets

S(t) = d(t, T ) exp(Ht(T ))B(t, T ) (11)

for d(t, T ) = d(t)D(t, T )−1 and Ht(T ) = H1
t + H2

t − Xt(T ). Ht(T ) can be
considered as the transition process of the hybrid model.

By choosing specific driving processes Li and appropriate values for β one
can see that significant levels of correlation between S(t) and B(t, T ) can be
achieved (see [23]).
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4. Valuation of derivatives

Valuation formulas for derivatives simplify considerably when for a given
maturity T expectations are taken with respect to the forward martingale
measure PT (see [15]) which lives on (Ω,FT ). Its Radon–Nikodym density

is defined by dPT
dP = (B(0, T )B(T ))−1. By conditioning it on Ft for each

0 ≤ t ≤ T we get in the context of the approach above the corresponding
density process in the explicit form

Zt(T ) = exp
( t∫

0

Σ(s, T )dL1
s −

t∫
0

θ1
s(Σ(s, T ))ds

)
. (12)

Following the exposition in [7] we shall develop numerically efficient Fourier
based valuation formulas for the hybrid model. We start with interest rate
derivatives. Write the price of a zero coupon bond as given in (10) in the
form

B(t, T ) = exp(Xt(T )− s1(t, T )), (13)

where s1(t, T ) := − lnD(t, T ). Assume that the payoff of an option with
maturity t ∈ [0, T ] on a zero coupon bond with maturity T ∈ [0, T ∗] is given
as a function f(Xt(T ) − s1(t, T )). Then the time-0 price of the option is
V0(t, T ) = B(0, t)EPt [f(Xt(T ) − s1(t, T ))]. If the integrability assumptions
(C1)–(C3) hold true (see [7]) the last expression can be written as an integral

V0(t, T ) =
1

π
B(0, t)

∞∫
0

<
(
D(t, T )R−iuM̃Xt(T )(R− iu)f̂(u+ iR)

)
du.

Here M̃Xt(T ) denotes the moment generating function of Xt(T ) with respect

to Pt, f̂ is the Fourier transform of f and < is the real part of the complex
integrand.

In order to calibrate this model to market data we will need explicit
pricing formulas for the most liquid market instruments which are caps and
floors for the fixed income market and options on individual shares or indices
for the equity market.

4.1. Caps and floors. Let 0 ≤ T0 < T1 < . . . < Tn−1 < Tn = T be the
tenor structure along which the payments of the cap or floor are made. We
assume that the tenor length δ = δk := Tk−Tk−1 is equidistant. For a cap at
each time point Tk for k = 1, . . . , n the payoff is Nδ(L(Tk−1, Tk−1) −K)+,
where N is the notional amount of the contract, K the strike rate and
L(Tk−1, Tk−1) denotes the Euribor or Libor which prevails at time Tk−1 for
the tenor period [Tk−1, Tk). In the case of floors the corresponding payoffs
are given by Nδ(K − L(Tk−1, Tk−1))+. We consider here only the setup,
where rates are tenor independent. For an advanced model approach which
allows to take tenor dependence into account see [8]. In the classical setting
the Euribor or Libor is related to the zero coupon price via

L(Tk−1, Tk−1) =
1

δ

( 1

B(Tk−1, Tk)
− 1
)
. (14)
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Let us note that the payoff of a cap at time point Tk is up to a scaling factor
nothing but the payoff of a call option on the reference rate L(t, Tk−1) – the
Libor rate for the period [Tk−1, Tk) observed at time t ≤ Tk−1 – with strike
K and maturity Tk−1. Each of these options is called a caplet. In the case of
a floor each single payment corresponds to a put option on the reference rate
and is called a floorlet. As a consequence of (14) the payoff of the Tk−1-caplet
discounted to the time point Tk−1 can be written as that of a put option

on the price of the bond with maturity Tk, notional Ñ := N(1 + δK) and

strike K̃ := (1 + δK)−1. In the same way each floorlet can be interpreted as
a call. It is this representation which will be used for valuation. We denote
by Cap(K,T ;N) the price of the cap which is given as the sum of the caplet
prices

Cap(K,T ;N) := Ñ
n∑
k=1

Cpl(K,Tk−1, Tk).

The time-0 price of each caplet is

Cpl(K,Tk−1, Tk) = B(0, Tk−1)EPTk−1
[(K̃ −B(Tk−1, Tk))

+].

The corresponding formulas for the floor are

Floor(K,T ;N) := Ñ

n∑
k=1

Flt(K,Tk−1, Tk)

with

Flt(K,Tk−1, Tk) = B(0, Tk−1)EPTk−1
[(B(Tk−1, Tk)− K̃)+].

According to (13) the bond price can be written as

B(Tk−1, Tk) = exp(XTk−1
(Tk)− s1(Tk−1, Tk))

and therefore using the short forms fC(x;K) = (ex −K)+ and
fP (x;K) = (K − ex)+, we get

Cpl(K,Tk−1, Tk) = B(0, Tk−1)EPTk−1
[fP (XTk−1

(Tk)− s1(Tk−1, Tk); K̃)]

and

Flt(K,Tk−1, Tk) = B(0, Tk−1)EPTk−1
[fC(XTk−1

(Tk)− s1(Tk−1, Tk); K̃)].

These are the representations which are easily accessible for Fourier meth-

ods. If R ∈ (−∞, 0) is such that M̃XTk−1
(Tk)(R) <∞ then

Cpl(K,Tk−1, Tk) =
1

π
B(0, Tk−1)

·
∞∫

0

<
(
D(Tk−1, Tk)

R−iu K̃1−(R−iu)

(R− iu)(R− 1− iu)
M̃XTk−1

(Tk)(R− iu)
)
du,
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and if R ∈ (1,∞) is such that M̃XTk−1
(Tk)(R) <∞ then

Flt(K,Tk−1, Tk) =
1

π
B(0, Tk−1)

·
∞∫

0

<
(
D(Tk−1, Tk)

R−iu K̃1−(R−iu)

(R− iu)(R− 1− iu)
M̃XTk−1

(Tk)(R− iu)
)
du.

The key input of these formulas is M̃Xt(T ), the moment generating func-
tion of Xt(T ) under the forward measure Pt. By using the explicit form of
the density process in (12), we get

Proposition 4.1. Suppose the constants M1, ε in assumption (EM) are such
that Σ(s, t) ≤M ′ for s, t ∈ [0, T ] and a constant M ′ < M1. Then

M̃Xt(T )(R) <∞ for R ∈
[
−(M1 −M ′)M ′−1, 0

]
∪
(
1, 1 + (M1 −M ′)M ′−1

]
,

and for each z ∈ C with <z = R we get

M̃Xt(T )(z) = exp
( t∫

0

[θ1
s(zΣ(s, T ) + (1− z)Σ(s, t))− θ1

s(Σ(s, t))]ds
)
.

4.2. Options on equity. Let us write the stock price dynamics (9) in the
form S(t) = exp(Ht−s2(t)), where s2(t) := − ln d(t). Consider an option on
S(t) with maturity T ∈ [0, T ∗] and payoff given in the form f(HT − s2(T )).
The time-0 price of this option is then V0(T ) = B(0, T )EPT

[f(HT − s2(T ))].

If M̃HT denotes the moment generating function of HT with respect to the
forward measure PT we get - provided the assumptions (C1)–(C3) hold true
- the Fourier formula

V0(T ) =
1

π
B(0, T )

∞∫
0

<
(
d(t)R−iuM̃HT (R− iu)f̂(u+ iR)

)
du. (15)

Again the key input is M̃HT which can be obtained according to

Proposition 4.2. Suppose the constants Mi, εi (i = 1, 2) in assumption
(EM) are such that σ2(s) ≤ Hp , |β(s)| ≤ Hp/2 and Σ(s, T ) ≤ Hp/2 for a
constant Hp > 0 (p ≥ 1) with pHp < M1 ∧M2. Then

M̃HT (R) <∞ for R ∈
[
−M1 ∧M2 − pHp

Hp
, 0
]
∪
(
p, p+

M1 ∧M2 − pHp

Hp

]
,

and for all z ∈ C with <z = R we get M̃HT (z) = MH2
T (z)M̃H1

T (z), where

MH2
T (z) = exp

( T∫
0

θ2
s(zσ2(s))ds

)
and

M̃H1
T (z) = exp

( T∫
0

[θ1
s(zβ(s) + (1− z)Σ(s, T ))− θ1

s(Σ(s, T ))]ds
)
.
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Proof. Since HT = H1
T + H2

T one gets exploiting independence of H1
T and

H2
T

M̃HT (z) = B(0, T )−1E
[
exp(zH2

T )B(T )−1 exp(zH1
T )
]

= E
[
exp(zH2

T )
]
EPT

[
exp(zH1

T )
]
.

Using formula (1) we conclude further

MH2
T (z) = E

[
exp

( T∫
0

zσ2(s)dL2
s

)]
= exp

( T∫
0

θ2
s(zσ2(s))ds

)
since for <z ∈

[
−(M1 ∧M2 − pHp)H

−1
p , 0

]
and s ∈ [0, T ∗]

|<(zσ2(s))| ≤ |<z|Hp < M2 and similarly for the other domain of <z. The
second factor is

M̃H1
T (z) = E

[
exp

( T∫
0

(zβ(s) + (1− z)Σ(s, T ))dL1
s

)]

· exp
(
−

T∫
0

θ1
s(Σ(s, T ))ds

)
.

From this the result follows since for both ranges of R given in the statement
above one can verify (see [23]) that |<(zβ(s) + (1− z)Σ(s, T ))| ≤M1. �

4.3. Power calls and puts. The stage is now set to value specific options.
We will discuss in detail power calls and power puts. Other types such as for
example self-quanto options can be treated along the same lines. For power
options the payoff functions are for a given strike K ≥ 0 amd p ∈ N

fCp(x;K) :=
[
(ex −K)+]p und fP p(x;K) :=

[
(K − ex)+]p .

This includes for p = 1 standard calls and puts with payoffs fC and fP as
defined earlier. For some analytical purposes it is convenient to consider first
the case K = 1 and only then to pass to the general case. This is possible
since

fCp(x;K) = Kp
[(
ex−lnK − 1

)+]p
= KpfCp(x− lnK; 1). (16)

Recall that Euler’s beta function is defined for all z1, z2 ∈ C such that
<z1,<z2 > 0 by

B(z1, z2) :=

1∫
0

tz1−1(1− t)z2−1dt

and is related to the gamma function by B(z1, z2) = Γ(z1)Γ(z2)Γ(z1 +z2)−1.
An integration exercise leads to the following explicit formula

f̂Cp(z; 1) = B(−p− iz, p+ 1) = p!
Γ(−p− iz)
Γ(1− iz)
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for z ∈ C such that =z ∈ (p,∞). By using (16) one can derive from this
result the Fourier transform of fCp for arbitrary strikes K as follows

f̂Cp(z;K) = Kp+izB(−p− iz, p+ 1).

The result simplifies for standard call options to

f̂C(z;K)) =
K1+iz

iz(1 + iz)
.

Inserting the above expression for f̂Cp into the general formula (15) one gets

for R ∈ (p,∞) with M̃HT (R) <∞ an integral representation for the time-0
price C(K,T ; p) of a power call. That the range for R has to be chosen to
be (p,∞) becomes clear when one verifies (C1) and (C3) for the dampened
function gCp(x) := e−RxfCp(x).

Along the same lines one can derive the corresponding expressions for

power puts. For z with =z ∈ (−∞, 0) one gets f̂P p(z;K) = Kp+izB(iz, p+1).
The same analytical expression as for calls results for standard puts but the
domain for z differs. =z ∈ (1,∞) is replaced by =z ∈ (−∞, 0).

Proposition 4.2 shows how one can choose R = R(p) as a function of

p such that M̃HT (R) < ∞. Given processes L1, L2, the constants M1,M2

from assumption (EM) are known. Now choose Hp as large as possible such
that pHp < M1∧M2. This defines the range of R for which the statement in
Proposition 4.2 holds true. Note that this puts restrictions on the coefficients
σ2(s), β(s) and Σ(s, T ).

4.4. Valuation of hybrid derivatives. For a hybrid financial product we
consider a performance basket. This is a diversification product which takes
the performance of both markets, equity and fixed income, into account.
We consider a portfolio which consists of a specific stock (or a stock index)
with price process S(t) and a bond with price process B(t, T ). The payoff at
maturity t ≤ T of the derivative with this portfolio as underlying is given by(
w1S(t)S(0)−1 + w2B(t, T )B(0, T )−1

)+
, where w1, w2 ∈ R are weights. A

positive weight stands for a long position whereas a negative weight means
a short position. If both positions are long, the payoff is strictly positive. It
is 0 if both positions are short. We shall therefore focus on mixed positions,
where one is long and the other is short. The time-0 value of the performance
basket is

C(t, T ;w1, w2) := E
[
B(t)−1

(
w1

S(t)

S(0)
+ w2

B(t, T )

B(0, T )

)+]
.

This expectation is 0 for negative weights and it is w1 + w2 for positive
weights because of the martingale property of discounted price processes.
Therefore we will consider now the cases w1 > 0, w2 < 0 and w1 < 0, w2 > 0.

Using FS(t, T ) = B(t, T )−1S(t) for the forward price of S with respect to
the bond B(·, T ) as numeraire, the pricing formula above can be written as

C(t, T ;w1, w2) = EPT
t

[(
w1

FS(t, T )

FS(0, T )
+ w2

)+]
, (17)
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where P Tt denotes the T -forward measure on Ft. From (11) we get FS(t, T ) =
d(t, T ) exp(Ht(T )) with

d(t, T ) = FS(0, T ) exp
( t∫

0

[θ1
s(Σ(s, T ))− θ1

s(β(s))− θ2
s(σ2(s))]ds

)
.

This can be written in the form FS(t, T ) = exp(Ht(T ) − s(t, T )) which
is suitable for a Fourier based formula by setting s(t, T ) = − ln d(t, T ).
To exploit (17), we will therefore need the moment generating function of
the transition process Ht(T ) with respect to the forward measure P Tt . Its
derivation can be done in the same way as in Proposition 4.2.

Proposition 4.3. Suppose the constants Mi, εi (i = 1, 2) in assumption
(EM) are such that σ2(s) ≤ H , |β(s)| ≤ H/2 and Σ(s, T ) ≤ H/2 for a
constant H > 0 with H < M1 ∧M2. Then

M
Ht(T )

PT
t

(R) <∞ for R ∈
[
− M1 ∧M2 −H

H
, 0
]
∪
(

1, 1 +
M1 ∧M2 −H

H

]
and M

Ht(T )

PT
t

(z) = MH2
t (z)M

H1
t−Xt(T )

PT
t

(z) for all z with <z = R, where

MH2
t (z) = exp

( t∫
0

θ2
s(zσ2(s))ds

)
and

M
H1

t−Xt(T )

PT
t

(z) = exp
( t∫

0

[θ1
s(zβ(s)+(1−z)Σ(s, T ))−θ1

s(Σ(s, T ))]ds
)
.

For the case w1 > 0, w2 < 0 we have to consider the valuation of a call
with maturity t on the forward price FS , since (17) reads as

C(t, T ;w1, w2) =
w1

FS(0, T )
EPT

t
[fC(Ht(T )− s(t, T );K)]

for a strike defined as K := −w2w
−1
1 FS(0, T ). The corresponding Fourier

formula which holds for R ∈
(
1, 1 + (M1 ∧M2 −H)H−1

]
is

C(t, T ;w1, w2) =
1

π

w1

FS(0, T )

·
∞∫

0

<
(
d(t, T )R−iu

K1−(R−iu)

(R− iu)(R− 1− iu)
M
Ht(T )

PT
t

(R− iu)
)
du.

In the case w1 < 0, w2 > 0 we consider instead a put option with maturity
t on the forward price FS , since (17) can be written in the form

C(t, T ;w1, w2) = − w1

FS(0, T )
EPT

t
[(K − FS(t, T ))+]

for the same strike K as above. The corresponding Fourier formula which
holds for R ∈

[
−(M1 ∧M2 −H)H−1, 0

)
is exactly the same as in the case

above, but has a minus in front.
In order to illustrate the influence of the dependence parameter β on the

valuation, we chose for Figure 1 two NIG Lévy processes L1, L2 (see e.g.
[6] for details on NIG processes). The numbers on the x-axis represent the
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Figure 1 Prices as a function w1 7→ C(5, 10;w1, w2) with varying
values β. Calls on the left side, puts on the right side.

weight w1. The second weight is given by w2 = 1 − w1 for the call and by
w2 = −1−w1 for the put. The lines correspond top down to β = 0.5,−0.2, 0.

4.5. Calibration of the hybrid Lévy equity model. Calibration of the
hybrid Lévy equity model is done in two steps which is natural since we
started with modelling the interest rate market and only in a second step
coupled it to the equity market. The data which is used for the first step
are market quotes for caps. One could base the calibration upon quotes for
floors as well or upon data from both categories. We shall use Euro cap
quotes given by Bloomberg for August 15, 2006. The data is as usual given
in terms of flat volatilities as a surface along maturities T ∈ T 1 and cap rates
K ∈ K1. On the basis of a consistency requirement flat volatilities can be
transformed into implied spot volatilities vs = vs(T,K) for (T,K) ∈ T 1×K1

(see Hull [19, 26.3]). One can then compute caplet and cap market prices
(in Euros) by using the standard lognormal market model.

If Cplmdl(K,T, T + δ; p1) and Cplmkt(K,T, T + δ; vs) denote the model
respectively market price of a caplet with cap rate K ∈ K1, maturity T ∈ T 1

and payment at time T+δ, we minimize over all admissible parameter vectors
p1 the sum

Z1(p1) :=
∑

(T,K)∈T 1×K1

[Cplmdl(K,T, T + δ; p1)− Cplmkt(K,T, T + δ; vs)]
2.

p1 consists of the parameters of the driving process L1 and of those of the
volatility structure σ1.

The resulting parameter vector p̂1 is used as an input for the second step
in which we calibrate the model to data from the equity market. For this
purpose we shall use quotes from the same date August 15, 2006 for call
options on Deutsche Bank [DBK], Commerzbank [CBK], Allianz [ALV] and
Daimler [DAI]. Again the quotes are given as a surface of implied volatilities
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Figure 2 Calibrated NIG model prices (dots) and market prices
(surfaces in grey). Left: Caplets. Right: Caps.

v = v(T,K) along maturities given by a set of dates T 2 and strike rates
given by a set K2. Market call prices Cmkt(K,T ; v) expressed in Euros are
derived from the volatilities by using the Black-Scholes formula (see Hull [19,
13.12]). Note that one has to correct for dividend payments. Finally in order
to get a parameter vector p̂2 we compare model prices Cmdl(K,T ; p2, p̂1) to
the market prices by minimizing the function

Z2(p2, p̂1) :=
∑

(T,K)∈T 2×K2

[Cmdl(K,T ; p2, p̂1)− Cmkt(K,T ; v)]2.

over all admissible parameter vectors p2. p2 consists of the parameters of
the driving process L2, plus those of the volatility structure σ2 and the
dependence parameter β. As a consequence of the restrictions which the Lévy
parameters and the volatility functions have to satisfy, the minimization
procedure is an optimization under a number of constraints.

We used normal inverse Gaussian (NIG) processes for L1 and L2 and
got in the first step of the calibration the parameter values α1 = 4, β1 =
−3.8, δ1 = 1.34 for the process L1. Since the location parameter µ does not
influence the valuation, it can be set to be 0. The value for the volatility
parameter is a = 0.0020898, where we chose the simplified version of (5),
where σ̂ = |a|. The final value for Z1 was 3.355532 · 10−6. Figure 2 shows
the derived market prices of caplets and caps (in Euros) as a grey surface.
The dots mark the calibrated model prices. Caplet prices are shown on the
left hand side, cap prices on the right hand side of the figure.

The result of the second step of the calibration is shown in Table 1, where
α2, β2, δ2 are the NIG Lévy parameters, σ2 and β represent the volatility and
the dependence parameter respectively and Z2 is the final value achieved in
the optimization procedure.
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Parameter DBK CBK ALV DAI
α2 8.38 5.6 0.97 5.73
β2 -5.06 -2.8 -0.39 -2.13
δ2 6.31 15.93 3.77 8.3
σ2 0.194 0.144 0.1114 0.1818
β 0.0153 0.0284 -0.0153 0.0065
Z2 0.3537774 3.595755 1.307042 0.07381847

Table 1 Calibrated NIG model parameters and final Z2-values

5. The hybrid Lévy forward rate model

Let again L1, L2 be two independent Lévy processes which satisfy assump-
tion (EM). We define the dynamics of the stock price in the form

lnS(t) = lnS(0) +

t∫
0

rh(s)ds+

t∫
0

σ2(s)dL2
s − ω2(t)

and couple then the interest rate market to the equity market by setting the
dynamics of the instantaneous forward rate as

fh(t, T ) = fh(0, T ) +

t∫
0

α(s, T )ds−
t∫

0

σ1(s, T )dL1
s +

t∫
0

β(s, T )dL2
s.

The second equation defines also the short rate rht) := fh(t, t) from which
the money market account can be derived. The process ω2(t) will be chosen
appropriately later. β(s, T ) determines the exogenous influence of the equity
market on the interest rate market. The volatilities σ2(s) and σ1(s, T ) as
well as the drift coefficient α(s, T ) and β(s, T ) could be chosen as random
processes which satisfy the usual measurability and boundedness conditions
(see again [10], (2.5)). For the sake of numerical simplicity we will consider
only deterministic functions σ1(·, T ) ≥ 0, σ2 ≥ 0 and β(·, T ). The dynamics
of fh(t, T ) translates into an equation for zero coupon prices

Bh(t, T ) = Bh(0, T ) (18)

· exp
( t∫

0

(rh(s)−A(s, T ))ds+

t∫
0

Σ(s, T )dL1
s −

t∫
0

C(s, T )dL2
s

)
,

where C(s, T ) :=
∫ T
s∧T β(s, u)du. To make sure that S(t) and Bh(t, T ) are

well defined we assume in the following that Σ(s, T ) ≤M1, |C(s, T )| ≤M2

and σ2(s) ≤M2. For calibration purposes β will later be chosen as

β(s, T ) =

{
b exp(−b(T − s)), s ≤ T
0, s > T

(19)

for a constant b 6= 0. This means that C(s, T ) = 1 − exp(−b(T − s)). Note
that this choice will guarantee the Markov property for the short rate rh

since for 0 < T < U , β(·, U) is a scalar multiple of β(·, T ) (for details see
[14], Lemma 4.2).
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If we define the vector v(s, T ) := (Σ(s, T ),−C(s, T )) and write the driv-
ing process as L = (L1, L2) then the discounted bond prices Ut(T ) :=
Bh(t)−1Bh(t, T ) can be represented in the compact form

Ut(T ) = Bh(0, T ) exp
( t∫

0

v(s, T )dLs −
t∫

0

A(s, T )ds
)
.

Following the reasoning that led to (7) we see that under the drift condition

A(s, T ) = θ1
s(Σ(s, T )) + θ2

s(−C(s, T )) (s ∈ [0, T ]) (20)

the process (Ut(T ))t∈[0,T ] is a martingale. In the same way the choice

ω2(t) =

t∫
0

θ2
s(σ2(s))ds (t ∈ [0, T ]) (21)

guarantees that the discounted stock price is a martingale. The choices (20)
and (21) for the drift processes will be assumed henceforth.

Let us analyse the interaction between the equity and the fixed income
market as in section 3.2. The money market account can be represented

in the explicit form Bh(t) = Bh(0, t)−1 exp
( ∫ t

0 A(s, t)ds −
∫ t

0 Σ(s, t)dL1
s +∫ t

0 C(s, t)dL2
s

)
. Plugging this in (18) we get

Bh(t, T ) =
Bh(0, T )

Bh(0, t)

· exp
( t∫

0

Σ(s, t, T )dL1
s −

t∫
0

C(s, t, T )dL2
s −

t∫
0

A(s, t, T )ds
)
,

where A(s, t, T ) := A(s, T ) − A(s, t), Σ(s, t, T ) := Σ(s, T ) − Σ(s, t) and
C(s, t, T ) := C(s, T ) − C(s, t). Consequently the interaction between the
two market segments is described by the process

Xh
t (T ) :=

t∫
0

Σ(s, t, T )dL1
s −

t∫
0

C(s, t, T )dL2
s

with the component Xt(T ) :=
∫ t

0 Σ(s, t, T )dL1
s from the bond market and

the component D2
t (T ) :=

∫ t
0 C(s, t, T )dL2

s which gives the impact from the
equity market.

Similarly we can decompose the equity hybrid process

Ht :=

t∫
0

(σ2(s) + C(s, t))dL2
s −

t∫
0

Σ(s, t)dL1
s

into two independent components H2
t :=

∫ t
0 (σ2(s) + C(s, t))dL2

s and D1
t :=∫ t

0 Σ(s, t)dL1
s. If we collect now the deterministic terms in Bh(t, T ) and S(t)
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by defining

Dh(t, T ) :=
Bh(0, T )

Bh(0, t)
exp

( t∫
0

−
[
Θ1(Σ(s, t, T ) + Θ2(C(s, t, T )))

]
ds
)
,

with Θ1(Σ(s, t, T )) := θ1
s(Σ(s, T )) − θ1

s(Σ(s, t)) as well as Θ2(C(s, t, T )) :=
θ2
s(−C(s, T ))− θ2

s(−C(s, t)) and

d(t) :=
S(0)

Bh(0, t)
exp

( t∫
0

[θ1
s(Σ(s, t)) + θ2

s(−C(s, t))− θ2
s(σ2(s))]ds

)
,

we get Bh(t, T ) = Dh(t, T ) exp(Xh
t (T )) and S(t) = d(t) exp(Ht). By sub-

tracting Xh
t (T ) from Ht one obtains the process

Ht(T ) :=

t∫
0

(σ2(s) + C(s, T ))dL2
s −

t∫
0

Σ(s, T )dL1
s

with two independent components which allows to get the relation

S(t) = d(t, T ) exp(Ht(T ))Bh(t, T )

with d(t, T ) := d(t)Dh(t, T )−1.

5.1. Valuation of interest rate derivatives. Let us first introduce the
hybrid forward martingale measure P hT for a maturity T ∈ [0, T ∗] which lives
on (Ω,FT ). Its Radon–Nikodym density is defined by

dP hT
dP

:=
1

Bh(0, T )Bh(T )
.

with corresponding density process

Zt(T ) = exp
( t∫

0

Σ(s, T )dL1
s −

t∫
0

C(s, T )dL2
s −

t∫
0

A(s, T )ds
)
.

This density can be decomposed into a product
dPh

T
dP =

dP 1
T

dP
dP 2

T
dP , where

dP 1
T

dP
:= exp

( T∫
0

Σ(s, T )dL1
s −

T∫
0

θ1
s(Σ(s, T ))ds

)
,

dP 2
T

dP
:= exp

(
−

T∫
0

C(s, T )dL2
s −

T∫
0

θ2
s(−C(s, T ))ds

)
.

The measure P 1
T is called T-forward interest rate measure whereas P 2

T is
called T-forward dependence measure since it controls the influence of the
equity market.
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Interest rate options. Let us write the hybrid bond price in the form
Bh(t, T ) = exp(Xh

t (T )−s1(t, T )), where we have set s1(t, T ) := − lnDh(t, T ).
Assume that the payoff f of an option with maturity t ∈ [0, T ] on a zero
coupon bond with maturity T ∈ [0, T ∗] can be represented as f(Xh

t (T ) −
s1(t, T )), then the time-0 price of the option is

V0(t, T ) = Bh(0, t)EPh
t

[f(Xh
t (T )− s1(t, T ))],

where we made use of the hybrid t-forward measure. If we denote by M
Xh

t (T )

Ph
t

the moment generating function of Xh
t (T ) under P ht , then this can be written

as a Fourier integral

V0(t, T ) =
1

π
Bh(0, t)

∞∫
0

<
(
Dh(t, T )R−iuM

Xh
t (T )

Ph
t

(R− iu)f̂(u+ iR)
)
du.

provided (C1)–(C3) hold true. The crucial input is again the moment gen-
erating function.

Proposition 5.1. Suppose the constants Mi, εi (i = 1, 2) in assumption
(EM) are such that for Σ(s, t) ≤ H and |C(s, t)| ≤ H/2 for a constant
H > 0 with H < M1 ∧M2. Then

M
Xh

t (T )

Ph
t

(R) <∞ for R ∈
[
− M1 ∧M2 −H

H
, 0
]
∪
(

1, 1 +
M1 ∧M2 −H

H

]
and for all z with <z = R we get M

Xh
t (T )

Ph
t

(z) = M
Xt(T )

P 1
t

(z)M
−D2

t (T )

P 2
t

(z), where

M
Xt(T )

P 1
t

(z) = exp
( t∫

0

[
θ1
s(zΣ(s, T ) + (1− z)Σ(s, t))− θ1

s(Σ(s, t))
]
ds
)
,

M
−D2

t (T )

P 2
t

(z) = exp
( t∫

0

[
θ2
s((z − 1)C(s, t)− zC(s, T ))− θ2

s(−C(s, t))
]
ds
)
.

Proof. Recall that Xh
t (T ) = Xt(T )−D2

t (T ). The factorization of M
Xh

t (T )

Ph
t

(z)

follows since the variables exp(Xt(T ))
dP 1

t
dP und exp(−D2

t (T ))
dP 2

t
dP are indepen-

dent. For the latter component a measure change back to P provides the

formula for M
−D2

t (T )

P 2
t

(z). The explicit expression for M
Xt(T )

P 1
t

(z) follows in an

analogous manner. �

The valuation of caps and floors produces formulas which are identical to
those which were derived in section 4. One has just to replace B(Tk−1, Tk) by
Bh(Tk−1, Tk) and PTk−1

by P hTk−1
as well as D(Tk−1, Tk) by Dh(Tk−1, Tk) and

M̃XTk−1
(Tk) by M

Xh
Tk−1

(Tk)

Ph
Tk−1

. The range for R for which M
Xh

Tk−1
(Tk)

Ph
Tk−1

(R) <∞

is the one given in Proposition 5.1.
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Swaptions. We consider interest rate swaps, where along a tenor structure
T given by 0 ≤ T0 < T1 < . . . < Tn−1 < Tn with Tk − Tk−1 = δk, floating
rates are exchanged against fixed rates. An investor holding a long position
in a payer swap at time Tk will have to make a payment according to the
fixed rate K and in exchange will receive the variable rate L(Tk−1, Tk) given
by

L(Tk−1, Tk−1) =
1

δk

(
1

Bh(Tk−1, Tk)
− 1

)
.

For 1 ≤ k ≤ n the cashflow at these time points is δk(L(Tk−1, Tk−1) −K),
where we assume for simplicity that the notional amount N of the contract
equals 1. For a receiver swap the cashflow δk(K − L(Tk−1, Tk−1)) has the
opposite sign. From this it follows that the value of a (forward start) payer
swap at time t ≤ T0 is

FSt(K) := E
[ n∑
k=1

Bh(t)Bh(Tk)
−1δk(L(Tk−1, Tk−1)−K)

∣∣∣Ft].
This pricing formula can be written in the form (see [22], Lemma 13.1.1.)

FSt(K) = Bh(t, T0)−
n∑
k=1

ck(K)Bh(t, Tk) (22)

with ck(K) := Kδk for k = 1, . . . , n− 1 and cn(K) := 1 +Kδn.
The owner of a payer swaption with strike rate K and maturity at time

T = T0 has the right to enter at this time point the underlying payer swap
with fixed rate K. The payer swaption has therefore at time t ≤ T the value

PSt(T,K) := E[Bh(t)Bh(T )−1(FST (K))+|Ft]

which according to (22) is equal to

PSt(T,K) = E
[
Bh(t)Bh(T )−1

(
1−

n∑
k=1

ck(K)Bh(T, Tk)
)+∣∣∣Ft].

The corresponding valuation formula for a receiver swaption is

RSt(T,K) = E
[
Bh(t)Bh(T )−1

( n∑
k=1

ck(K)Bh(T, Tk)− 1
)+∣∣∣Ft].

Under the hybrid forward measure P hT the latter formula becomes for t = 0

RS0(T,K) = Bh(0, T )EPh
T

[( n∑
k=1

ck(K)Dh(T, Tk) exp(Xh
T (Tk))− 1

)+]
.

In order to transform this expectation into an integral which can be eval-
uated fast, we need to put restrictions on the volatility σ1(·, T ) and the
dependence function β(·, T ).

Assumption (VOL).
For all s, T ∈ [0, T ∗] with s ≤ T , σ1(s, T ) 6= 0 and β(s, T ) 6= 0. Further-

more σ1(s, T ) = σ1(s)h(T ) and β(s, T ) = β1(s)h(T ), where σ1, h : [0, T ∗]→
R+ as well as β1 : [0, T ∗]→ R are continuously differentiable functions.



20 ERNST EBERLEIN AND MARCUS RUDMANN

All standard functions which are used for σ1(·, T ) and β(·, T ) factorize
in the sense of this assumption. The factorization implies that Σ(s, t, Tk) =
Σ(s, t, Tn)H(t, Tk, Tn) and C(s, t, Tk) = C(s, t, Tn)H(t, Tk, Tn) withH(t, Tk, Tn) :=∫ Tk
t h(u)du (

∫ Tn
t h(u)du)−1. The deterministic factor H(t, Tk, Tn) absorbs

the dependence of Xh(Tk) on Tk since Xh
t (Tk) = H(t, Tk, Tn)Xh

t (Tn).
We define now fC(x) := (f(x))+ with f(x) :=

∑n
k=1 dke

Hkx − 1, where

dk := ck(K)Dh(T, Tk) and Hk := H(T, Tk, Tn). Then we get the repre-
sentation RS0(T,K) = Bh(0, T )EPh

T
[fC(Xh

T (Tn))] which is the appropriate

form for the transformation in a Fourier integral. If R ∈ (1,∞) is such that

M
Xh

T (Tn)

Ph
T

(R) <∞, then

RS0(T,K) =
1

π
Bh(0, T )

∞∫
0

<
(
f̂C(u+ iR)M

Xh
T (Tn)

Ph
T

(R− iu)
)
du.

Since fC is a more sophisticated function, we shall derive its Fourier trans-
form which is an input to the integral representation. Note that f is a strictly
increasing, continuous function with positive and negative values and there-
fore has a unique zero.

Proposition 5.2. Let Z be the unique zero of f , then for z ∈ C with =z > 1

f̂C(z) =

n∑
k=1

dk
−e(Hk+iz)Z

Hk + iz
+
eizZ

iz
.

Proof.

f̂C(z) =

∞∫
Z

eizx
( n∑
k=1

dke
Hkx − 1

)
dx.

With the substitution t = eZ−x one gets

f̂C(z) = eizZ
1∫

0

t−iz−1
( n∑
k=1

dkt
−HkeHkZ − 1

)
dt.

Therefore

e−izZ f̂C(z) =
n∑
k=1

dke
HkZB(−iz −Hk, 1)−B(−iz, 1)

=
n∑
k=1

dke
HkZ

Γ(−iz −Hk)

Γ(1− iz −Hk)
− Γ(−iz)

Γ(1− iz)

=

n∑
k=1

dk
−eHkZ

iz +Hk
+

1

iz
.

For the beta and gamma functions one has to make use of the fact that
0 ≤ Hk ≤ 1 in order to guarantee that <(−iz −Hk) > 0. �
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Parameter ALV CBK
α1 3.12 7.913
β1 1.87 4.348
δ1 9.24 5.803
α2 3.31 5.384
β2 -1.43 -3.441
δ2 6.01 7.836
a 0.00258 0.00084
σ2 0.1559 0.1802
b 0.00143 -0.0035
Z1 5.813372 · 10−6 3.857768 · 10−6

Z2 2.683827 3.146725
Table 2 Calibrated parameters and final values of the objective

functions

5.2. Calibration of the hybrid Lévy forward rate model. Whereas
the calibration of the hybrid equity model was done in a two step procedure,
this is not possible for the hybrid forward rate approach. The reason is that
L1, the process which drives the forward rates, appears already implicitly
through the short rate rh in the dynamics of the stock price. Consequently
one has to estimate the parameters for the equity and the interest rate
market simultaneously. We shall again use NIG processes for L1 and L2. This
means that we have to determine the parameters αi, βi, δi (i=1,2) for these
processes. Again the location parameters µi are irrelevant in the risk-neutral
setting and can be chosen to be 0. Furthermore we shall need according
to (5) the parameter a which determines the volatility function σ1. This
function is again used in the simplified form, where σ̂ = |a|. The function
β(s, T ) is parametrized by b (see (19)) and finally we shall choose σ2(s) = σ
as a constant function. The objective functions Z1(q) and Z2(p), where
q = (α1, β1, δ1, α2, β2, δ2, a, b) and p = (q, σ) are defined as in section 4.5.

The calibration will be based on market quotes for caps and call options
which were exploited already in section 4.5, namely those given for August
15, 2006. For the equity side we shall use here two different sets of quotes,
namely the quotes for calls on Allianz (ALV) and on Commerzbank (CBK).
The valuation formulas for options on equity are identical to the ones which
we derived in section 4.2. One has just to replace B(t, T ) by Bh(t, T ) and

M̃HT byMHT

Ph
T

. As far as the latter moment generating function is concerned,

we state the result which corresponds to Proposition 4.2 for completeness.
Suppose σ2(s) ≤ H/2, |C(s, t)| ≤ H/2 and Σ(s, t) ≤ H for a constant H > 0
such that H < M1 ∧M2, then

MHt

Ph
t

(R) <∞ for R ∈ [−(M1∧M2−H)H−1, 0]∪(1, 1+(M1∧M2−H)H−1],

and for all z such that <z = R we get MHt

Ph
t

(z) = M
H2

t

P 2
t

(z)M
−D1

t

P 1
t

(z) with

M
H2

t

P 2
t

(z) = exp
( t∫

0

[
θ2
s(zσ2(s) + (z − 1)C(s, t))− θ2

s(−C(s, t))
]
ds
)
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and

M
−D1

t

P 1
t

(z) = exp
( t∫

0

[
θ1
s((1− z)Σ(s, t))− θ1

s(Σ(s, t))
]
ds
)
.

In Table 2 we list the calibrated parameters as well as the final values of the
objective functions Z1 and Z2.
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HYBRID LÉVY MODELS: DESIGN AND COMPUTATIONAL ASPECTS 23

[14] Eberlein, E. and Raible, S. (1999)
Term structure models driven by general Lévy processes.
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