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Abstract We present a new asset price model, which is an enhancement of the ex-
ponential Lévy model. The possibility of bankruptcy is modelled by a single jump
to zero, whereby higher probabilities for this event lead to lower asset prices. We
emphasize in particular the dependence between the asset price and the probability
of default. Explicit valuation formulas for European options are established by us-
ing the Fourier-based valuation method. The formulas can numerically be computed
fast and thus allow to calibrate the model to market data. On markets which are not
perfectly liquid, the law of one price does no longer hold and the cost of unhedge-
able risks has to be taken into account. This aspect is incorporated in the recently
developed two price theory (see Cherny and Madan (2010)), which is discussed and
applied to the proposed defaultable asset price model.

1 Introduction

Standard models for asset prices do not take the possibility of bankruptcy of the
underlying company into account. In real markets, however, there are plenty of cases
where a listed company went bankrupt with the consequence of a total loss of the
invested capital. Figure 1 shows an example. It is the purpose of this paper to expand
an approach such that bankruptcy can occur. As underlying asset price model S =
(St)t≥0 we choose an exponential model which is driven by a Lévy process L =
(Lt)t≥0. A second Lévy process Z = (Zt)t≥0 is used as driver for the hazard rate
which determines the default time. The asset price jumps to zero when this event
happens.
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It is a well-known fact that there is a strong negative dependence between the
value of the asset and the probability of default of the corresponding company. Fig-
ure 3 shows a striking example where we plotted CDS quotes of the German energy
company E.ON against its stock price. In order to take this dependence into account
in the modeling approach which will be developed, the process Z is not only used
for the definition of the time point of default, but enters as an additional driver into
the equation for the asset price. Negative dependence is generated via a minus sign
in front of Z. The remaining terms in the definition of S are determined by the fact
that the discounted asset price should be a martingale.

Earlier approaches where bankruptcy of the underlying company is taken into ac-
count are Davis and Lischka (2002), Andersen and Buffum (2004), Linetsky (2006)
and Carr and Madan (2010). In these papers the driving process is a standard Brow-
nian motion and the hazard rate of bankruptcy is chosen as a decreasing function of
the stock price. A particular parsimonious specification for such a function is given
by a negative power of the stock price. In order to improve the performance Carr
and Madan (2010) use a stochastic volatility model and jointly employ price data
on credit default swaps (CDSs) and equity options to simultaneously infer the risk
neutral stock dynamics in the presence of the possibility of default.

Since we will use European option prices to calibrate the model, a Fourier-based
valuation formula is derived. Several types of options are discussed explicitly. In
order to get prices expressed as expectations in a form which is convenient from the
point of view of numerics, the survival measure is introduced. The effect of the mea-
sure change is that expectations are those of a standard payoff function. Calibration
is done with L being a normal inverse Gaussian (NIG) and the independent process
Z being a Gamma process. As an alternative to the Fourier-based valuation method
we derive also the corresponding partial integro-differential equations (PIDEs). In
the last section we show that the defaultable asset price approach which is exposed
here, provides also an appropriate basis for the recently developed two price theory.
The latter allows to get bid and ask prices and thus to model in addition the liquidity
component of the market.

2 The Defaultable Asset Price Model

A standard model for the price process (St)t≥0 of a traded asset which goes back to
Samuelson (1965) is given by

St = S0eXt (1)

where X = (Xt)t≥0 is a Brownian motion. This approach represented an essential
improvement on the initial Bachelier (1900) model where S had been a Brownian
motion itself. The main differences are that asset prices according to (1) are positive
and behave in a multiplicative or geometric way. The geometric Brownian motion
became well-known as the basis for the celebrated option pricing formula due to
Black and Scholes (1973) and Merton (1973). A from the point of view of distri-
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butional assumptions more realistic modeling was achieved by replacing Brownian
motion by jump-type Lévy processes like hyperbolic Lévy motions, see Eberlein
and Keller (1995), Eberlein and Prause (2002) and Eberlein (2001). Similar results
were obtained by using the class of Variance Gamma Lévy processes as seen in
Madan and Seneta (1990), Madan and Milne (1991) and Carr et al. (2002). A vir-
tually perfect adjustment of theoretical to real option prices across all strikes and
maturities was achieved by using Sato processes (Carr et al., 2007).

In this paper, the asset price model (1) is enhanced by including the possibil-
ity of default. A meaningful dependence structure between the asset price and the
probability of default is introduced. Since we shall use this model for valuation, the
specification is done a priori in a risk-neutral setting, i.e. we assume the underlying
measure P to be risk-neutral. The economic objects to be modeled are

• the hazard rate λ as a nonnegative stochastic process with càdlàg paths, which
describes the behaviour of the default time τ ,

• the asset price S as a nonnegative stochastic process with càdlàg paths.

We want the asset price S to be negatively dependent on the hazard rate λ . There-
fore, we use two sources of randomness

(1) a Lévy process Z = (Zt)t≥0 as driver of the hazard rate λ ,
(2) an independent Lévy process L = (Lt)t≥0, which represents the market noise of

the asset price.

In general a Lévy process is an Rd-valued, adapted stochastic process X =
(Xt)t≥0 on a filtered probability space (Ω ,F ,F = (Ft)t≥0,P) which starts at zero
and has independent and stationary increments. Any Lévy process is characterised
by its Lévy triplet (b,c,νX ), where b ∈ Rd , c is a symmetric nonnegative d×d ma-
trix and νX is a measure on Rd , called the Lévy measure of X . The characteristic
function of X1 is given in its Lévy-Khintchine representation as follows

E[ei〈u,X1〉] = exp
[

i〈u,b〉− 1
2
〈u,cu〉+

∫
[ei〈u,x〉−1− i〈u,h(x)〉]νX (dx)

]
.

If a random vector X has an exponential moment of order v ∈ Rd , i.e. if E[e〈v,X〉] is
finite, we write v ∈ EMX and in this case E[e〈z,X〉] can be defined for all z ∈Cd with
Re(z) ∈ EMX . For Lévy processes X we have under the proper moment assumption
that E[e〈z,Xt 〉] = etθX (z), where

θX (z) := logE[e〈z,X1〉] = 〈z,b〉+ 1
2
〈z,cz〉+

∫
[e〈z,x〉−1−〈z,h(x)〉]νX (dx)

is called the cumulant function of X . Since EMXt is independent of t for Lévy pro-
cesses we use EMX in this case to express that the moment condition holds for
every t. The existence of exponential moments implies the finiteness of moments of
arbitrary order, in particular the finiteness of the expectation. The latter entails that
the truncation function h can be chosen to be the identity, i.e. h(x) = x. With the
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following lemma we are able to calculate explicitly the expectations of exponentials
of stochastic integrals with respect to a Lévy process.

Lemma 1. Let X be a Lévy process such that [−MX (1+ε),MX (1+ε)]d ⊂EMX for
constants MX ,ε > 0. If f : R+→Cd is a complex-valued, continuous function such
that |Re( f i)| ≤MX (i = 1, ...,d), then

E
[

exp
(∫ t

0
f (s)dXs

)]
= exp

(∫ t

0
θX ( f (s))ds

)
.

Proof. This is a straightforward extension of Lemma 3.1. in Eberlein and Raible
(1999). A proof can be found in Kluge (2005). ut

In the following we shall only use one-dimensional Lévy processes.

Example 1. A very flexible and useful subclass of Lévy processes is given by the
normal inverse Gaussian (NIG) processes, which are generated by the NIG distribu-
tion with the simple characteristic function

ϕNIG(u) = eiuµ exp(δ
√

α2−β 2)

exp(δ
√

α2− (β + iu)2)

and the four parameters µ,β ∈ R, δ > 0 and α > |β | ≥ 0.

Example 2. The Gamma process, generated by the Gamma distribution, is an in-
creasing Lévy process. The Gamma distribution has the parameters p,b > 0 and the
characteristic function

ϕΓ (u) =
(

b
b− iu

)p

.

The default time τ : Ω → [0,∞] is constructed via

τ = inf{t ≥ 0 | e−Γt ≤ ξ}.

where Γt :=
∫ t

0 λsds is the integral over the hazard rate λ = (λt)t≥0, a nonnegative F-
adapted process with càdlàg paths and ξ is a uniformly distributed random variable
on [0,1], independent of F. This is the so-called intensity-based approach of default
modelling. Details can be found in Bielecki and Rutkowski (2004). We need three
properties of this construction:

1. One can easily show that

P(t < τ |Ft) = e−Γt . (2)

Thus, the survival probability can be calculated to be P(t < τ) = E
[
e−Γt

]
.

2. If (Mt)t≥0 is a nonnegative F-martingale, then(
Mt1{τ>t}e

Γt
)

t≥0
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follows a G-martingale. G = (Gt)t≥0 is defined by Gt := Ft ∨Ht , where
Ht := σ({τ ≤ u | u ≤ t}) is the filtration which carries the information about
the default time.

3. For the t-survival measure

Pt(A) := P(A | t < τ),

which is the measure P conditioned on no default until t, one gets Pt � P and

dPt |Ft

dP|Ft

=
e−Γt

E[e−Γt ]
. (3)

Now we are ready to specify the asset price model in the form

St = S0 exp
[
rt +Lt −ζ Zt +ωt +Γt

]
1{t<τ} (4)

with a constant r, representing the continuously compounded interest rate. Default
is modeled by a single jump to zero at time point τ . This reflects the idea of no
recovery for shareholders. This assumption seems to be reasonable if we look at the
history of bankruptcies. As an example, the time series of stock prices showing the
bankruptcy of the former German company Walter Bau is represented in Figure 1.
Effectively, the default event, marked by the ellipse, is a jump to zero. In the sequel,
this model will be denoted the Defaultable Asset Price Model ( DAM).

2000−01−03 2002−01−02 2004−01−02 2005−07−01 2007−01−02

0

2

4

6

8

Fig. 1 The bankruptcy of Walter Bau

The term −ζ Zt models the dependency between credit risk and asset price with
an additional parameter ζ ≥ 0. A surge of the default probability leads to a decline of
the asset price. A generalisation to a more complex functional dependence structure



6 Patrick Bäurer and Ernst Eberlein

− f (Zt) is possible and in line with the pricing methods below. The simple form
−ζ Zt was chosen for convenience.

Since we want (St)t≥0 to be a martingale after discounting, the reason for the
term ωt +Γt is a mathematical one. Using the well-known fact that eXt/E[eXt ] is a
martingale for a process X with independent increments, we can choose the constant
ω such that exp[Lt −ζ Zt +ωt] is an F-martingale:

ω =− logE[eL1 ]− logE[e−ζ Z1 ] =−θL(1)−θZ(−ζ ).

Thus, as indicated before, the discounted price process

e−rtSt = S0 exp [Lt −ζ Zt +ωt] · eΓt1{t<τ}

is a G-martingale. This ensures that the considered financial market model is
arbitrage-free, cf. Delbaen and Schachermayer (2006).

For the existence of ω ∈ R, we need the conditions

(i) 1 ∈ EML.
(ii) −ζ ∈ EMZ .

A similar type of model for pricing convertible bonds was introduced by Davis
and Lischka (2002). Their model, driven by a Brownian Motion (Wt)t≥0 with volatil-
ity σ , is

St = S0 exp
[

rt +σWt −
1
2

σ
2t +

∫ t

0
λsds

]
1{t<τ},

where (λs)s≥0 is the hazard rate corresponding to the default time τ . This model
approach was enhanced by Andersen and Buffum (2004), Linetsky (2006) and Carr
and Madan (2010). Their idea of getting a reasonable dependence structure between
credit risk and asset price was a different one. They choose the hazard rate as a
function of the asset price, for example

λs = λ (Ss) = αS−p
s ,

which leads to a stochastic integral equation. Our approach, which is also an en-
hancement of this model, avoids this. Thus, we get a more direct analytical access.

As a model for the hazard rate (λt)t≥0, we choose a positive Ornstein-Uhlenbeck
(OU) process driven by an increasing Lévy process (Zt)t≥0 which is assumed to be
independent of L

dλt = κ(µ−λt)dt +dZt . (κ,µ ≥ 0). (5)

This kind of processes moves up by the jumps of Z and then declines expo-
nentially as if there is a restoring force measured by the parameter κ , see Figure 2.
One main advantage is the analytical tractability, see for example Barndorff-Nielsen
and Shephard (2001) or Cont and Tankov (2004), where OU processes are used as
stochastic volatility models for financial assets. Schoutens and Cariboni (2009) in-
vestigated OU processes already as hazard rate models.
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t

λt

Fig. 2 OU process driven by a Γ process.

The upward jumps can be interpreted as bad news about the firm, like a profit
alert, an essential loss of capital or a failed project. Other reasons could be major
events or even catastrophes with consequences for a whole industrial sector or the
global economy. Examples are the burst of the Dot-com bubble in 2000, the terror
attacks of 9/11, the collapse of Lehman Brothers in 2008 or the Fukushima disaster
in 2011. Hazard rates are not directly observable, but CDS quotes also reflect the
default probability. Hence, the time evolution of hazard rates and short time CDS
quotes should look quite similar. We take the one-year CDS quotes of the German
energy company E.ON SE as an example, see Figure 3. There are two big jumps,
one after the collapse of Lehman Brothers (left line) and one when the German gov-
ernment resolved the nuclear phase-out a few months after the Fukushima disaster
(middle line). We can conclude that the model approach (5) looks quite reasonable
in view of this example. The relation between the upward jumps of the CDS quotes
and the downward movement of the stock price is clearly visible.

The explicit expression for (5) is

λt = λ0e−κt +µ(1− e−κt)+
∫ t

0
eκ(s−t)dZs. (6)

Using Fubini’s Theorem for stochastic integrals, cf. Theorem 64 in Chapter IV of
Protter (2005), we get for the hazard process

Γt = Γ
d

t +
∫ t

0
γ

t
sdZs (7)

where we used the abbreviations

Γ
d

t :=
λ0

κ
(1− e−κt)+µ

(
t +

e−κt

κ
− 1

κ

)
γ

t
s :=

1− e−κ(t−s)

κ
.
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Fig. 3 One-year CDS quotes (top) and stock price (bottom) of the German energy company E.ON
SE. The left line marks the collapse of Lehman Brothers, the middle line the German nuclear
phase-out after the Fukushima disaster.

For the numerical calculation of the survival probability P(t < τ) = E[e−Γt ], we
can now use Lemma 1

E[e−Γt ] = e−Γ d
t E
[

exp
(
−
∫ t

0
γ

t
udZu

)]
= e−Γ d

t exp
(∫ t

0
θZ(−γ

t
u)du

)
, (8)

where θZ is the cumulant function of Z. To obtain (8), we need the assumptions
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(iii) There are constants MZ ,ε > 0 such that ±MZ(1+ ε) ∈ EMZ .
(iv) κ satisfies 1

κ
≤MZ .

This kind of model cannot be adjusted to an exogenously given survival function
t 7→ P(t < τ) = E[e−Γt ]. The survival function can be recovered from CDS quotes
using the methods described in Madan et al. (2004).

The same problem is known from short rate models for the term structure of
interest rates (for an overview see the book of Brigo and Mercurio (2001)). The
famous Vasicek (1977) model is not able to incorporate the current yield curve.
Hull and White (1990) overcame this drawback by making one parameter in the
Vasicek model time-dependent. The same idea could be used to extend (5) in the
following way

dλt = κ(µ(t)−λt)dt +dZt .

3 Option pricing

In this section, we price some European options under the Defaultable Asset Price
Model. We define the F-adapted semimartingale

Xt := logS0 + rt +Lt −ζ Zt +ωt +Γt

such that St = eXt1{t<τ} and use the Fourier-based valuation method as given in
Eberlein et al. (2010). This leads to the equation

EQ[ f (XT )] =
1

2π

∫
ϕ

Q
XT
(u− iR) f̂ (iR−u)du, (9)

where f̂ denotes the Fourier transform of f , which is defined by f̂ (u) =
∫

eiux f (x)dx
and where ϕ

Q
XT

denotes the extended characteristic function of XT under the proba-
bility measure Q. R ∈ R is a constant that must satisfy

(C1) g ∈ L1
bc(R) = {h ∈ L1(R) | h bounded and continuous},

(C2) R ∈ EMXT ,
(C3) ĝ ∈ L1(R),
where g(x) := e−Rx f (x). The key point of (9) is the separation of the function f
from the distribution QXT of XT .

In order to use the Fourier-based method within the Defaultable Asset Price
Model one has to separate the indicator 1{t<τ} from the payoff function. This means
that we only consider payoff functions f which can be written as

f (ST ) = f (1{T<τ}e
XT ) = 1{T≥τ} f1(XT )+1{T<τ} f2(XT ) (10)

for functions f1 and f2, that satisfy the assumptions for the valuation formula (9).

Lemma 2. Let f be a payoff function of an option with maturity T > 0 which satis-
fies (10). Then the following formula holds
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E [ f (ST )] = E [ f1(XT )]−E
[
e−ΓT

]
ET [ f1(XT )] + E

[
e−ΓT

]
ET [ f2(XT )] (11)

where ET := EPT is the expectation under the survival measure PT .

Proof. For this calculation, we use the change-of-numeraire technique with the sur-
vival measure PT

E [ f (ST )]
(10)
= E

[
1{T≥τ} f1(XT )

]
+E

[
1{T<τ} f2(XT )

]
= E

[
(1−1{T<τ}) f1(XT )

]
+E

[
1{T<τ} f2(XT )

]
= E

[
f1(XT )E

[
(1−1{T<τ}) |FT

]]
+E

[
f2(XT )E

[
1{T<τ} |FT

]]
(2)
= E [ f1(XT )]−E

[
e−ΓT f1(XT )

]
+E

[
e−ΓT f2(XT )

]
(3)
= E [ f1(XT )]−E

[
e−ΓT

]
ET [ f1(XT )]+E

[
e−ΓT

]
ET [ f2(XT )] .

ut

The elements on the right side of (11) can be calculated numerically. E[e−ΓT ] can
be calculated by using Lemma 1. For the calculation of the expectations ET [ f (XT )]
under the survival measure PT for different functions f , we use (9). We shall calcu-
late the extended characteristic function ϕPT

XT
of XT under the survival measure PT .

We begin with a generic lemma of stochastic analysis.

Lemma 3. Let X and Y be two independent semimartingales and H be a determin-
istic process with left-continuous paths. Then the processes X and (

∫ t
0 HsdYs)t≥0 are

independent as well.

Proof. Fix t ≥ 0 and define

Hn
t := 1{0}H0 +

2n

∑
k=1

1](k−1) t
2n ,k t

2n ]
Hk t

2n
.

For each n≥ 1 and each t ′ ≥ 0, Xt ′ is independent from

∫ t

0
Hn

s dYs =
2n

∑
k=1

Hk t
2n
(Yk t

2n
−Y(k−1) t

2n
).

∫ t
0 Hn

s dYs is a Riemann approximation for the stochastic integral
∫ t

0 HsdYs, i.e.∫ t

0
Hn

s dYs→
∫ t

0
HsdYs

in probability, see Proposition I.4.44 in Jacod and Shiryaev (2003). Independence is
transferred to the stochastic limit, cf. Proposition 1.13 in Sato (1999), and thus the
assertion follows. ut

Lemma 4.
Let R > 1 (R < 0 resp.) such that
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(v) R ∈ EML, i.e. E[eRLT ] exists for all T ≥ 0,
(vi) max{ζ R, R−1

κ
−ζ R} ≤MZ (max{−ζ R, ζ R− R−1

κ
} ≤MZ resp.).

Then MT
XT
(R) = ET [eRXT ] exists, i.e. assumption (C2) of (9) is satisfied.

Proof. Using Lemma 3, we obtain

MT
XT
(R) = ET [exp(RXT )]

= const. ·ET [exp(RLT )exp(−ζ RZT +RΓT )]

(3)
= const. ·E[exp(RLT )exp(−ζ RZT +(R−1)ΓT )]

= const. ·MLT (R) ·E
[

exp
(∫ T

0
(R−1)γT

s −ζ R dZs

)]
.

(vi) implies |(R−1)γT
s −ζ R| ≤MZ , and thus the existence of the last factor. ut

To use (9), we need to calculate the extended characteristic function ϕPT

XT
of XT

under PT . We abbreviate

dt := lnS0 + rt +ωt

Dt(x) :=
exp[x(dt +Γ d

t )−Γ d
t ]

E[e−Γt ]
,

and obtain for all x ∈ C with Re(x) = R

ET [exXT ] = exdT ET [ex(LT−ζ ZT+ΓT )]

= exdT E
[

e−ΓT

E[e−ΓT ]
ex(LT−ζ ZT+ΓT )

]
= DT (x)E

[
exLT e

∫ T
0 xγT

s −xζ−γT
s dZs

]
(?)
= DT (x)E

[
exLT

]
E
[
e
∫ T

0 xγT
s −xζ−γT

s dZs
]

= DT (x)exp [T ·θL(x)]exp
[∫ T

0
θZ(xγ

T
s − xζ − γ

T
s )ds

]
,

where we have used Lemma 3 in equation (?). In the last step of this calculation,
we used Lemma 1. The requirement∣∣Re(xγ

t
s− xζ − γ

t
s)
∣∣≤MZ

is satisfied by the assumptions of Lemma 4. Hence, we have for all u ∈ R and suit-
able R ∈ R
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ϕ
PT

XT
(u− iR) = ET [e(R+iu)XT ]

= DT (R+ iu)exp [T ·θL(R+ iu)]exp
[∫ T

0
θZ((R+ iu)γT

s − (R+ iu)ζ − γ
T
s )ds

]
.

(12)

Example 3. In the case of a call option, we have f (x) = (ex−K)+, i.e.

f̂ (z) =
K1+iz

iz(1+ iz)
, Im(z) ∈ (1,∞).

Conditions (C1) and (C3) are fulfilled for R > 1. The payoff function is of type (10)
with f1 ≡ 0 and f2(x) = (ex−K)+. For the put option, where f (x) = (K−ex)+, we
have

f̂ (z) =
K1+iz

iz(1+ iz)
, Im(z) ∈ (−∞,0).

Conditions (C1) and (C3) are fulfilled for R < 0. We have f1 ≡ K and f2(x) =
(K− ex)+. By using (11), we obtain the call prices

C0(T,K) = e−rT E[e−ΓT ]ET [(eXT −K)+] (13)

and the put prices

P0(T,K) = e−rT [E[e−ΓT ]ET [(K− eXT )+]+K(1−E[e−ΓT ])
]
. (14)

Example 4. The payoff function of a digital call option with barrier B > 0 and ma-
turity T > 0 is f (x) = 1{x>B}, i.e. it is of type (10) with f1 ≡ 0 and f2 = 1{ex>B}.
We use (11) and obtain

E
[
e−rT

1{ST>B}
]
= e−rT E[e−ΓT ]ET

[
1{eXT >B}

]
.

The Fourier transform of f2 is

f̂2(z) =−
Biz

iz
for Im(z)> 0.

The assumptions for applying (9) are satisfied for R > 0, cf. Eberlein et al. (2010).
For the digital put option, we have

E
[
e−rT

1{ST<B}
] (11)
= e−rT

(
1−E[e−ΓT ]+E[e−ΓT ]ET

[
1{eXT <B}

])
.

The Fourier transform of f2(x) = 1{ex<B} is

f̂2(z) =
Biz

iz
for Im(z)< 0.
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In this case, we need R < 0. To give a numerical example, we take S0 = 30, T = 260
and the parameters

α = 50.0 β =−0.1 δ = 0.012
p = 0.0035 b = 66 κ = 0.11 (∗)

ζ = 9.0

which correspond to a one-year default probability of about 10.7 %. The results can
be seen in Figure 4. The main difference to a non-defaultable model is that the prices
tend to 1−P(T ≥ τ) for B↘ 0 and not to 1.

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

B
S0

P(T ≥ τ)

Fig. 4 Prices of digital call options with barrier B.

Example 5. The payoff of a self-quanto call option with strike K > 0 is ex(ex−K)+,
i.e. we have

e−rT E
[
1{T<τ}e

XT (eXT −K)+
]
= e−rT E[e−ΓT ]ET

[
eXT (eXT −K)+

]
.

The Fourier transform of f2(x) = ex(ex−K)+ is

f̂2(z) =
K2+iz

(1+ iz)(2+ iz)
for Im(z)> 2.

For a self-quanto put option with payoff ex(K− ex)+ we have

e−rT E
[
1{T<τ}e

XT (K− eXT )+
]
= e−rT E[e−ΓT ]ET

[
eXT (K− eXT )+

]
.
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The Fourier transform of f2(x) = ex(K−ex)+ is the same as above, but for Im(z)<
1.

For calculating expectations E[ f (ST )], we can also use Monte Carlo simulations,
i.e. we can simulate the random variable ST for example N times and approximate
E[ f (ST )] by 1

N ∑
N
i=1 f (si

T ), where (si
T )i=1,...,N denotes a simulated sample of ST . For

the pathwise simulation of the Defaultable Asset Price Model

St = S0 exp
[
rt−qt +Lt −ζ Zt +ωt +Γt

]
1{t<τ},

we have to be able to simulate the Lévy processes Lt and Zt pathwise. This
means, that it is necessary to simulate whole paths (St)0≤t≤T if we want to cre-
ate a simulation for ST . If we have to do that already, with only little additional
effort one can price path-dependent options or options with different maturities
Tk ≤ T (k = 1, ...,n) simultaneously.

Example 6. An Asian option is a derivative, whose payoff depends on the average
price

ST :=
1
T

∫ T

0
Stdt

of the underlying price process (St)0≤t≤T . We simulate the price path on an equidis-
tant time grid 0 = t0 < t1 < ... < tn = T . The simulated value si

T of the average price
is then given as the mean

si
T =

1
n

n

∑
k=0

si
tk

of the simulated prices (si
tk)k=0,...,n for each simulation i∈ {1, ...,N}. Figure 5 shows

an example.

4 Calibration

Calibration is conducted by minimising the sum of the squared differences between
observed market prices and model prices

SD(α) := ∑
j

(
π

Model
j (α)−π

Market
j

)2

over the model parameters α = (α1, ...,αn) in a parameter space A1× ...×An ⊂Rn.
This space is given by constraints on the mathematical model. In our case, we have
to consider the parameter spaces of the processes L and Z and have to check the
conditions (i) - (vi).

We choose a NIG(α,β ,δ ,µ) process for L and a Γ (p,b) process for Z as an
example. This leads to a model with the seven parameters



A Lévy-driven Asset Price Model with Bankruptcy and Liquidity Risk 15

0 10 20 30 40 50 60

0

5

10

15

20

25

30

K

Fig. 5 Prices of average price calls with payoff (ST −K)+ (solid line). For comparison, prices of
ordinary calls (dashed line).

α > 0, β ∈ (−α,α), δ > 0 for the NIG process
p, b > 0 for the Γ process
κ ≥ 0 for the OU restoring force
ζ ≥ 0 as dependence parameter.

We note here that the drift parameter µ of the NIG process is redundant. The
reason is the martingale setting. If L1 is NIG-distributed, then L1− logE[eL1 ] is also
NIG-distributed, but independent of µ .

The model assumptions (i)-(vi) can be reduced to restrictions on the process pa-
rameters. For the NIG process L, we have EML = (−α −β ,α −β ) and for the Γ

process Z, we get EMZ = (−∞,b). Consequently we can convert the conditions to

(i) 1 < α−β

(ii) −ζ < b
(iii) is always satisfied
(iv) 1

κ
< b

(v) 1 < R < α−β

(vi) max{ζ R, R−1
κ
−ζ R}< b (max{−ζ R, ζ R− R−1

κ
}< b resp.),

which can all be checked easily.
We calibrate all parameters, i.e. the parameters for L, the credit parameters and

the dependence parameter ζ , to the option price surface. Hence, we obtain the re-
quired risk-neutral parameters of the model which are needed to price other finan-
cial products based on this asset. Accordingly, we can extract credit risk information
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about the firm from option quotes. This enables us to calculate default probabilities.
Alternatively, one could calibrate the credit parameters to the CDS term structure,
fix them and calibrate the remaining ones using option prices.

We consider the stocks of the European banks BNP Paribas, Commerzbank,
Credit Agricole, Credit Suisse, Deutsche Bank, UBS and UniCredit and look at
the corresponding call prices on March 20, 2014. We restrict ourselves to calls with
expiration date T1 in December 2014 and T2 in December 2015. As a riskless in-
terest rate, we take the EONIA rate. The current stock prices are dividend-adjusted
via

S0  S0− e−rTD ·D,

where we take the estimated or promised dividend payment of each bank for D and
the day following the annual general assembly for TD. The results of the calibrations
can be found in the Table 1 and Table 2.

BNP Paribas Commerzbank Credit Agricole Credit Suisse
T1 T2 T1 T2 T1 T2 T1 T2

α 53.0 52.6 50.3 49.9 45.2 46.1 45.8 44.0
β -0.09 -0.05 -0.23 -0.17 -0.10 0.03 -0.08 -0.1
δ 0.0087 0.0091 0.0229 0.0213 0.0088 0.0095 0.0056 0.0060
p 0.00218 0.00182 0.00134 0.00122 0.004 0.00366 0.00312 0.00244
b 51 81 91 101 90 119 78 112
κ 0.162 0.402 0.47 0.402 0.16 0.234 0.18 0.25
ζ 5.0 5.0 5.5 5.5 4.6 5.1 4.0 3.0

Table 1 Calibration results 1

Deutsche Bank UBS UniCredit
T1 T2 T1 T2 T1 T2

α 61.3 60.4 69.0 69.1 45.0 45.0
β -0.95 -1.1 -0.5 -0.8 -3.2 -3.2
δ 0.0109 0.0106 0.0120 0.0110 0.013 0.013
p 0.00314 0.00276 0.0028 0.0025 0.0022 0.0020
b 87 126 142 144 154 146
κ 0.182 0.26 0.28 0.27 0.16 0.18
ζ 3.5 3.8 3.0 3.5 6.0 5.8

Table 2 Calibration results 2

In Figure 6, we observe a virtually perfect fit of the DAM to the real market data
of BNP Paribas.
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Fig. 6 Quoted call prices of BNP Paribas (circles) and the model prices (line) after the calibration.

5 A Differential Equation for the Option Pricing Function

In the former sections, the calculation of the desired expectation E[ f (ST )] is ac-
complished by combining the change of measure with the Fourier-based valuation
method. Now we shall investigate another common method, namely pricing by solv-
ing a partial integro-differential equation (PIDE). The procedure is the following.
Write the martingale E[ f (ST ) | Ft ] as a C2-function g of t and some underlying
process Vt = (V 1

t , ...,V
d

t )

E[ f (ST ) |Ft ] = g(Vt , t). (15)

We assume that the processes V i are special semimartingales, i.e. they possess a
(unique) decomposition V i = V0 +Mi +Ai with a local martingale Mi and a pre-
dictable process Ai with paths of bounded variation. By applying Itô’s formula we
obtain
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g(Vt , t) = g(V0,0)+ ∑
i≤d

∫ t

0
∂ig(Vs−,s)dV i

s +
∫ t

0
∂d+1g(Vs−,s)ds

+
1
2 ∑

i, j≤d

∫ t

0
∂i jg(Vs−,s)d〈(V i)c,(V j)c〉s

+∑
s≤t

[
g(Vs,s)−g(Vs−,s)−∑

i≤d
∂ig(Vs−,s)∆V i

s

]
.

(16)

g(Vt , t) is a special semimartingale, but also a martingale by (15). Consequently, any
decomposition

g(Vt , t) = g(V0,0)+Mt +At

with a local martingale M and a predictable process A with paths of bounded vari-
ation has to satisfy A ≡ 0. Expanding and sorting the the right-hand side of (16) in
this sense leads to the desired PIDE

0 =∑
i≤d

∫ t

0
∂ig(Vs−,s)dAi

s +
∫ t

0
∂d+1g(Vs−,s)ds

+
1
2 ∑

i, j≤d

∫ t

0
∂i jg(Vs−,s)d〈(V i)c,(V j)c〉s

+
∫
[0,t]×Rd

[
g(Vs−+ x,s)−g(Vs−,s)−∑

i≤d
∂ig(Vs−,s)x

]
(µV )p(ds,dx),

(17)

where (µV )p is the predictable compensator of the jump measure µV of V , cf. The-
orem II.1.8 in Jacod and Shiryaev (2003). The boundary condition is set at the ma-
turity date T of the contingent claim

g(x1, ...,xd ,T ) = f (l(x1, ...,xd)),

where l is the function, such that ST = l(V 1
T , ...,V

d
T ). Solving the PIDE (numerically)

on Rd× [0,T ] gives us the desired value

E[ f (ST )] = g(V0,0).

The boundary condition determines the solution g(x, t) at the end of the considered
time interval [0,T ], but the value we are looking for is the one at the beginning.

In order to apply this approach to the DAM

St = exp
[

logS0 + rt +Lt −ζ Zt +ωt +Γt

]
1{t<τ} = eXt1{t<τ},

we firstly have to take care of the indicator function 1{t<τ}. Therefore, we shall only
consider payoff functions f of type (10), i.e. we assume that

f (ST ) = f (1{T<τ}e
XT ) = 1{T≥τ} f1(XT )+1{T<τ} f2(XT )
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for functions f1 and f2. As seen before, most of the common payoff functions have
this form. In this case, we can eliminate the indicator function 1{t<τ} in the time-0
pricing formula

π0 = e−rT E[ f (ST )]
(10)
= e−rT E[1{T≥τ} f1(XT )+1{T<τ} f2(XT )]

= e−rT{E[E[1{T≥τ} f1(XT ) |FT ]]+E[E[1{T<τ} f2(XT ) |FT ]]}
= e−rT{E[ f1(XT )E[1{T≥τ} |FT ]]+E[ f2(XT )E[1{T<τ} |FT ]]}
= e−rT{E[ f1(XT )(1− e−ΓT )]+E[ f2(XT )e−ΓT ]}
= e−rT E[ f1(XT )(1− e−ΓT )+ f2(XT )e−ΓT ] =: e−rT E[ f̃ (XT ,ΓT )].

In the next step, we write the martingale E[ f̃ (XT ,ΓT ) |Ft ] as a function of the
processes

V 1
t := Lt , V 2

t := Zt , V 3
t := Yt :=

∫ t

0
eκsdZs and t.

We remark here that e−r(T−t)E[ f̃ (XT ,ΓT ) |Ft ] does not represent the option price
at time t. It is only an auxiliary function that is needed for the calculation of π0. The
correct option price at time t would be given by e−r(T−t)E[ f̃ (XT ,ΓT ) | Gt ].

Lemma 5. Let (Xt)t≥0 be a semimartingale with independent increments and let
f : [0,∞)→R be a locally bounded, deterministic and left-continous function. Then
the semimartingale (Yt)t≥0 defined by

Yt :=
∫ t

0
f (s)dXs

has independent increments as well.

Proof. Due to Theorem II.4.15 in Jacod and Shiryaev (2003), there is a version of
the characteristics of X , which is deterministic. The characteristics of Y can be cal-
culated by only using the characteristics of X and the function f , see Proposition
IX.5.3 in Jacod and Shiryaev (2003). Consequently, there is a version of the char-
acteristics of Y , which is deterministic. So Theorem II.4.15 gives us the intended
result. ut

Lemma 6. The conditional expectation E[ f̃ (XT ,ΓT ) |Ft ] is a function of Lt , Zt , Yt
and t

E[ f̃ (XT ,ΓT ) |Ft ] = g(Lt ,Zt ,Yt , t). (18)

Proof. First of all, we note that Γt is a function of Zt , Yt and t

Γt = Γ
d

t +
∫ t

0

1− e−κ(t−s)

κ
dZs = Γ

d
t +

1
κ

[
Zt − e−κt

∫ t

0
eκsdZs

]
,

and that ΓT −Γt is a function of ZT −Zt , YT −Yt , Yt and t
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ΓT −Γt = Γ
d

T −Γ
d

t +
1
κ

[
ZT −Zt − e−κTYT + e−κtYt

]
= Γ

d
T −Γ

d
t +

1
κ

[
ZT −Zt − (e−κT − e−κt)Yt − e−κT (YT −Yt)

]
.

Consequently,

XT = logS0 + rT +ωT +LT −ζ ZT +ΓT

= logS0 + rT +ωT +LT −Lt +Lt −ζ (ZT −Zt +Zt)

+ΓT −Γt +Γt

is a function of

(a) the increments LT −Lt , ZT −Zt , YT −Yt ,
(b) the random variables Lt , Zt , Yt and t.

L and Z are Lévy processes, and so Lemma 5 shows that all increment terms under
(a) are independent of Ft . The terms under (b) are Ft -measurable. Hence, we get
the intended result

E[ f̃ (XT ,ΓT ) |Ft ] = E[ f̂ (LT −Lt ,ZT −Zt ,YT −Yt ,Lt ,Zt ,Yt , t) | Ft ]

= E[ f̂ (LT −Lt ,ZT −Zt ,YT −Yt ,x,y,z, t)]
∣∣
x=Lt ,y=Zt ,z=Yt

.

ut

Theorem 1. Assume that the function g(x,y,z, t), defined in (18), is of class C2(R4)
and that L1 and Z1 have a finite first moment. Then g satisfies the following integro-
differential equation

0 =E[L1]∂1g+E[Z1]∂2g+E[Z1]eκt
∂3g+∂4g+

1
2

cL∂11g

+
∫
R
[g(x+ξ ,y,z, t)−g−ξ ∂1g]νL(dξ ) (19)

+
∫
R
[g(x,y+ξ ,z+ eκt

ξ , t)−g−ξ ∂2g− eκt
ξ ∂3g]νZ(dξ )

with boundary condition

g(x,y,z,T ) = f1(b2(x,y,z,T ))(1− e−b1(x,y,z,T ))+ f2(b2(x,y,z,T ))e−b1(x,y,z,T ),

where we have abbreviated g = g(x,y,z, t) and

b1(x,y,z, t) := Γ
d

t +
1
κ
(y− e−κtz),

b2(x,y,z, t) := logS0 + rt +ωt + x−ζ y+b1(x,y,z, t).

νL and νZ are the Lévy measures of the processes L and Z. cL denotes the variance
of the Brownian part of L.
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Proof. We denote Vt = (V 1
t = Lt ,V 2

t = Zt ,V 3
t = Yt) and apply Itô’s formula (16),

cf. Theorem I.4.57 in Jacod and Shiryaev (2003). The existence of the first moment
gives us a simple semimartingale representation for the Lévy process L

Lt = Lt − tE[L1]+ tE[L1] =: ML
t + tE[L1].

As a consequence, we obtain the semimartingale representation of the stochastic
integral

∫
HsdLs ∫ t

0
HsdLs =

∫ t

0
HsdML

s +E[L1]
∫ t

0
Hsds,

where H is a locally bounded predictable process. The first summand is a local
martingale, cf. I.4.34 (b) in Jacod and Shiryaev (2003). We are interested in the
second one, which is a predictable process with paths of bounded variation. The
same procedure can be applied to the increasing Lévy process Z. Therefore, we get
the representations∫ t

0
HsdZs =

∫ t

0
HsdMZ

s +E[Z1]
∫ t

0
Hsds ,∫ t

0
HsdYs =

∫ t

0
HseκsdZs =

∫ t

0
HseκsdMZ

s +E[Z1]
∫ t

0
Hseκsds .

Since Z is an increasing Lévy process, we have Zc ≡ 0 and also Y c ≡ 0. Thus, the
second term of Itô’s formula is simplified considerably

1
2 ∑

i, j≤d

∫ t

0
∂i jg(Vs−,s)d〈(V i)c,(V j)c〉s =

1
2

cL

∫ t

0
∂11g(Vs−,s)ds.

The jump term in Itô’s formula can be written in terms of the jump measure
µ(L,Z) of the two-dimensional Lévy process (L,Z)

∑
s≤t

[
g(Vs−+∆Vs,s)−g(Vs−,s)−∑

i≤d
∂ig(Vs−,s)∆V i

s

]
= ∑

s≤t

[
g(Ls−+∆Ls,Zs−+∆Zs,Ys−+ eκs

∆Zs,s)−g(Vs−,s)

−∂1g(Vs−,s)∆Ls−∂2g(Vs−,s)∆Zs−∂3g(Vs−,s)eκs
∆Zs

]
=
∫
[0,t]×R2

[
g(Ls−+ x,Zs−+ y,Ys−+ eκsy,s)−g(Vs−,s)

−∂1g(Vs−,s)x−∂2g(Vs−,s)y−∂3g(Vs−,s)eκsy
]
µ
(L,Z)(ds,(dx,dy)).

The semimartingale representation of this type of integral is

W ∗µ
V =W ∗µ

V −W ∗ (µV )p︸ ︷︷ ︸
martingale

+ W ∗ (µV )p︸ ︷︷ ︸
pred. + bounded variation

,
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cf. Theorem II.1.8. in Jacod and Shiryaev (2003). So, we have to investigate the
predictable compensator of the jump measure µ(L,Z), which is(

µ
(L,Z)

)p
(ω;dt,(dx,dy)) = dt⊗ν(L,Z)(dx,dy),

where ν(L,Z) is the Lévy measure of (L,Z). Since the processes L and Z are indepen-
dent, ν(L,Z) is supported on the union of the coordinate axes and we can write

ν(L,Z)(A) = νL(Ax)+νZ(Ay),

where Ax := {(x,0) | x ∈ A} is the projection on the x-axis and Ay := {(0,y) | y ∈ A}
the projection on the y-axis. This result can be found in Sato (1999), E 12.10.(i)
or Cont and Tankov (2004), Proposition 5.3. Consequently, each two-dimensional
integral w.r.t. ν(L,Z) is the sum of two one-dimensional integrals∫

g(x,y)ν(L,Z)(dx,dy) =
∫

g(x,0)νL(dx)+
∫

g(0,y)νZ(dy). (20)

As a result, the predictable and bounded variation part of the jump term is∫
[0,t]×R2

[
g(Ls−+ x,Zs−+ y,Ys−+ eκsy,s)−g(Vs−,s)

−∂1g(Vs−,s)x−∂2g(Vs−,s)y−∂3g(Vs−,s)eκsy
]
ds⊗ν(L,Z)(dx,dy)

=
∫ t

0

∫
R

[
g(Ls−+ x,Zs−,Ys−,s)−g(Vs−,s)−∂1g(Vs−,s)x

]
νL(dx)

+
∫
R

[
g(Ls−,Zs−+ y,Ys−+ eκsy,s)−g(Vs−,s)

−∂2g(Vs−,s)y−∂3g(Vs−,s)eκsy
]
νZ(dy) ds.

If we now zero all the predictable parts of Itô’s formula with bounded variation, we
obtain

0 =
∫ t

0
H(Ls−,Zs−,Ys−,s)ds (∀t ≥ 0)

for

H(x,y,z, t) :=E[L1]∂1g+E[Z1]∂2g+E[Z1]eκt
∂3g+∂4g+

1
2

cL∂11g

+
∫
R
[g(x+ξ ,y,z, t)−g−ξ ∂1g]νL(dξ )

+
∫
R
[g(x,y+ξ ,z+ eκt

ξ , t)−g−ξ ∂2g− eκt
ξ ∂3g]νZ(dξ ),

where we wrote for short g = g(x,y,z, t). By continuity, H(x,y,z, t) has to be zero
for every t ≥ 0, every x ∈ S(Lt), every y ∈ S(Zt) and every z ∈ S(Zt), whereby S(X)
denotes the support of the random variable X . This is the desired equation (19). ut
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In many cases, we have S(Lt) =R and S(Zt) = S(Yt) =R+, such that we have to
solve equation (19) for x ∈ R, y,z ∈ R+ and t ∈ R+.

To apply the stated theorem, we have to verify that the function g, defined in (18),
is of class C2(R4). The validity of this condition depends on the specific processes
L and Z and on the payoff function f of the claim which we consider. Cont and
Voltchkova (2005) investigated a similar issue in the simpler case of exponential
Lévy models. The problem is more complicated in our model setting and is not
pursued in this paper.

6 Two Price Theory

In the classical risk-neutral valuation theory for financial derivatives it is implicitly
assumed that the product is traded in a perfectly liquid market, which means that
it can be bought and sold at once within the trading session and that this does not
cause any substantial price movement. Typical examples for assets which are traded
in rather liquid markets are shares of big listed companies, the corresponding plain
vanilla options on these shares and government bonds of countries with a high rat-
ing. Neglecting processing, inventory and transaction costs of the market makers, in
these markets the law of one price prevails, which means that the price for buying
an asset is the same as the one for selling it.

In reality however there are two prices, one for buying from the market - the ask
price - and one for selling to the market - the bid price. ”The difference between
these two prices can be quite large and may have little connection to processing,
inventory, transactions costs or information considerations. The differences instead
reflect the very real and substantial costs of holding unhedgeable risks in incomplete
markets.”1. In particular a large part of the products financial institutions are deal-
ing with are very specialised. The markets for these over-the-counter (OTC) traded
structured products are very narrow with the consequence of large spreads between
bid and ask prices..

Cherny and Madan (2010) started to develop a two price theory, which models
bid and ask prices in a way which takes the cost of unhedgeable risks into account.
In classical financial mathematics, cf. Delbaen and Schachermayer (2006), the price
π0(X) of a derivative with discounted payoff X is calculated via

π0(X) = EP[X ],

where P is a risk-neutral pricing measure. This formula is now substituted by the
non-linear pricing formulas

1 Cherny and Madan (2010), Introduction, p. 1150
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b(X) = inf
Q∈D

EQ[X ]

a(X) = sup
Q∈D

EQ[X ]

for the bid and the ask price of an asset with discounted payoff X . D is a convex
set of probability measures which contains a risk-neutral measure P. The size of D
is related to the degree of uncertainty (liquidity) in the market under consideration.
With increasing uncertainty more measures (scenarios) should be added to the set.
Conversely, D could be shrunk when the uncertainty in the market decreases.

Under slight additional assumptions, namely comonotonicity and law-invariance,
these two values can be calculated using concave distortions Ψ , more exactly

b(X) =
∫
R

yΨ(FX (dy)) (21)

a(X) =−
∫
R

yΨ(F−X (dy)), (22)

where FX is the distribution function of X under P. Very useful parametrized families
of distortions (Ψγ)γ≥0 are presented in the following example.

Example 7. The MINVAR-family of distortions is defined by

Ψ
MI

γ (y) := 1− (1− y)γ+1, γ ≥ 0, y ∈ [0,1].

Another family is given by

Ψ
MA

γ (y) := y
1

γ+1 , γ ≥ 0, y ∈ [0,1]

and is called MAXVAR. One possible combination of MINVAR and MAXVAR is

Ψ
MAMI

γ (y) := (1− (1− y)γ+1)
1

1+γ , γ ≥ 0, y ∈ [0,1]

and is called MAXMINVAR. The other possible combination is

Ψ
MIMA

γ (y) := 1− (1− y
1

γ+1 )γ+1, γ ≥ 0, y ∈ [0,1]

and is called MINMAXVAR.

The existence of the integrals in (21) and (22) depends on the payoff X and the
used distortion Ψ . The existence under the four introduced distortions is ensured, if
X possesses exponential moments, as seen in the following proposition.

Proposition 1. Let X be a random variable with E[etX ] < ∞ for |t| ≤ t0. Then the
integrals (21) and (22) exist for the distortion families ΨMA, ΨMI, ΨMAMI, ΨMIMA

and any γ ≥ 0.

Proof. The assumption implies that the distribution function FX of X decays expo-
nentially. We consider the left tail of ΨMA
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−∞

Ψ
MA

γ (FX (y))dy≤
∫ 0

−∞

Ψ
MA

γ (Cet0y)dy =C
1

1+γ

∫ 0

−∞

e
t0

1+γ
ydy < ∞

and the left tail of ΨMI

∫ 0

−∞

Ψ
MI

γ (FX (y))dy≤
∫ 0

−∞

Ψ
MI

γ (Cet0y)dy

=
∫ 0

−∞

1− (1−Cet0y)1+γ dy

≤C1 +
∫ −d2

−∞

1− (1+(1+ γ)(−Cet0y))dy

=C1 +
∫ −d2

−∞

(1+ γ)Cet0ydy < ∞,

where we have used Bernoulli’s inequality

(1+ x)r ≥ 1+ rx (x >−1, r ≥ 1).

The same arguments show the statement for the right tails of ΨMI and ΨMA and for
both tails of the distortion families ΨMAMI and ΨMIMA. ut

Example 8. Since the payoff P = (K−ST )
+ of a put option always possesses expo-

nential moments if ST ≥ 0, the bid and ask prices always exist and are given by

aγ(P) =
∫ K

0
Ψγ(FST (x))dx (23)

bγ(P) =
∫ K

0
(1−Ψγ(1−FST (x)))dx. (24)

The payoff C = (ST −K)+ of a call option does not possess exponential moments in
general for nonnegative random variables ST . Consider ST = S0 exp(Y ) for a random
variable Y with exponential moment at u0 > 1. Let Ψ be the MINVAR-family of
distortions. Then the integrals (21) and (22) exist for every γ ≥ 0 and we get

aγ(C) =
∫

∞

K
Ψγ(1−FST (x))dx (25)

bγ(C) =
∫

∞

K
(1−Ψγ(FST (x)))dx. (26)

Let Ψ be the MAXVAR-, MAXMINVAR- or MINMAXVAR-family of distortions.
Then the integrals exist for every γ ∈ [0,u0−1) and the formulas (25) and (26) are
in force for γ ∈ [0,u0− 1). The proofs are similar to that of Proposition 1. Details
can be found in Bäurer (2015).

We now apply the two price theory to the Defaultable Asset Price Model and
derive bid and ask prices for options. As a consequence, we get prices for which
market, credit and liquidity risk is taken into account. The bid and ask price formulas
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(21) and (22) depend on the distribution function FX of the option payoff X . In many
cases, it can be reduced to a dependence on FST , the distribution function of the
underlying ST , cf. Example 8. In the DAM, the distribution function

FST (x) = P(T ≥ τ)+P(eXT ≤ x and T < τ)

of the asset price ST is not known explicitly, because of the dependence between XT
and τ . Nevertheless one can calculate the desired values numerically. Using Lemma
1, the quantities P(T < τ) and P(T ≥ τ) = 1−P(T < τ) are given by a simple
integral

P(T < τ) = E[e−ΓT ] = e−Γ d
T exp

(∫ T

0
θZ(−γ

T
u )du

)
.

We use the T -survival measure PT (A) := P(A | T < τ) to determine

P(eXT ≤ x and T < τ) = P(eXT ≤ x | T < τ) ·P(T < τ)

= PT (eXT ≤ x) ·P(T < τ).

The probability PT (eXT ≤ x) can be calculated numerically by Fourier inversion

PT (eXT ≤ x) = PT (XT ≤ log(x))≈ PT (C ≤ XT ≤ log(x))

=
1

2π

∫ e−itC− e−it log(x)

it
ϕ

PT

XT
(t)dt, (27)

where the constant C ∈ R has to be chosen properly. ϕPT

XT
is the characteristic func-

tion of XT under PT , which can be calculated by integration via (12). Thus, the
computational cost for calculating the distribution function at one point is that of
two simple integrations and one double integration.

Alternatively, we can compute the distribution function FST by Monte Carlo sim-
ulations. We can then also assess the bid and ask prices for path-dependent options.

For the existence of the integrals in (21) and (22), we often need the existence of
exponential moments of

XT := logS0 + rT +LT −ζ ZT +ωT +ΓT .

Lemma 7. Suppose that

(I) LT has an exponential moment of order u0 > 0.
(II) ZT has an exponential moment of order u0[(

1
κ
−ζ )∨ζ ].

Then XT has an exponential moment of order u0.

Proof. First we observe that |γT
s −ζ | ≤ ( 1

κ
−ζ )∨ζ and therefore we can conclude
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E[exp(u0XT )] = const. ·E [exp(u0LT −u0ζ ZT +u0ΓT )]

= const. ·E[exp(u0LT )]E
[

exp
(∫ T

0
γ

T
s u0−ζ u0dZs

)]
≤ const. ·MLT (u0) ·E

[
exp
(∫ T

0
u0|γT

s −ζ |dZs

)]
≤ const. ·MLT (u0) ·E

[
exp
(

u0

[(
1
κ
−ζ

)
∨ζ

]
ZT

)]
< ∞.

ut

Example 9. For pricing calls and puts, we can use (23), (24), (25) and (26). Suppose
XT has an exponential moment at u0 > 1. If Ψ is the MINVAR-family of distortions,
then the integrals in (25) and (26) exist for every γ ≥ 0. If Ψ is the MAXVAR-,
MAXMINVAR- or MINMAXVAR-family of distortions ΨMI, then the integrals exist
for every γ ∈ [0,u0−1). A numerical example with the parameter set

α = 50.0 β =−0.1 δ = 0.012
p = 0.0035 b = 66 κ = 0.11 (∗∗)

ζ = 9.0.

is shown in Figure 7.
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Fig. 7 Bid and ask prices of a put with S0 = 30, DAM with parameters (∗∗), T = 260, γ = 0.1,
MAXVAR.

Example 10. For a digital call option with barrier B > 0 and payoff X = 1{ST>B},
we can use the simple formulas

aγ(X) =Ψγ(1−FST (B)) and
bγ(X) = 1−Ψγ(FST (B)).
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Figure 8 shows a numerical example. For this option, there are no constraints con-
cerning the integrability.

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

ask-prices

bid-prices

B

P(T < τ)

Fig. 8 Bid and ask prices of a digital call with S0 = 30, DAM with parameters (∗∗), T = 260,
γ = 0.1, MAXVAR.
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processes. Mathematical Finance 9(1), 31–53.

Hull, J. and A. White (1990). Pricing interest rate derivative securities. The Review
of Financial Studies 3(4), 573–592.

Jacod, J. and A. Shiryaev (2003). Limit Theorems for Stochastic Processes (2. ed.).
Springer.
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