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Abstract. One of the fundamental problems in financial mathematics is to develop efficient
algorithms for pricing options in advanced models such as those driven by Lévy processes.
Essentially there are three approaches in use. These are Monte Carlo, Fourier transform and
PIDE based methods. We focus our attention here on the latter. There is a large arsenal
of numerical methods for efficiently solving parabolic equations that arise in this context.
Especially Galerkin and Galerkin inspired methods have an impressive potential. In order
to apply these methods, what is required is a formulation of the equation in the weak sense.

The contribution of this paper is therefore to analyze weak solutions of the Kolmogorov
backward equations which are related to prices of European options in (time-inhomogeneous)
Lévy models and to establish a precise link between the prices and the weak solutions of
these equations. The resulting relation is a Feynman–Kac representation of the solution as a
conditional expectation. Our special concern is to provide a framework that is able to cover
both, the common types of European options and a wide range of advanced models in which
these derivatives are priced.

An application to financial models requires in particular to admit pure jump processes
such as generalized hyperbolic processes as well as unbounded domains of the equation. In
order to deal at the same time with the typical payoffs which can arise, the weak formulation
of the equation is based on exponentially weighted Sobolev–Slobodeckii spaces. We provide
a number of examples of models that are covered by this general framework. Examples of
options for which such an analysis is required are calls, puts, digital and power options as
well as basket options.

1. Introduction

There is little doubt that Lévy models constitute a big step forward in more realistic mod-
eling in finance. Nevertheless there is a price to be paid for this progress. The gain in accuracy
comes along with a substantial increase in mathematical and computational sophistication.
Of course this phenomenon is observable allover in a technical world. Better products require
more advanced techniques. As far as the use of Lévy models is concerned one of the fun-
damental problems is the explicit computation of prices of derivatives. Those prices appear
as expectations under suitable martingale measures. In particular for calibration purposes
efficient algorithms to get the prices are crucial. During an iterative calibration procedure
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typically a large number of model prices has to be compared to observed market prices.
Essentially there are three approaches to compute the expectations: Monte Carlo simula-
tion, Fourier based valuation methods and the representation of prices as solutions of partial
integro-differential equations (PIDEs).

Monte Carlo simulation is a very powerful tool which usually works when other methods
are not available. Its disadvantage is that it is computer intensive and consequently time-
consuming and expensive. There is another more intrinsic problem when Monte Carlo simu-
lation is used in the case of processes with jumps. The most attractive processes with jumps in
financial modeling – such as generalized hyperbolic or CGMY processes – are processes with
infinite activity. Their paths have an infinite number of jumps in every finite time interval.
Such a behavior cannot be simulated. Therefore one usually neglects the very small jumps by
cutting out the infinite mass which the Lévy measure of these processes accumulates around
the origin. This way the Lévy measure becomes a finite measure. As a consequence the infinite
activity process is replaced by a compound Poisson process. An alternative method which is
in use consists in replacing the small jumps by an appropriately scaled Brownian motion. In
any case the simulated paths are then by construction approximations of the model paths
only.

The two remaining approaches, Fourier and PIDE-based methods, a priori look very dif-
ferent. To some degree they are employed by communities with a different mathematical
background. Whereas Fourier methods are mainly used by probabilists, the analytic or nu-
merical solution of PIDEs requires a background in analysis and numerics. References for the
numerical solution of PIDEs – on the level of models driven by Lévy processes – are Matache,
von Petersdorff and Schwab (2004), Matache, Schwab and Wihler (2005b), Matache, Nitsche
and Schwab (2005a) and Winter (2009). For a compact survey see Hilber, Reich, Schwab and
Winter (2009). Fourier based methods in finance started out with Carr and Madan (1999)
and Raible (2000) and were in subsequent years pushed forward to compute prices for a large
variety of options in equity, fixed income, foreign exchange and credit markets. For a recent
survey see Eberlein (2013).

What is used in these two approaches is Fourier transformation and discretization of the
resulting integrals on one and finite difference or finite element methods on the other side. As
different as these approaches look from the point of view of numerics, the mathematical tools
used to describe the solutions in an analytic way are rather similar if not the same. There is
in fact a formal bridge, which shows that the conditional expectation which represents the
price of an option is at the same time the solution of a partial integro-differential equation.
This is the Feynman–Kac formula. It represents a deep relation between a stochastic and a
deterministic quantity. The Feynman–Kac correspondence as a relation between conditional
expectations and partial differential equations has a long history. It was initially studied in the
case of diffusions and then pushed further to more general processes. It is one of the purposes
of this paper to study this correspondence in a framework which covers advanced financial
modeling approaches and at the same time large classes of derivatives which are priced in
these models. From the point of view of processes which drive the models we choose the class
of time-inhomogeneous Lévy processes, also called processes with independent increments and
absolutely continuous characteristics (PIIAC) in Jacod and Shiryaev (1987). This class which
generalizes Lévy processes turned out to be a natural choice in particular in the context of
interest rate modeling (see e.g. Eberlein, Jacod and Raible (2005) and Eberlein and Kluge
(2006)). One reason why one has to go beyond the class of Lévy processes in this context is
the use of forward martingale measures.
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The Feynman–Kac relation has also been investigated in the framework of viscosity solu-
tions. For a recent reference in this context see Cont and Voltchkova (2005) where PIDEs
related to Lévy driven models are studied. Nevertheless the notion of viscosity solution is
not the optimal choice if one looks for efficient numerical algorithms. With respect to well-
developed variational discretization procedures the relation has to be available for variational
solutions. Results for processes with jumps were proved already much earlier, see Bensoussan
and Lions (1982). However the application in financial models requires in particular to admit
pure jump processes such as generalized hyperbolic processes as well as unbounded domains.
Processes without diffusion part are not covered by the last mentioned reference. In order to
deal at the same time with the typical payoffs, the weak formulation of the equation is based
on weighted Sobolev–Slobodeckii spaces. By consequence, the results from Bensoussan and
Lions (1982) are not applicable.

PIDEs on unbounded domains arise very naturally in financial models since the domain is
identical to the range of values of the underlying stochastic process. For example in the case
of a European option whose payoff is written as a function of the logarithmic stock price in an
exponential Lévy model, this range is the whole real line. For completeness we mention that
studying bounded domains can be sufficient for specific types of exotic options. As an example
let us consider an option which has a positive payoff only as long as during its entire life the
underlying stock price stays inside the interval (S0 ea, S0 eb). The price of such a two-sided
barrier option corresponds to a PIDE on the bounded interval (a, b). In general a systematic
study of PIDEs for option prices should include – if not start with – unbounded domains. The
issue of unbounded domains is also important with regard to numerical procedures. Of course,
one possibility when solving the PIDE numerically is to start with a truncation of the domain
to a bounded one as described in e.g. Hilber, Reich, Schwab and Winter (2009). Then the
numerical procedure does not reflect the unboundedness of the domain. Recent developments
in numerical analysis and in computational finance show that specific Galerkin and Galerkin-
inspired methods – that rely on the formulation of the variational equation on an unbounded
domain – are an attractive alternative. We mention here the use of reduced basis methods
for pricing and calibration, see Cont, Lantos and Pironneau (2011) and an application of
adaptive wavelet Galerkin methods designed for unbounded domains, see Kestler and Urban
(2012). The advantage of the latter comes from the fact that during the numerical procedure
the truncated domain is chosen adaptively. The Feynman–Kac relation which is achieved in
Section 6 refers to weak solutions of the evolution problem in the appropriate generality.

The second important aspect which has to be taken into account in applications in finance
is the boundary or initial condition. The theory has to be developed in such a way that
the payoffs of standard options – which actually appear as initial conditions – are covered.
Let us mention that assuming polynomial boundedness of the payoff function, written as a
function of the logarithm of the stock price, eliminates standard options such as a plain vanilla
European calls, since the payoff is in this case exponential. More specifically it is of the form

h(x) = (S0 ex−K)+.

Cont and Voltchkova (2005) assume in addition to polynomial boundedness Lipschitz-
continuity of the payoff written as a function of the stock price itself. This continuity assump-
tion eliminates digital options as well as any other product with discontinuous payoff which is
a frequent feature in structured products. As an example we mention the contingent premium
option which is one of the simplest structured products. In this case the buyer of the option
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pays no premium upfront but agrees to pay a predetermined premium if the option has any
value at expiration.

Although this article is devoted to pricing European options, the present framework is useful
in the context of pricing path dependent instruments such as barrier, lookback, or American
options. PDE methods allow efficient pricing for these options as well. The variational formu-
lation of the equation related to barrier options relies on Sobolev spaces restricted to functions
vanishing outside of a certain domain. For American options, one has to treat a variational
inequality instead of an equality. In both cases, the variational formulation is closely linked
to the European option pricing equation. Moreover, an efficient numerical algorithm imple-
mented for computing European option prices can be adapted to compute American, barrier
and lookback options, see Hilber, Reich, Schwab and Winter (2009) and Glau (2010).

Technically the key point in the following is to enforce sufficient integrability for the initial
condition. This is achieved by dampening the payoff, i.e. by multiplying it with an exponential
function. Dampening is also a major tool used in Fourier based methods (see e.g. Eberlein,
Glau and Papapantoleon (2010)) and allows one to include not only standard options like
calls and puts, but also many exotics. As simple as dampening by an exponential function is,
it requires to extend the existing theory on the solution of parabolic equations in the proper
way by introducing weighted spaces. Therefore after summarizing some basic properties of
the underlying stochastic processes in Section 2, we first define and study in Section 3 ex-
ponentially weighted Schwartz as well as exponentially weighted Sobolev–Slobodeckii spaces.
Pseudo-differential operators on these weighted spaces are discussed in Section 4. In Section 5
we prove the basic existence and uniqueness result for the solution of the parabolic equation
under appropriate assumptions on the symbol of the associated pseudo-differential operator.
Using Fourier transformation an explicit solution in the homogeneous case is derived in Sec-
tion 6. This explicit solution of the parabolic equation presents itself exactly in the form which
is well-known from the competing Fourier based approach to compute option prices which are
given as conditional expectations. The Feynman–Kac relation is an immediate consequence.
In order to illuminate the scope of this approach we discuss in Section 7 a number of examples
of processes and options. We conclude with a numerical example.

2. Time-inhomogeneous Lévy processes, infinitesimal generator and symbol

This section provides the basic notation and preliminary results on the symbol of time-
inhomogeneous Lévy processes. Lévy processes are adapted stochastic processes with càdlàg
paths with stationary and independent increments. The wider class of time-inhomogeneous
Lévy processes, also called PIIAC (process with independent increments and absolutely con-
tinuous characteristics), consists of those adapted stochastic processes with càdlàg paths,
that have independent increments, compare Eberlein, Jacod and Raible (2005). This class
of processes is closely related to the class of additive processes, in particular, every time-
inhomogeneous Lévy process is an additive process, see Sato (1999) and Kluge (2005, Lemma
1.3).

An introduction to Lévy processes is provided in Sato (1999), Bertoin (1996), Kyprianou
(2006), and Applebaum (2009). Details on time-inhomogeneous Lévy processes can e.g. be
found in Kluge (2005).

Let (Ω,F , (Ft)t≥0, P ) be a stochastic basis. The distribution of an Rd-valued time-inhomo-
geneous Lévy process L is determined by the characteristic functions of the distributions of
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Lt for t ≥ 0,

E ei〈ξ,Lt〉 = e
∫ t
0 θs(iξ) ds , (1)

where the cumulant function θs for any fixed s ≥ 0 equals

θs(iξ) = −1

2
〈ξ, σsξ〉+ i〈ξ, bs〉+

∫
Rd

(
ei〈ξ,y〉−1− i〈ξ, h(y)〉

)
Fs(dy) (2)

for a truncation function h : Rd → R. A bounded measurable function h : Rd → R with
compact support is called a truncation function, if h(x) = x in a neighborhood of 0.

Here 〈·, ·〉 denotes the Euclidean scalar product in Rd. Furthermore, for every s > 0, σs
is a symmetric, positive semi-definite d × d-matrix, bs ∈ Rd, and Fs is a Lévy measure,
i.e. a Borel measure on Rd with

∫
(|x|2 ∧ 1)Fs(dx) < ∞. The maps s 7→ σs, s 7→ bs and

s 7→
∫

(|x|2 ∧ 1)Fs(dx) are Borel-measurable with

T∫
0

(
|bs|+ ‖σs‖M(d×d) +

∫
Rd

(|x|2 ∧ 1)Fs(dx)
)

ds <∞

for every T > 0, where ‖ ·‖M(d×d) is a norm on the vector space formed by the d×d-matrices.
For Lévy processes L, the identity (1) is the Lévy–Khintchine formula, and in this case the
quantities b, σ, F and θ do not depend on s.

The canonical representation of the process is, according to Jacod and Shiryaev (1987,
Theorem II.2.34), given by

L =

·∫
0

bs ds+ Lc + h ∗ (µ− ν) +
(
x− h(x)

)
∗ µ ,

where Lc denotes the continuous martingale part of L, µ is the random measure of jumps of
the process L, and ν is the predictable compensator of µ. The integral process with respect to

µ is defined as
(
x−h(x)

)
∗µt(ω) :=

∫ t
0

∫
Rd

(
x−h(x)

)
µ(ω,ds, dx), moreover, h∗(µ−ν) denotes

the stochastic integral of h with respect to (µ− ν). It is defined as any purely discontinuous
local martingale M such that the jumps of M , ∆M , and ∆L1∆L6=0 are indistinguishable.

The continuous martingale part Lc can be written in the form Lc =
∫ ·

0 σ
1/2
s dWs with a

standard Brownian motion W with values in Rd, see Karatzas and Shreve (1991, Theorem
3.4.2). Choosing the truncation function h(x) := x1{|x|≤1}(x), one obtains the more explicit
representation

L =

·∫
0

bs ds+

·∫
0

σ1/2
s dWs + h ∗ (µ− ν) +

∑
s≤t

∆Ls1{|∆Ls|>1} .

In case L is a special semimartingale, we can choose h to be the identity, h(x) = x, which
leads to the more convenient representation

L =

·∫
0

bs ds+

·∫
0

σ1/2
s dWs + x ∗ (µ− ν)

with different coefficients bs, see Jacod and Shiryaev (1987, Corollary II.2.38).
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Of special interest in the next sections is the infinitesimal generator Gs of time-inhomo-
geneous Lévy processes L, that is

Gsϕ(x) =
1

2

d∑
j,k=1

σj,ks
∂2ϕ

∂xj∂xk
(x) +

d∑
j=1

bjs
∂ϕ

∂xj
(x) (3)

+

∫
Rd

(
ϕ(x+ y)− ϕ(x)−

d∑
j=1

∂ϕ

∂xj
(x)(h(y))j

)
Fs(dy)

for ϕ ∈ C2
0 (Rd,R), compare e.g. Dynkin (1965).

We define At := −Gt for every t ≥ 0. It turns out that At can be written in the form

A tu(x) =
1

(2π)d

∫
Rd

e−i〈ξ,x〉At(ξ)F(u)(ξ) dξ for all u ∈ C∞0 (Rd,R) .

For short we write

Atu = F−1
(
AtF(u)

)
for all u ∈ C∞0 (Rd,R) , (4)

where

At(ξ) :=
1

2
〈ξ, σtξ〉+ i〈ξ, bt〉 −

∫
Rd

(
e−i〈ξ,y〉−1 + i〈ξ, h(y)〉

)
Ft(dy)

= −θt(−iξ) (ξ ∈ Rd) ,

(5)

F denotes the Fourier transform and F−1 its inverse. It is standard to show that for each
t ≥ 0 there exists a constant Ct > 0 such that∣∣At(ξ)∣∣ ≤ Ct(1 + |ξ|

)2
for all ξ ∈ Rd . (6)

As a consequence, the Fourier inversion F−1 in (4) is well defined. (4) shows that At is
a so-called pseudo differential operator (PDO) with symbol At. In analogy to the symbol
of a Lévy process, compare Jacob (2001), we call the family (At)t∈[0,T ] the symbol of the
time-inhomogeneous Lévy process.

We outline in the following remarks and lemmas some properties of the symbol of time-
inhomogeneous Lévy processes, where we focus on its analytic extension which allows to
interpret the operator A as a continuous linear operator between exponentially weighted
Sobolev–Slobodeckii spaces (see Section 4). In the sequel we restrict ourselves to a finite time
horizon [0, T ] and we will concentrate on an analytic extension of the symbol to the domain

U−η = U−η1 × · · · × U−ηd , (7)

which is defined for η = (η1, . . . , ηd) ∈ Rd by the strips U−ηj := R − i sgn(ηj)[0, |ηj |) in the

complex plane for ηj 6= 0. For ηj = 0 we define U−ηj = U0 := R. We denote by Rη the

d-dimensional cuboid Rη = sgn(η1)[0, |η1|]× · · · × sgn(ηd)[0, |ηd|].
The following lemma generalizes Lemma 25.17 (ii) and (iii) in Sato (1999) from Lévy

processes to time-inhomogeneous Lévy processes. In particular, we show that an analytic
extension of the symbol to the domain U−η exists, if a related exponential moment condition
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is satisfied. For z, w ∈ Cd we define

〈z, w〉 :=
d∑
j=1

zjwj .

Note that this is not the Hermetian scalar product in Cd.

Lemma 2.1. Let η ∈ Rd.

(a) E e〈η,Lt〉 <∞ for every 0 ≤ t ≤ T if and only if

T∫
0

∫
|x|>1

e〈η,x〉 Fs(dx) ds <∞ .

(b) If E e〈η,Lt〉 <∞ for every 0 ≤ t ≤ T , then

E e〈iξ+η,Lt〉 = e
∫ t
0 θs(iξ+η) ds = e−

∫ t
0 As(−ξ+iη) ds

for every t ∈ [0, T ] and ξ ∈ Rd.
(c) If E e〈η

′,Lt〉 < ∞ for every 0 ≤ t ≤ T and every η′ ∈ Rη, then the maps z 7→ As(−z)
for every s ≥ 0 as well as

z 7→ E ei〈z,Lt〉 = e
∫ t
0 θs(iz) ds = e−

∫ t
0 As(−z) ds

have a continuous extension to the domain U−η which is analytic in the interior
◦
U−η.

Proof. Parts (a) and (b) are straightforward extensions of Theorem 25.17 in Sato (1999) as
shown more explicitly in Lemma 6 and formula (14) in Eberlein and Kluge (2006).

In order to prove (c), let γj be an arbitrary (compact) triangle, that lies inside the strip

Uηj = R + i sgn(ηj)[0, |ηj |), and let w = (w1, . . . , wd) ∈ Cd for fixed wk ∈ Uηk for every
k ∈ {1, . . . , d} \ {j}.

We shall derive ∫
∂γj

At(w1, . . . , wj−1, wj , wj+1, . . . , wd) dwj = 0 .

Then, the analyticity of the mapping wj 7→ At(w1, . . . , wj−1, wj , wj+1, . . . , wd) in the in-
terior of Uηj follows from the theorem of Morera. Since this is true for every coordinate

j ∈ {1, . . . , d}, the analyticity of the map w 7→ At(w) in
◦
Uη follows.

Consider the symbol as given in (5). The mapping wj 7→ 1
2〈w,Σtw〉+ i〈w, bt〉 is analytic in

C. The same is true for the mapping wj 7→
(
e−i〈w,y〉−1 + i〈w, h(y)〉

)
. An application of the
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theorem of Fubini and the lemma of Goursat yields∫
∂γj

At(w1, . . . , wj−1, wj , wj+1, . . . , wd) dwj

=

∫
∂γj

(1

2
〈w,Σtw〉+ i〈w, bt〉

)
dwj −

∫
∂γj

∫
Rd

(
e−i〈w,y〉−1 + i〈w, h(y)〉

)
Ft(dy) dwj

= −
∫
Rd

∫
∂γj

(
e−i〈w,y〉−1 + i〈w, h(y)〉

)
dwj Ft(dy)

= 0 .

To justify the use of Fubini’s theorem, we derive an upper bound of
∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉

∣∣∣
in L1(Ft(dy),Rd) which does not depend on wj .

For |y| ≤ 1 we have∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉
∣∣∣ ≤ 1

2
|〈w, y〉|2 e〈=(w),y〉 ≤ c′

2
|w|2|y|2 ≤ c′

2

(
max
wj∈∂γj

|w|2
)
|y|2

with the positive constant c′ := sup|y|≤1,wj∈∂γj e〈=(w),y〉. For |y| > 1, and the choice h(y) =
y1|y|≤1 we have∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉

∣∣∣ =
∣∣∣ e−i〈w,y〉−1

∣∣∣ ≤ e〈<(−iw),y〉+1 = e〈=(w),y〉+1 ,

where we denote by <(w) (resp. =(w)) the vector of the real parts (resp. the imaginary parts)
of the components of the vector w ∈ Cd. By assumption =(w) belongs to R−η. This is also
the case for

v1 :=
(
=(w1), . . . ,=(wj−1), max

wj∈∂γj
=(wj),=(wj+1), . . . ,=(wd)

)
and for

v2 :=
(
=(w1), . . . ,=(wj−1), min

wj∈∂γj
=(wj),=(wj+1), . . . ,=(wd)

)
.

It follows that∫
|y|>1

∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉
∣∣∣Ft(dy) ≤

∫
|y|>1

(
e〈v

1,y〉+ e〈v
2,y〉+1

)
Ft(dy) <∞ .

For every fixed choice of complex numbers wk ∈ Uηk for k ∈ {1, . . . , d} \ {j} and every fixed

y ∈ Rd, the mapping wj 7→ e−i〈w,y〉−1 + i〈w, h(y)〉 is continuous. Furthermore, the following
estimate is valid,∣∣∣ e−i〈w,y〉−1 + i〈w, h(y)〉

∣∣∣ ≤ c′

2

(
max
wj∈∂γj

|w|2
)
|y|21{|y|≤1}(y)

+
(

e〈v
1,y〉+ e〈v

2,y〉+1
)
1{|y|>1}(y),

(8)

which is an upper bound in L1(Ft(dy),Rd), from where the continuity of the mapping w 7→
At(w) on Uη follows. �

The next lemma collects further elementary properties of
(
At(· − iη)

)
t∈[0,T ]

.
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Lemma 2.2. Let L be a PIIAC with characteristic triplet (bt, σt, Ft)t∈[0,T ] and with symbol
(At)t∈[0,T ]. If

T∫
0

∫
|x|>1

e−〈η
′,x〉 Ft(dx) <∞ for all η′ ∈ Rη ,

then the following holds.

(a) For every η′ ∈ Rη we have

At(ξ − iη′) =At(−iη′) +AL
−η′

t (ξ) ,

where AL
−η′

is the symbol of a time-inhomogeneous Lévy process L−η
′

which is given

by the characteristic triplet (b−η
′

t , σt, F
−η′
t )t≥0 with

b−η
′

t = bt − σtη′ +
∫ (

e−〈η
′,x〉−1

)
h(x)Ft(dx) and

F−η
′

t (dx) = e−〈η
′,x〉 Ft(dx) .

(b) For every η′ ∈ Rη there is equivalence between

At(−iη′) = 0 for all t ∈ [0, T ]
)

and the martingale property of the process
(

e−〈η
′,Lt〉

)
t≥0

.

(c) For every ξ ∈ Rd we have

<
(
At(ξ − iη′)

)
= At(−iη′) +

1

2
〈ξ, σtξ〉 −

∫ (
cos(〈ξ, x〉

)
− 1
)
F−η

′

t (dx)

≥ At(−iη′) .

Proof. The derivation of the decomposition (a) follows in a straightforward way, compare
Glau (2010, Satz II.15), as does (c).
To show (b), we notice that

E e−〈η
′,Lt〉 = e

∫ t
0 θs(−η

′) ds = e−
∫ t
0 As(−iη

′) ds

and for s ≤ t the equality

E
(

e−〈η
′,Lt〉

∣∣Fs) = e−〈η
′,Ls〉E e−〈η

′,Lt−Ls〉 = e−〈η
′,Ls〉 e−

∫ t
s Au(−iη′) du

follows. Hence e−〈η
′,L〉 is a martingale, if and only if At(−iη′) = 0 holds for every t ∈ [0, T ]. �

3. Exponentially weighted Sobolev–Slobodeckii spaces

We consider so-called weighted Sobolev–Slobodeckii spaces with weight functions of the
form x 7→ e〈η,x〉 with a vector η ∈ Rd. We study only Sobolev–Slobodeckii spaces with
exponential weight functions and define these spaces analogously to the definition of Sobolev–
Slobodeckii spaces based on Fourier transformed functions in Wloka (1987). The main reason
besides the benefits of an appropriate access via the symbol is the result which will be given

in Theorem 3.4, that the dual space
(
Hs
η(Rd)

)′
of Hs

η(Rd) is isometrically isomorphic to the

space H−sη (Rd). This property of the Sobolev space is necessary for the interpretation in
Section 5 of the PDOs At associated with the symbols At as linear operators from the Hilbert

space Hs
η(Rd) to its dual space

(
Hs
η(Rd)

)′
.
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We denote by L2
η(R

d) the Hilbert space of complex-valued square integrable functions

L2
η(R

d) :=
{
u ∈ L1

loc(R
d)
∣∣x 7→ u(x) e〈η,x〉 ∈ L2(Rd)

}
(9)

with scalar product

〈u, v〉L2
η

:=

∫
Rd

u(x)v(x) e2〈η,x〉 dx for all u, v ∈ L2
η(R

d) . (10)

The crucial step for a definition of the Sobolev spaces via Fourier transforms is based on
Parseval’s identity,

〈u, v〉L2 =

∫
Rd

u(x)v(x) dx =
1

(2π)d

∫
Rd

û(ξ)v̂(ξ) dξ . (11)

In order to derive the analogous identity for functions in the space L2
η(R

d), we denote

uη(x) := u(x) e〈η,x〉

û(ξ−iη) :=

∫
ei〈ξ,x〉 u(x) e〈η,x〉 dx = F(uη)(ξ) (12)

for functions u : Rd → C with
∫
|u(x)| e〈η,x〉 dx <∞. Let us further notice the equality

〈u, v〉L2
η

=
1

(2π)d

∫
û(ξ−iη)v̂(ξ − iη) dξ , (13)

for functions u , v ∈ L2
η(R

d). This leads to the following characterization of the space L2
η(R

d).

Remark 3.1. The space L2
η(R

d) is isometrically isomorphic to the space{
u ∈ L1

loc(R
d)
∣∣F(uη) ∈ L2(Rd)

}
.

Furthermore the space
(
L2
η(R

d), 〈·, ·〉L2
η

)
is a separable Hilbert space. The space C∞0 (Rd,C)

of complex functions with compact support which have derivatives of any order is a dense
subspace.

For a consistent definition of the Sobolev–Slobodeckii spaces with exponential weights, we
first define the analogue of the Schwartz space S(Rd) and of the generalized functions.

Definition 3.2 (Exponentially weighted Schwartz space). For η ∈ Rd let

Sη(R
d) :=

{
u ∈ C∞(Rd,C)

∣∣ ‖u‖m,η <∞ for all m ≥ 0
}

with

‖ϕ‖m,η := ‖ϕ e〈η,·〉 ‖m
and we denote by S′η(R

d) the dual space of Sη(R
d).

For every integer m ≥ 0 the norms ‖ · ‖m are defined as usual by

‖ϕ‖m := sup
|p|≤m

sup
x∈Rd

(
1 + |x|2

)m |Dpϕ(x)| ,

compare e.g. (Rudin, 1973, Section 7.3). In the following remark, we define a Fourier transform
Fη for functions in the weighted Schwartz space which is the analogue of the Fourier transform
F on the Schwartz space.
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Remark 3.3. [Fourier transform with weights] The mappings

Fη(ϕ) := e−〈η,·〉F
(
ϕ e〈η,·〉

)
(ϕ ∈ Sη(Rd) resp. ϕ ∈ L2

η(R
d))

and

F−1
η (ϕ) := e−〈η,·〉F−1

(
ϕ e〈η,·〉

)
(ϕ ∈ Sη(Rd) resp. ϕ ∈ L2

η(R
d))

are continuous bijections, Fη : Sη(R
d)→ Sη(R

d) resp. Fη : L2
η(R

d)→ L2
η(R

d).

It follows similarly that the transformation Fη : S′η(R
d)→ S′η(R

d), defined by the Parseval
identity

Fη(u)(ϕ) := (2π)du
(
F−1
η (ϕ)

) (
u ∈ S′η(Rd), ϕ ∈ Sη(Rd)

)
resp.

u(ϕ) =
1

(2π)d
Fη(u)

(
Fη(ϕ)

) (
u ∈ S′η(Rd), ϕ ∈ Sη(Rd)

)
(14)

is continuous and bijective. The weighted Sobolev–Slobodeckii spaces for s ∈ R and η ∈ Rd
are defined via

Hs
η(Rd) :=

{
u ∈ S′η(Rd)

∣∣ ‖ e〈η,·〉Fη(u)‖
Ĥs <∞

}
with the scalar product

〈u, v〉Hs
η

:= 〈Fη(u),Fη(v)〉
Ĥs
η

:= 〈e〈η,·〉Fη(u), e〈η,·〉Fη(v)〉
Ĥs (15)

where

〈ϕ,ψ〉
Ĥs :=

∫
ϕ(ξ)ψ(ξ)

(
1 + |ξ|)2s dξ . (16)

For the scalar product of the weighted space, this entails

〈u, v〉Hs
η

=

∫
Fη(u)(ξ)Fη(v)(ξ)

(
1 + |ξ|)2s e2〈η,ξ〉 dξ . (17)

The space of Fourier transforms of functions in Hs
η(Rd) is given by

Ĥs
η(Rd) :=

{
Fη(u)

∣∣u ∈ Hs
η(Rd)

}
with scalar product 〈·, ·〉

Ĥs
η
. Inserting the notation uη = u e〈η,·〉 and vη = v e〈η,·〉 yields

〈u, v〉Hs
η

=
〈

e〈η,·〉Fη(u), e〈η,·〉Fη(v)
〉
Ĥs =

〈
F(uη),F(vη)

〉
Ĥs = 〈uη, vη〉Hs . (18)

In particular for η = 0 the weighted space Hs
0(Rd) is the Sobolev–Slobodeckii space Hs(Rd)

as it is e.g. defined in Wloka (1987) and the norms coincide as well, ‖u‖Hs
0

= ‖u‖Hs .

Theorem 3.4. The dual space
(
Hs
η(Rd)

)′
of Hs

η(Rd) is isometrically isomorphic to H−sη (Rd).

Proof. We argue similarly to Eskin (1981, p. 62–63). Let l ∈
(
Hs
η(Rd))′. From the represen-

tation theorem of Riesz, we conclude the unique existence of a function v ∈ Hs
η(Rd) with

‖v‖Hs
η

= ‖l‖(Hs
η(Rd))′ , such that by equation (18) and (15)

l(ϕ) = 〈v, ϕ〉Hs
η

=

∫
(1 + |ξ|)2s v̂(ξ − iη)ϕ̂(ξ − iη) dξ
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for every ϕ ∈ Hs
η(Rd). If we then define w := e−〈η,·〉F−1

(
(1 + | · |)2s v̂(· − iη)

)
, we obtain

‖w‖2
H−sη

=

∫
Rd

(
1 + |ξ|

)−2s
∣∣∣F( e〈η,·〉w

)
(ξ)
∣∣∣2 dξ

=

∫
Rd

(
1 + |ξ|

)2s∣∣v̂(ξ − iη)
∣∣2 dξ

= ‖v‖2Hs
η

and hence w ∈ H−sη (Rd) with ‖w‖H−sη = ‖v‖Hs
η

= ‖l‖(Hs
η(Rd))′ . Hence l 7→ w defines an

isometry from
(
Hs
η(Rd))′ to the space H−sη (Rd). Since the Riesz mapping l 7→ v and the

mapping defined by v 7→ w := e−〈η,·〉F−1
( (

1 + | · −iη|2
)s
v̂(· − iη)

)
are both bijective maps,

their composition defines the desired isomorphism. �

4. Symbol and Pseudo-Differential operator

Let A be a PDO with symbol A as in (5), i.e.

Au = F−1
(
AF(u)

)
for all u ∈ S(Rd)

with A : Rd → C measurable and satisfying∣∣A(ξ)
∣∣ ≤ c(1 + |ξ|

)α
for all ξ ∈ Rd

for an α ∈ R and a constant c ≥ 0. The latter estimate guarantees that the Fourier inversion
operator F−1 is well defined. In (Eskin, 1981, Lemma 4.4) it is shown that

‖Au‖Hs−α ≤ c‖u‖Hs for all u ∈ S(Rd) .

As a consequence, A has a unique extension to a continuous linear operator A : Hs(Rd) →
Hs−α(Rd).

In this section we derive conditions on the symbol, that allow the interpretation of A as a
continuous linear operator

A : Hs
η(Rd)→ Hs−α

η (Rd) .

Let U−η be given as in (7). We denote by Sα(−η) the set of symbols A that have a continuous

extension A : U−η → C that is analytic in the interior of U−η, and further satisfies the
continuity condition ∣∣A(z)

∣∣ ≤ Cη(1 + |z|
)α (

for all z ∈ U−η
)
. (19)

Note that as a consequence of the identity theorem for holomorphic functions, the extension
is unique on U−η. By continuity, the extension is unique on the closure U−η.

Let us observe that by definition of the Fourier transform Fη and its inverse and by the
estimate (19), it is obvious that

u 7→ F−1
η

(
A(· − iη)Fη(u)

)
is a linear continuous mapping from Hs

η(Rd) to Hs−α
η (Rd). We prove the following consistency

result.
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Theorem 4.1. Let A be a PDO with symbol A ∈ Sα(−η) (see (19)) for an index α ∈ R and
a weight index η ∈ Rd. Then

Au = F−1
(
AF(u)

)
= F−1

η

(
A(· − iη)Fη(u)

)
for all u ∈ C∞0 (Rd,C)

and there exists a constant c(η) > 0 with∥∥Au∥∥
Hs−α
η (Rd)

≤ c(η)‖u‖Hs
η(Rd) for all u ∈ C∞0 (Rd,C) .

Moreover, the operator A can be extended to a linear continuous operator A : Hs
η(Rd) →

Hs−α
η (Rd) in a unique way.

Proof. For u ∈ C∞0 (Rd,C) we have

Au(x) = F−1
(
AF(u)

)
(x) =

1

(2π)d

∫
Rd

e−i〈ξ,x〉A(ξ)F(u)(ξ) dξ for all x ∈ Rd .

The map ξ 7→ e−i〈ξ,x〉A(ξ)F(u)(ξ) is continuous on U−η and holomorphic in the interior
◦
U−η.

The continuity of A on U−η entails

|A(z)| ≤ Cη
(
1 + |z|

)α
for all z ∈ U−η . (20)

Furthermore, for η′ := (η′1, . . . , η
′
d) with η′j ∈ sgn(ηj)[0, |ηj |], we obtain∣∣ e−i〈ξ−iη′,x〉A(ξ − iη′)û(ξ − iη′)

∣∣ = e−〈η
′,x〉 ∣∣A(ξ − iη′)û(ξ − iη)

∣∣
≤ e−〈η

′,x〉Cη
(
1 + |ξ − iη′|

)α
CN

eR|η
′|(

1 + |ξ − iη′|
)N

with a constant CN for arbitrary N ∈ N0, if the support of the function u is inside of the
open ball with radius R ∈ R+, tr(u) ⊂ BR(0). This is a direct consequence of A ∈ Sα(−η)
and the Paley–Wiener–Schwartz theorem, compare Jacob (2001, Theorem 3.4.6).

Now define f(ξ − iη′) := e−i〈ξ−iη
′,x〉A(ξ − iη′)û(ξ − iη′) for x ∈ Rd fixed, then for any

N > α+ d+ 1 this yields in particular∣∣f(ξ − iη′)
∣∣ ≤ CηCN e−〈η

′,x〉 eR|η
′| 1

(1 + |ξ − iη′|)N−α
≤ C(x, η,N,R)

(
1 + |ξ|

)−(d+1)
(21)

with a constant C(x, η,N,R) independent of ξ and η′ for all (ξ − iη′) ∈ U−η and

f(ξ − iη′)→ 0 for |ξ| → ∞ ,

which shows assumption (i) of Lemma A.1. The integrability assumption (ii) in the same
lemma is obviously satisfied, hence we can apply the version of Cauchy’s theorem, that we
provide in Lemma A.1, from where we obtain

Au(x) =
1

(2π)d

∫
Rd

e−i〈ξ,x〉A(ξ)û(ξ) dξ

=
1

(2π)d

∫
Rd

e−i〈ξ−iη,x〉A(ξ − iη)û(ξ − iη) dξ .
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We then insert the definition of Fη, compare equation (12) and Remark 3.3 to obtain

Au(x) = e−〈η,x〉
1

(2π)d

∫
Rd

e−i〈ξ,x〉A(ξ − iη) e〈η,ξ〉 e−〈η,ξ〉 û(ξ − iη) dξ

= e−〈η,x〉
1

(2π)d

∫
Rd

e−i〈ξ,x+iη〉A(ξ − iη)Fη(u)(ξ) dξ . (22)

Furthermore we show that the mapping ξ 7→ A(ξ − iη)Fη(u)(ξ) belongs to L1
η(R

d) where the
latter space is defined in an analogous way to (9). Using the definition of Fη and (21) we get∥∥A(· − iη)Fη(u)(·)

∥∥
L1
η(Rd)

=

∫
Rd

|A(ξ − iη)Fη(u)(ξ)| e〈η,ξ〉 dξ

=

∫
Rd

∣∣A(ξ − iη)
∣∣∣∣û(ξ − iη)

∣∣ dξ
≤ C(x, η,N,R)

∫
Rd

(
1 + |ξ|

)−(d+1)
dξ

< ∞ .

It follows from the last line in (22) that

Au(x) = F−1
η

(
A(· − iη)Fη(u)

)
(x) .

In order to prove the continuity property, we choose u ∈ C∞0 (Rd,C), and inserting (17) we
estimate ∥∥Au∥∥2

Hs−α
η (Rd)

=

∫
Rd

∣∣Fη(Au)∣∣2(1 + |ξ|
)2(s−α)

e2〈η,ξ〉 dξ

=

∫
Rd

∣∣A(ξ − iη)
∣∣2∣∣Fη(u)(ξ)

∣∣2(1 + |ξ|
)2(s−α)

e2〈η,ξ〉 dξ

≤ C2
η(1 + |η|)2α

∫
Rd

∣∣Fη(u)(ξ)
∣∣2(1 + |ξ|

)2s
e2〈η,ξ〉 dξ

= c(η)‖u‖2Hs
η(Rd) .

Since C∞0 (Rd,C) is dense in the space Hs
η(Rd) the operator has a unique continuous extension

A : Hs
η(Rd)→ Hs−α

η (Rd). �

5. Parabolic Equation

In Glau (2011) a Sobolev index is introduced, and it is shown that the evolution problem
associated with a Lévy process with Sobolev index α has a unique weak solution in the
Sobolev–Slobodeckii space Hα/2. In this section, we generalize the results obtained in Glau
(2011) to the case of weighted Sobolev–Slobodeckii spaces, and we examine Rd-valued time-
inhomogeneous Lévy processes instead of genuine Lévy processes.

Let L be anRd-valued PIIAC with local characteristics
(
bs, σs, Fs

)
for s ≥ 0. Let us consider

the following assumptions on the symbol A of the process as defined in (5).
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(A1) Assume for some fixed time horizon T > 0 that

T∫
0

∫
|x|>1

e−〈η
′,x〉 Fs(dx) ds <∞ ∀η′ ∈ Rη .

(A2) There exists a constant C1 > 0 uniform in time, with∣∣At(z)∣∣ ≤ C1

(
1 + |z|

)α
for all z ∈ U−η and for all t ∈ [0, T ]. (Continuity condition)

(A3) There exist constants C2 > 0 and C3 ≥ 0 uniform in time, such that for a certain
0 ≤ β < α

<
(
At(z)

)
≥ C2

(
1 + |z|

)α − C3

(
1 + |z|

)β
for all z ∈ U−η and for all t ∈ [0, T ]. (G̊arding condition)

The set U−η = {z ∈ Cd|=(z) ∈ − sgn(ηj)[0, |ηj |) for j = 1, . . . , d} was defined in (7).
Let us make the following remarks.

Remark 5.1. (i) For Lévy processes with Brownian part the conditions (A2) and (A3)
are valid for α = 2 and those η ∈ R that satisfy assumption (A1). In particular the
Brownian motion (with drift) satisfies the assumptions for every η ∈ R.

(ii) Conditions (A1)–(A3) are for example satisfied for CGMY-processes with parameters
C, G, M > 0 and Y ∈ [1, 2) with α = Y and η ∈ (−M,G).

See also Section 7 where further examples are studied.

Remark 5.2. Conditions (A2) and (A3) are actually not necessary assumptions of Theorem
5.3 about the existence and uniqueness of the weak solution of the corresponding PIDE in
a weighted Sobolev–Slobodeckii space. We choose this set of assumptions, since usually the
symbol is well known for real arguments and it is hence convenient to extend the polynomial
growth conditions to the complex domain U−η. Moreover by Theorem 4.1, this approach allows
us to work in a unique framework for the PDO A associated with exponentially weighted
Sobolev–Slobodeckii spaces Hs

η(Rd) with different weights η.
However, it is instead also possible to assume the growth conditions (A2) and (A3) only for

the function x 7→ At(x− iη) where η is fixed. Instead of (A1) one would then have to assume∫ T
0

∫
|x|>1 e−〈η,x〉 Fs(dx) ds <∞.

Under assumptions (A1) and (A2), we conclude from Theorem 4.1, that for every fixed
t ∈ [0, T ] the operator At|C∞0 (Rd,C) : C∞0 (Rd,C)→ C∞(Rd,C) associated with the symbol At
has a unique linear and continuous extension

At : Hα/2
η (Rd)→ H−α/2η (Rd)

with Atu = F−1
η

(
At(· − iη)Fη(u)

)
for all u ∈ Hα/2

η (Rd). Since the Hilbert spaces H
−α/2
η (Rd)

and
(
H
α/2
η (Rd)

)′
are isomorphic, the operators At can be identified with continuous linear

operators

At : Hα/2
η (Rd)→

(
Hα/2
η (Rd)

)′
.
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Let us further define the family of bilinear forms at by

at(ϕ,ψ) :=
(
Atϕ

)
(ψ) for ϕ, ψ ∈ Hα/2

η (Rd) (23)

for every t ∈ [0, T ]. Inserting Parseval’s equality (11), we obtain for every ϕ, ψ ∈ Hα/2
η (Rd)

the equality

at(ϕ,ψ) =
1

(2π)d
〈Fη(Atϕ),Fη(ψ)〉L2

η(Rd)

=
1

(2π)d

∫
At(ξ − iη)Fη(ϕ)(ξ)Fη(ψ)(ξ) e2〈η,ξ〉 dξ

=
1

(2π)d

∫
At(ξ − iη)ϕ̂(ξ − iη)ψ̂(ξ − iη) dξ

for each t ∈ [0, T ].

Theorem 5.3. Let L be an Rd-valued PIIAC with local characteristics
(
bt, σt, Ft

)
for t ≥ 0

and symbol A = (At)t∈[0,T ] and associated pseudo differential operators (At)t∈[0,T ]. If the
assumptions (A1)–(A3) are satisfied, then the parabolic equation

∂tu+Atu = f

u(0) = g ,
(24)

with real-valued f ∈ L2
(
0, T ;H

−α/2
η (Rd)

)
and real-valued initial condition g ∈ L2

η(R
d) has a

unique weak solution u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)
, and the estimate

‖u‖
W 1(0,T ;H

α/2
η (Rd),L2

η(Rd))
≤ C(T )

(
‖f‖

L2(0,T ;H
−α/2
η (Rd))

+ ‖g‖L2
η(Rd)

)
with a constant C(T ) > 0, only depending on T , is satisfied.

The space W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)

consists of those functions u ∈ L2
(
0, T ;H

α/2
η (Rd)

)
that have a derivative with respect to time ∂tu in a distributional sense that belongs to the

space L2
(
0, T ;

(
H
α/2
η (Rd)

)′)
. For a Hilbert space H, the space L2

(
0, T ;H

)
denotes the space

of functions u : [0, T ] → H, that are weakly measurable and that satisfy
∫ T

0 ‖u(t)‖2H dt <
∞. For the definition of weak measurability and for a detailed introduction of the space
W 1
(
0, T ;Hα/2(Rd), L2(Rd)

)
that relies on the Bochner integral, we refer to Wloka (1987).

Proof. To apply the classical result on existence and uniqueness of solutions of linear parabolic
equations in Hilbert spaces, see e.g. Wloka (1982, Satz 25.5, p. 381), it is at this point sufficient

to verify the G̊arding inequality of the bilinear form a : [0, T ] ×Hα/2
η (Rd) ×Hα/2

η (Rd) → R

uniformly in t ∈ [0, T ]. For ϕ ∈ Hα/2
η (Rd), we conclude

<
(
at(ϕ,ϕ)

)
=

1

(2π)d

∫
<
(
At(ξ − iη)

)∣∣Fη(ϕ)(ξ)
∣∣2 e2〈η,ξ〉 dξ .

From the G̊arding condition (A3) and an elementary calculation the G̊arding inequality

<
(
at(ϕ,ϕ)

)
≥ C2‖ϕ‖2

H
α/2
η (Rd)

− C ′3‖ϕ‖2L2
η(Rd) .

with constants C2 > 0 and C ′3 ≥ 0 follows uniformly in t ∈ [0, T ]. �
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6. Explicit solution of the Fourier transformed equation
and a Feynman–Kac formula

In Theorem 5.3, we showed the existence of a unique solution of the parabolic equation
(24) under (A1)–(A3) which are defined on page 15. We will now look for a more explicit
form of this solution in the homogeneous case f ≡ 0. Since we are moreover interested in
a stochastic representation of the solution that usually corresponds to an evolution problem
with given terminal condition, we replace the operator A t in equation (24) with A T−t. Thus
we consider

∂tu+A T−tu = 0

u(0) = g ,
(25)

with real-valued initial condition g ∈ L2
η(R

d). It will turn out that the weak solution has an
explicit Fourier transform. Furthermore it is smooth.

In order to derive the Fourier representation, let us notice that a function u that belongs
to the space W 1

(
0, T ;Hα

η (Rd), L2
η(R

d)
)

is a solution of the linear parabolic equation (25), if
and only if

Fη(∂tu) + Fη(A T−tu) = 0 in L2
(
0, T ; Ĥ−α(Rd)

)
(26)

and

Fη
(
L2
η−lim

t↓0
u(t)

)
= Fη(g) . (27)

It is a consequence of the continuity of the Fourier transform Fη with respect to the L2
η-norm,

that equation (27) is equivalent to L2
η− limt↓0Fη(u(t)) = Fη(g). Furthermore the equality

Fη
(
∂tu
)

= ∂tFη(u) can be derived inserting the definition of the Bochner integral: For every

ψ ∈ C∞0 ((0, T )) the following chain of equalities for elements in the Hilbert space
(
Hα
η (Rd)

)′
holds,

T∫
0

Fη
(
∂su(s)

)(
ψ(s)

)
ds = Fη

( T∫
0

(
∂su(s)

)(
ψ(s)

)
ds

)
= −Fη

( T∫
0

(
u(s)

)(
∂sψ(s)

)
ds

)

= −
T∫

0

Fη
(
u(s)

)(
∂sψ(s)

)
ds =

T∫
0

(
∂sFη

(
u(s)

))(
ψ(s)

)
ds .

From Theorem 4.1 we conclude

Fη(A tv) = At(· − iη)Fη(v) for all v ∈ Hs
η(Rd) .

Altogether, we have u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)

is a solution of equation (25), iff Fη(u)

belongs to the space W 1
(
0, T ; Ĥ

α/2
η (Rd), L2

η(R
d)
)

and Fη(u) solves the ordinary differential
equation (ODE)

∂tFη(u) +AT−t(· − iη)Fη(u) = 0

Fη(u)(t = 0) = Fη(g) .

Theorem 6.1. Assume (A1)–(A3). The function u ∈W 1
(
0, T ;H

α/2
η (Rd), L2

η(R
d)
)

is a weak

solution of equation (25), iff Fη(u) ∈W 1
(
0, T ; Ĥ

α/2
η (Rd), L2

η(R
d)
)

and the Fourier transform
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Fη(u) solves the ODE

∂tFη
(
u(t)

)
(ξ) +AT−t(ξ − iη)Fη(u(t))(ξ) = 0 in (0, T ) for a.e. ξ ∈ Rd

Fη
(
u(t = 0)

)
=Fη(g) .

(28)

The solution of (28) is given by

Fη
(
u(t)

)
(ξ)) = Fη(g)(ξ) e−

∫ T
T−t As(ξ−iη) ds (29)

and hence

u(t, x) =
e−〈η,x〉

(2π)d

∫
Rd

e−i〈ξ,x+iη〉Fη(g)(ξ) e−
∫ T
T−t As(ξ−iη) ds dξ (30)

is the weak solution of equation (25). If furthermore the mapping t 7→ At(ξ− iη) is continuous
for every fixed ξ ∈ Rd, then we have u ∈ C1

(
(0, T );Hm

η (Rd)
)

for every m ∈ N and hence

u ∈ C1
(
(0, T ), Cm(Rd)

)
for every m ≥ 0 is the point wise solution of the equation (25).

As a direct consequence, under the additional assumption that gη ∈ L1, we obtain the
stochastic representation

u(T − t, x) = E
(
g(LtT−t + x)

)
(31)

with LtT−t := LT−Lt. We use this notation since the process Lu :=
(
Lu+s−Lu

)
s≥0

is a PIIAC

as well, and the local characteristics of Lu, (bL
u

s , σL
u

s , FL
u

s ), with respect to the truncation
function h are given by

(
bu+s, σu+s, Fu+s

)
.

To show equation (31), we fix t and T and we set

U(x) := E
(
g(LtT−t + x)

)
= e−〈η,x〉E

(
e−〈η,L

t
T−t〉 gη(L

t
T−t + x)

)
,

then a short calculation based on Fubini’s theorem provides

Fη(U)(ξ) = e−〈η,ξ〉F(Uη)(ξ) = Fη(g)E
(

ei〈LT−Lt,iη−ξ〉
)

= Fη(g) e−
∫ T
t As(ξ−iη) ds .

Let us notice that the real-valued initial function g results in a real-valued solution u of
the parabolic equation. This stems from the fact that A tϕ is real-valued, if ϕ ∈ C∞0 (Rd,R).
Let us mention that this property of a PDO A can be translated to symmetry properties of
the corresponding symbol, compare e.g. p. 206 in Glau (2010).

Remark 6.2. Theorem 6.1 illuminates the parallelism between Fourier and PIDE methods
for option pricing. The PIDE for a European option is interpreted as a pseudo differential
equation, then the Fourier transform is applied which results in an ordinary differential equa-
tion that can be solved explicitly. The solution leads to equation (30) which coincides with
the famous convolution formula for option prices, derived independently in Carr and Madan
(1999) and Raible (2000). See Eberlein, Glau and Papapantoleon (2010) for a derivation of
the formula under conditions similar to (A1)–(A3).

Proof of Theorem 6.1: Our previous arguments show the equivalence of equations (25) and
(28). Equations (29) and (30) are immediate consequences. Hence we are left to show that
the function u defined by equation (29) resp. (30) satisfies u ∈ C1

(
(0, T ), Hm

η (Rd)
)

and

u ∈ C1
(
(0, T ), Cm(Rd)

)
for every m ≥ 0.

An elementary calculation provides that the G̊arding inequality yields

<
(
As(ξ − iη)

)
≥ C1|ξ|α − C2

(
s ∈ (0, T ), ξ ∈ Rd

)
.
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with a strictly positive constant C1 and C2 ≥ 0. Whence the inequality

e−
∫ t
s <(Au(ξ−iη)) du ≤ c2 e−(t−s)C1|ξ|α (32)

with a positive constant c2 independent of s ∈ [0, T ].
We derive successively for every t ∈ (0, T ) and for every m ≥ 0

(i) u(t) ∈ Hm
η (Rd),

(ii) lims→t ‖u(t)− u(s)‖Hm
η (Rd) = 0,

(iii) ∂tu(t) = F−1
η

(
AT−t(· − iη)Fη

(
u(t)

))
∈ Hm

η (Rd) and

(iv) lims→t ‖∂tu(t)− ∂su(s)‖Hm
η (Rd) = 0

hence u ∈ C1
(
(0, T ), Hm

η (Rd)
)

for every m ≥ 0. In view of the smoothness of the weight
function, we conclude from the Sobolev embedding theorem, compare e.g. Wloka (1982), that
the function u also belongs to the space C1

(
(0, T ), Cm(Rd)

)
for every m ≥ 0.

Let us first estimate the norm of u,

‖u(t)‖2Hm
η (Rd) =

∫
|Fη(u(t))(ξ)|2(1 + |ξ|)2m e2〈η,ξ〉 dξ

=

∫
|Fη(g)(ξ)|2

∣∣ e−2
∫ T
T−t As(ξ−iη) ds

∣∣(1 + |ξ|)2m e2〈η,ξ〉 dξ

=

∫
|Fη(g)(ξ)|2 e−2

∫ T
T−t <(As(ξ−iη) ds(1 + |ξ|)2m e2〈η,ξ〉 dξ

≤ c2

∫
|Fη(g)(ξ)|2 e2〈η,ξ〉 e−2tC1|ξ|α(1 + |ξ|)2m dξ

<∞

for every t > 0 and every m ≥ 0.
In order to derive (ii) we conclude

‖u(t)− u(s)‖2Hm
η (Rd)

=
∥∥∥Fη(g) e−

∫ T
T−s Au(·−iη) du

∣∣ e− ∫ T−s
T−t Au(·−iη) du−1

∣∣∥∥∥2

Ĥm
η (Rd)

=

∫
Rd

∣∣F(gη)(ξ)
∣∣2 e−2

∫ T
T−s <(Au(ξ−iη)) du

∣∣∣ e− ∫ T−s
T−t Au(ξ−iη) du−1

∣∣∣2(1 + |ξ|
)2m

dξ

→ 0 (s→ t) ,

which follows by dominated convergence if t > ε > 0 or m = 0, since
∣∣ e− ∫ T−s

T−t Au(ξ−iη) du−1
∣∣→

0 for s→ t and

sup
ξ∈Rd

∣∣ e− ∫ T−s
T−t Au(ξ−iη) du−1

∣∣ ≤ const .
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In order to derive the explicit expression for the Fourier transform of the time derivative
of u given in (iii) we consider∥∥∥u(t)− u(s)

t− s
−F−1

η

(
AT−t(· − iη)Fη(u(t))

)∥∥∥
Hm
η (Rd)

(33)

=

∥∥∥∥∥Fη(g)

(
e−

∫ T
T−t Au(·−iη) du− e−

∫ T
T−s Au(·−iη) du

t− s
−AT−t(· − iη) e−

∫ T
T−t Au(·−iη) du

)∥∥∥∥∥
Ĥm
η (Rd)

.

From the continuity of t 7→ At(ξ − iη) for every fixed ξ ∈ Rd we get

e−
∫ T
T−t Au(ξ−iη) du− e−

∫ T
T−s Au(ξ−iη) du

t− s
→ AT−t(ξ − iη) e−

∫ T
T−t Au(·−iη) du for s→ t

for every fixed ξ ∈ Rd. From inequality (32) and assumption (A2) it follows∣∣∣AT−t(· − iη) e−
∫ T
T−t Au(·−iη) du

∣∣∣ ≤ C2

(
1 + |ξ|

)α
e−tC1|ξ|α (34)

with a positive constant C2. Because of the continuity of t 7→ At(ξ− iη) for every fixed ξ ∈ Rd
the mean-value theorem moreover yields together with inequality (32) and assumption (A2)∣∣∣e− ∫ T

T−t Au(ξ−iη) du− e−
∫ T
T−s Au(ξ−iη) du

t− s

∣∣∣ ≤ C3

(
1 + |ξ|

)α
e−(t∧s)C1|ξ|α (35)

with a constant C3 > 0. Hence by dominated convergence we get that the term (33) vanishes
for s→ t for any t ∈ (0, T ), which shows ∂tu(t) = F−1

η

(
AT−t(· − iη)Fη(u(t))

)
∈ Hm

η (Rd) for
every m ≥ 0.

The continuity of the time derivative as a function [ε, T ] → Ĥm
η (Rd) i.e. assertion (iv)

follows in a similar way. 2

7. Examples

We provide examples of options and (time-inhomogeneous) Lévy processes that satisfy the
assumptions (A1)–(A3).

7.1. Examples of payoff functions. We list some typical payoff functions g of options in
terms of the logarithmic stock price together with the weight η such that g belongs to the
weighted space L2

η(R
d) = {g|x 7→ g(x) e〈η,x〉 ∈ L2(Rd)}. Notice that each of these payoffs

requires a damping factor η 6= 0.
First we consider options on a single stock i.e. d = 1.

– (Call). The payoff function of the call in logarithmic variables is given as g(x) =
(S0 ex−K)+ and g ∈ L2

η(R) for every η < −1.

– (Put). For the put option we have g(x) = (K−S0 ex)+ with g ∈ L2
η(R) for every η > 0.

– (Power option). The payoff function corresponding to a power call is g(x) =
(
(S0 ex−

K)+
)h

for some constant h > 0. Here, g ∈ L2
η(R) for every η < −h.

– (Digital option). A digital or cash-or-nothing up and out option with level B has a
payoff function of the form g(x) = 1x<b with b := log(B/S0). We have that g ∈ L2

η(R)
for every η > 0.
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– (Asset-or-nothing option). An asset-or-nothing down and out option with level B
is a binary option with a payoff function of the form g(x) = S0 ex 1x>b with b :=
log(B/S0). We have that g ∈ L2

η(R) for every η < −1.

– (European asset-or-nothing option). An asset-or-nothing down and out option with
level B on a call option has a payoff function of the form g(x) = (S0 ex−K)+1x>b
with b := log(B/S0). We have that g ∈ L2

η(R) for every η < −1.

We proceed with examples of options on several assets. We denote by St = (S1
t , . . . , S

d
t ) the

vector of d different assets.

– (Basket option). A basket option (put) with strike K pays out
(
K −

∑d
i=1 aiS

i
T

)+
at

maturity T , where ai denotes certain nonnegative weights. The corresponding payoff

function in logarithmic variables is g(x1, . . . , xd) =
(
K −

∑d
i=1 aiS

i
0 exi

)+
. We have

g ∈ Lη(Rd) for any η = (η1, . . . , ηd) such that every component is positive, i.e. ηj > 0
for every j = 1, . . . , d.

– (Worst-of call). The payoff function of a worst-of call is given as g(x1, . . . , xd) =

max
(

min
(
S1

0 ex1 , . . . , Sd0 exd
)
−K, 0

)
. Notice that g ∈ L2

η(R
d) for every η = (η1, . . . , ηd)

with negative components and such that the sum over the components is smaller than

−1, i.e. ηj < 0 for every j = 1, . . . , d and
∑d

j=1 ηj < −1.

– (Best-of put). The payoff of a best-of put is of the form g(x1, . . . , xd) = max
(
K −

max
(
S1

0 ex1 , . . . , Sd0 exd
)
, 0
)

and g ∈ Lη(Rd) for every η = (η1, . . . , ηd) with positive

components, i.e. ηj > 0 for every j = 1, . . . , d.

7.2. Examples of Lévy processes.

Example 7.1 (σ positive definite). For Lévy processes with a Brownian part and a positive
definite covariance matrix σ, the assumptions (A2) and (A3) with α = 2 are satisfied for
every choice of η ∈ Rd such that assumption (A1) is satisfied. In particular, for the Brownian
motion with or without drift the assumptions are satisfied for α = 2 and every η ∈ Rd.

In order to derive the G̊arding condition, we conclude by Lemma 2.2 (c)

<
(
A(ξ − iη′)

)
= A(−iη′) +

1

2
〈ξ, σξ〉 −

∫ (
cos(〈ξ, x〉

)
− 1
)
F−η

′
(dx) .

Since the integrand is nonpositive and σ is positive definite we get

<
(
A(ξ − iη′)

)
≥ A(−iη′) +

1

2
σ|ξ|2 ,

where σ denotes the smallest eigenvalue of the matrix σ. The G̊arding condition follows, since
|A(−iη′)| is bounded for all η′ ∈ Rη by some constant only depending on η which can be
shown similarly to inequality (8) by summing up over all possible combinations of signs. The
continuity condition can be derived in a similar way.

Example 7.2 (GH-processes). Univariate GH-processes are real-valued Lévy processes with
parameters λ ∈ R, α′ > 0, β such that −α′ < β < α′ and δ > 0. The assumptions (A1)–(A3)
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are satisfied with index α = 1 for every η ∈ R with

β − α′ < η < β + α′ .

Let us briefly derive that statement. It is shown in Raible (2000, Appendix A.1) that
the characteristic function of the GH-distribution has an analytic extension for z ∈ C to
the domain −α′ < β − =(z) < α′. In particular this entails E e−ηLt < ∞ and hence∫
|x|>1 e−ηx F (dx) < ∞ for −α′ < β − η < α′. From Lemma 2.2 we obtain the following

representation of the symbol A of the GH-process

A(ξ − iη) = A(−iη) + ib−ηξ +

∫ (
e−iξx−1− iξx) e−ηx FGH(dx) ,

where b−η = µ +
∫

(e−ηx−1)xFGHt (dx) and (µ, 0, FGH) are the local characteristics of the
GH-process with respect to the truncation function h(x) = x.

Moreover, the Lévy measure FGH has a Lebesgue density fGH , whose behavior around
the origin is explored in Raible (2000). The asymptotic behavior around the origin remains
unaffected when multiplying with the term e−η·. Therefore the statement can be proven as in
the case η = 0 which is treated in Glau (2011).

CGMY processes can be discussed along the same lines. We now turn to a multivariate
example.

Example 7.3 (Multivariate NIG-process). Let L be an Rd-valued NIG-process, i.e.

L1 = (L1
1, . . . , L

d
1) ∼ NIGd(α, β, δ, µ,∆),

with the following set of parameters: α, δ ≥ 0, and β, µ ∈ Rd, and a symmetric positive
definite matrix ∆ ∈ Rd×d such that α2 > 〈β,∆β〉. Then the characteristic function of L1 in
u ∈ Rd is given by

E ei〈u,L1〉 = exp
(
i〈u, µ〉+ δ

(√
α2 − 〈β,∆β〉 −

√
α2 − 〈β + iu,∆(β + iu)〉

))
,

where the square root of a complex number is uniquely specified by
√
z :=

√
r eiϕ/2 for

z = r eiϕ with r > 0 and ϕ ∈ [0, 2π).
The assumptions (A1)–(A3) are satisfied for the index α = 1 for any η ∈ Rd such that

α2 > 〈β − η,∆(β − η)〉.
Let us sketch the derivation of this statement. For

z :=α2 − 〈β − iu,∆(β − iu)〉 (36)

=α2 − 〈β,∆β〉+ 〈u,∆u〉+ i〈β,∆u〉+ i〈u,∆β〉

we obtain |z| ≥ α2 − 〈β,∆β〉 − 〈u,∆u〉 ≥ 0 and hence

<
(
A(u)

)
= − δ

√
α2 − 〈β,∆β〉+ δ<

(√
z
)

=
δ√
2

√
|z|+ <(z)− δ

√
α2 − 〈β,∆β〉

≥ δ
√
α2 − 〈β,∆β〉+ 〈u,∆u〉 − δ

√
α2 − 〈β,∆β〉

≥ δ
√
λmin|u| − δ

√
α2 − 〈β,∆β〉 ,

where λmin denotes the smallest Eigenvalue of the matrix ∆. Analogously, |A(u)| ≤ C(1+ |u|)
for a positive constant C can be derived.
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To conclude, we notice that inserting u′ := u − iη in (36) is equivalent to replacing β by
β − η.

7.3. Examples of time-inhomogeneous Lévy processes. For time-inhomogeneous Lévy
processes we make the following assumptions on the local characteristics (bt, σt, Ft)t≥0.

Assumption 7.4.

sup
t∈[0,T ]

{
|bt|+ ‖σt‖M(d×d) +

∫ (
|x|2 ∧ 1

)
Ft(dx)

}
<∞ .

Time-inhomogeneous Lévy processes with local characteristics (bt, σt, Ft)t≥0 that have a
Brownian part with (σt)t∈[0,T ] being uniformly positive definite and that satisfy an appropriate
exponential moment condition, satisfy assumptions (A1)–(A3):

Example 7.5. Let L be a PIIAC with symbol (At)t≥0, PDO (At)t≥0 and characteristic triplet
(bt, σt, Ft)t≥0. If Assumption 7.4 is satisfied and

sup
t∈[0,T ]

∫
|x|>1

e〈η
′,x〉 Ft(dx) <∞ for all η′ ∈ U−η ,

which is a stronger condition than assumption (A1), and if furthermore the family of matrices
(σt)t≥0 is uniformly positive definite in the following sense,

inf
t∈[0,T ]

‖σt‖M(d×d) ≥ σ > 0 ,

then A satisfies the continuity and G̊arding condition (A2) and (A3) with index α = 2.
In order to show this, we conclude from Lemma 2.2∣∣At(ξ − iη)

∣∣ ≤ |At(−iη)|+
∣∣〈b−ηt , ξ〉

∣∣+
1

2

∣∣〈ξ, σtξ〉∣∣+
∣∣∣ ∫ (e−i〈ξ,x〉−1 + i〈ξ, h(x)〉

)
F−ηt (dx)

∣∣∣
with b−η and F−η as in the lemma. Inserting Assumption 7.4 yields

|At(−iη)| ≤ sup
t∈[0,T ]

{
|bt||η|+

1

2
‖σt‖2M(d×d)|η|

2 +
∣∣∣ ∫ (e−〈η,x〉−1 + 〈η, h(x)〉

)
Ft(dx)

∣∣∣}
≤ c1(η) ,

and together with

|b−ηt | ≤ |bt|+
∣∣σtη′∣∣+

∫ ∣∣ e−〈η,x〉−1
∣∣h(x)Ft(dx) ≤ c2(η)

and ∣∣〈b−ηt , ξ〉
∣∣+

1

2

∣∣〈ξ, σtξ〉∣∣ ≤ sup
t∈[0,T ]

|b−ηt ||ξ|+ sup
t∈[0,T ]

‖σt‖2M(d×d)|ξ|
2

we get the continuity condition∣∣At(ξ − iη)
∣∣ ≤ |At(−iη)|+

∣∣〈b−ηt , ξ〉
∣∣+

1

2

∣∣〈ξ, σtξ〉∣∣+
∣∣∣ ∫ (e−i〈ξ,x〉−1 + i〈ξ, h(x)〉

)
F−ηt (dx)

∣∣∣
≤ c(η)

(
1 + |ξ|+ |ξ|2

)
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for some positive constants c1(η), c2(η) and c(η). On the other hand we have

<
(
At(ξ − iη)

)
= <

(
At(−iη)

)
+

1

2
〈ξ, σtξ〉 −

∫ (
cos
(
〈ξ, x〉

)
− 1〉

)
F−ηt (dx)

≥ min
t∈[0,T ]

‖σt‖2M(d×d)|ξ|
2 − sup

t∈[0,T ]

∣∣At(−iη)
∣∣ ,

whence the G̊arding condition.

Example 7.6. A natural class of time-inhomogeneous Lévy processes is obtained through a
time-dependent transformation of the symbol of a given Lévy process:

Let L be an Rd-valued Lévy process and a special semimartingale with local characteristics
(b, c, F ) w.r.t. the truncation function h(x) = x and with symbol A.

We define the process X as the time-inhomogeneous Lévy process whose symbol (AXt )t≥0

is given by

AXt (ξ) := A
(
ξf(t)

)
(37)

for some measurable function f : [0,∞) → R+ which is bounded away from zero and from
above on [0, T ], i.e. there exist constants 0 < f∗, f

∗ such that f∗ ≤ f(t) ≤ f∗ for every
t ∈ [0, T ]. For the sake of a simple notation we choose f to be constant after T , i.e. f(t) := f(T )
for t ≥ T .

Notice that the process X is well-defined and is a special semimartingale whose local
characteristics (bXt , c

X
t , F

X
t )t≥0 w.r.t. h(x) = x are given by bXt = f(t)b, cXt = f(t)c and

FXt (B) =

∫
Rd

1B
(
f(t)x

)
F (dx) for every B ∈ B

(
Rd \ {0}

)
.

Assume that for the Lévy measure F and symbol A of the Lévy process L, the assumptions
(A1)–(A3) are satisfied for a fixed index α ∈ (0, 2] and a certain η ∈ Rd. Then, for the
time-inhomogeneous process X i.e. for (FXt )t≥0 and (AXt )t≥0, the assumptions (A1)–(A3) are
satisfied for the same index α and for η̃ := η/f∗ =

(
η1/f

∗, . . . , ηd/f
∗).

Example 7.7 (Modified Sato processes). Sato processes are time-inhomogeneous Lévy pro-
cesses (Lt)t≥0 such that the random variable L1 := X has a self-decomposable law and

E[ei〈u,Lt〉] = E[ei〈ut
γ ,X〉]. (38)

A probability measure µ on Rd is called self-decomposable, if for any b > 1 there exists a
measure ρb on Rd such that

µ̂(z) = µ̂(b−1z)ρ̂b(z).

It is shown in Corollary 15.11 in Sato (1999) that self-decomposable laws can be characterized
as infinitely divisible laws on Rd whose Lévy measure F has a Lebesgue density F (dx) =
k(x)
|x| dx with a function k(x) ≥ 0 that is increasing on (−∞, 0) and decreasing on (0,∞).

In particular, Sato processes are a true subclass of the class of time-inhomogeneous Lévy
processes obtained by the specification (38) with arbitrary infinitely divisible random variables
X.

This is a construction similar to the previous example: Sato processes are obtained via
the transformation (37) with f(t) := tγ for some positive exponent γ. However, such a time-
change is excluded in Example 7.6 by the boundedness condition. The reason is that the
related PIDE would degenerate at the final time point T i.e. for A 0 since f(0) = 0 and hence
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A0 is constant. Such degenerations can cause severe problems both in the analysis of the
equations and in developing efficient algorithms. See e.g. Reichmann (2012) where a similar
type of degeneracy is studied.

Carr, Geman, Madan and Yor (2007) use Sato processes to model stock prices. These pro-
cesses provide a superior approach to fit a surface of observed option prices along strikes
and maturities if one has to consider a large scale of different maturities (for the specific
behaviour at long maturities see Eberlein and Madan (2011)). With just one additional pa-
rameter, the γ, one gains considerable accuracy also in comparison with stochastic volatility
models with many parameters. With the Sato process approach we observe a degeneration of
the symbol for small times that causes problems in the analysis and the numerical treatment
of the resulting PDEs. Therefore we suggest a modification of this approach by introducing
a time-inhomogeneous process X by its symbol (At)t≥0 which we set

At(ξ) := A
(
ξf(t)

)
for a smooth function f : [0,∞) → [1,∞) that is monotonically increasing and behaves
asymptotically as tγ for t ↑ ∞. As in Example 7.6, under the assumptions (A1)–(A3) on the
Lévy measure F and symbol A of a Lévy process and special semimartingale L for a fixed
index α ∈ (0, 2] and a certain η ∈ Rd we obtain the following:

For the time-inhomogeneous process X i.e. for (FXt )t≥0 and (At)t≥0, the assumptions (A1)–
(A3) are satisfied for the same index α ∈ (0, 2] and for η̃ := η/f∗ = η/f(T ).

8. Application to call prices

We consider a market of one stock driven by a PIIAC process, i.e. St = S0 eLt for any t ≥ 0,
and a deterministic interest rate rt that is continuously compounding, i.e. the discount factor

is e−
∫ t
0 rs ds.

Let us price a call option with payoff G(ST ) = (ST − K)+ at maturity. The logarithmic
price function is g(x) := G(S0 ex) = (S0 ex−K)+. For any η < −1 we have g ∈ L2

η(R).

Furthermore let us be given the driving process L in the stock price model, St = S0 eLt

as a PIIAC with local characteristics (bt, ct, Ft)t≥0 with respect to a truncation function h
under a risk-neutral measure and in order to ensure that the model is arbitrage-free, the
characteristics are assumed to satisfy the following drift condition

bt = rt −
ct
2
−
∫
R

(
ex−1− h(x)

)
Ft(dx).

Moreover, we assume that the local characteristics (bt, ct, Ft)t≥0 and the symbol A satisfy the
assumptions (A1)–(A3) for some fixed constants α ∈ [1, 2], 0 ≤ β < α and η < −1. Using
d = 1 and η < −1, these assumptions simplify to:

(A1)
∫ T

0

∫
|x|>1 e−ηx Fs(dx) ds <∞ (resp.

∫ T
0

∫
x>1 e|η|x Fs(dx) ds <∞).

(A2) There exists a constant C1 > 0 uniformly in time, with∣∣At(z)∣∣ ≤ C1

(
1 + |z|

)α
for all z ∈ C with 0 ≤ =(z) ≤ |η| and for all t ∈ [0, T ]. (Continuity condition)

(A3) There exist constants C2 > 0 and C3 ≥ 0 uniformly in time, such that for a certain
0 ≤ β < α

<
(
At(z)

)
≥ C2

(
1 + |z|

)α − C3

(
1 + |z|

)β
for all z ∈ C with 0 ≤ =(z) ≤ |η| and for all t ∈ [0, T ]. (G̊arding condition)
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In this framework, the discounted asset price S̃t := e−
∫ t
0 rs ds St and the discounted fair

price Π̃t := e−
∫ t
0 rs ds Πt are martingales where

ΠT = G(ST ) = g(LT ).

In order to apply Theorem 6.1 and the Feynman–Kac representation (31), we proceed through
a change of variables to incorporate the discount factor into the equation.

Corollary 8.1. The fair price satisfies

Πt = e−
∫ T
t rs dsE

[
G(ST )

∣∣Ft] = e−
∫ T
t rs dsE

[
g(LT )

∣∣Lt] = U(T − t, Lt) a.s.,

where U is the unique weak solution in W 1
(
0, T ;H

α/2
η (R), L2

η(R)
)

of the equation

∂tU +A T−tU + rT−tU = 0

U(0, ·) = G
(39)

with

A T−tϕ(x) = − cT−t
2

∂2
xxϕ(x)−

(
rT−t −

cT−t
2
−
∫
R

(ey −1− h(y))FT−t(dy)
)
∂xϕ(x) (40)

−
∫
R

(
ϕ(x+ y)− ϕ(x)− h(y)∂xϕ(x)

)
FT−t(dy).

Proof. Since the discounted asset price S̃t := e−
∫ t
0 rs ds St and the discounted fair price Π̃t :=

e−
∫ t
0 rs ds Πt are martingales and the process L is PIIAC we have

Πt = e−
∫ T
t rs dsE

[
G(ST )

∣∣Ft] = e−
∫ T
t rs dsE

[
g(LT − Lt + y)

]∣∣
y=Lt

.

For Ũ(T − t, y) := E
[
g(LT − Lt + y)

]
we conclude from Theorem 6.1 and the Feynman–Kac

representation (31) that Ũ is the unique weak solution Ũ ∈W 1
(
0, T ;H

α/2
η (R), L2

η(R)
)

of the
equation

∂tŨ +A T−tŨ = 0

Ũ(0, ·) = g .
(41)

For the function

U(τ, x) := e−
∫ T
T−τ rs ds Ũ(τ, x)

we obtain on the one hand

U(T − t, Lt) = e−
∫ T
t rs ds Ũ(T − t, Lt) = Πt (42)

almost surely. On the other side, U is the unique weak solution U ∈W 1
(
0, T ;H

α/2
η (R), L2

η(R)
)

of the equation

∂tU +A T−tU + rT−tU = 0

U(0, ·) = g .
(43)

�
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In order to demonstrate that efficient algorithms to solve the pricing PIDE (39) are avail-
able, we show in Figure 1 the call prices for varying initial stock prices in the CGMY-model
which is a pure jump Lévy model. The code was developed in the working group of Prof.
Schwab and is based on a wavelet-Galerkin scheme combined with a hp-discontinuous Galerkin
method. We chose a level of 9 which corresponds to 210 grid points. On a standard laptop the
Matlab routine took 4.57 seconds.

Figure 1. The figure shows the price of the call option in a pure jump CGMY

model as a function of the initial stock value S0 for a maturity of half a year, strike

price K = 100, interest rate r = 0.02, and parameters C = 2.0, G = 0.5, M = 1.2 and

Y = 1.1.

Appendix A. A multivariate version of Cauchy’s theorem

We state a special multivariate version of Cauchy’s theorem which is used in the proof of
Theorem 4.1.

Lemma A.1. Let Rj := (−∞,∞) × i[bj , βj ] with −∞ < bj < βj < ∞ for j = 1, . . . , d and

Qd = R1 × . . . Rd. Let f : Qd → C be holomorphic in the interior
◦
Qd of Qd, and continuous

on Qd = Qd. Further, we assume the following integrability and convergence properties.

(i) Assume

f(z)→ 0 for |<(z)| → ∞ and =(z) ∈ [b1, β1]× . . .× [bd, βd]

with z = (z1, . . . , zd).
(ii) For zj = xj + iyj with xj ∈ R and yj ∈ [bj , βj ] for j = 1, . . . , d we assume∣∣f(z1, . . . , zd)

∣∣ ≤ h(x1, . . . , xd) uniformly for y ∈ [b1, β1]× . . .× [bd, βd]

with a function h ∈ L1(Rd). For d = 1 let c > 0 be a constant such that∣∣h(x)
∣∣ ≤ c for all x ∈ R .
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In the case d > 1 we additionally assume for every j ∈ {1, . . . , d} the existence of a
function hj ∈ L1(Rd−1) such that∣∣h(x1, . . . , xd)

∣∣ ≤ hj(x1, . . . xj−1, xj+1, . . . , xd)

for all (x1, . . . , xd) ∈ Rd.
Then the following is true

∞∫
−∞

. . .

∞∫
−∞

f(x1 + ib1, . . . , xd + ibd) dx1 . . . dxd

=

∞∫
−∞

. . .

∞∫
−∞

f(x1 + iy1, . . . , xd + iyd) dx1 . . . dxd .

for every y ∈ [b1, β1]× . . .× [bd, βd].

For the proof of this lemma we refer to Glau (2010).
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