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Abstract
Probability distortions for constructing nonlinear G-expectations for the bid

and ask or lower and upper prices in continuous time are here extended to
the direct use of measure distortions. Fairly generally measure distortions can
be constructed as probability distortions applied to an exponential distribution
function on the half line. The valuation methodologies are extended beyond
contract valuation to the valuation of economic activities with infinite lives.
Explicit computations illustrate the procedures for stock indices and insurance
loss processes.
Keywords: Discounted Variance Gamma, Measure Distortions, Inhomoge-

neous Loss Process, Law invariant risk measures

1 Introduction

Asset pricing in liquid financial markets has developed the theory of risk neutral
valuation. Based on principles of no arbitrage discounted prices for claims with
no intermediate cash flows are seen to be martingales under a suitably chosen
equilibrium pricing probability. The martingale condition in Markovian con-
texts reduces the pricing problem to an equivalent solution of a linear partial
differential or integro-differential equation subject to a boundary condition at
maturity. The essential property of market liquidity is the supposition of the
law of one price or the ability, on the part of market participants, to trade in
both directions at the same price.
In the absence of such liquidity, the law of one price is abandoned and we

get at a minimum a two price economy where the terms of trade depend on
the direction of trade. Such a two price equilibrium was studied in a static one
period context in Madan (2012). The two equilibrium prices arise on account of
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an exposure to residual risk that cannot be eliminated, by construction, and the
prices are designed to make this exposure acceptable. Acceptability is modeled
by requiring positive expectations under a whole host of test or scenario prob-
abilities as described for example in Artzner, Delbaen, Eber and Heath (1999).
As a consequence the ask or upper price turns out to be the supremum of test
valuations while the bid or lower price is an infimum of the same set of test
valuations. The resulting pricing operators are now nonlinear on the space of
random variables, with the lower price being concave and the upper price con-
vex. In particular the upper price of a package of risks is smaller than the sum
of component prices while the lower price is similarly above.
When the decision of risk acceptability is further modeled as solely depending

on the probability distribution of the risk and if in addition we ask for additivity
of the two prices, for risks that are monotonically related, then closed forms for
the two prices become available (see Kusuoka (2001)). Specifically, the lower
price may be expressed as an expectation computed after distorting the risk
distribution function by composing it with a prespecified concave distribution
function on the unit interval. Such a formulation was proposed and tested on
option market data in Cherny and Madan (2010). Carr, Madan and Vicente
Alvarez (2011) employ this approach to define capital requirements and up front
profits on trades. Eberlein and Madan (2012) apply the method to estimate
capital requirements for the financial sector during the financial crisis of 2008.
Dynamically consistent two price sequences based on locally applying prob-

ability distortions are examples of non-linear expectations as studied in Cohen
and Elliott (2010). Madan and Schoutens (2012b) apply such pricing principles
to study the impact of illiquidity on a variety of financial markets. The lower
price is a submartingale while the upper price is a supermartingale with the two
prices converging to each other and the payout at maturity. Madan, Wang and
Heckman (2011) apply discrete time distortion based nonlinear expectations to
the valuation of insurance liabilities.
In continuous time the two prices are related to nonlinear expectations seen

as the G-expectations introduced by Peng (2004). Probability distortions were
used to formulate G-expectations for the upper and lower price in Eberlein,
Madan, Pistorius, Schoutens and Yor (2012). This paper extends the theory
of distortion based G-expectations in two directions. The first is to general-
ize away from probability distortions to measure distortions as they arose in
Madan, Pistorius and Stadje (2013) where the continuous time limit of discrete
time distortion based nonlinear expectations was investigated. Here we directly
introduce and apply measure distortions. The second extension deals with the
convergence of bid ask spreads to zero at maturity. Though many contracts have
explicit maturities, economic activities of running airlines, insuring losses, sell-
ing goods and services need to be, and are valued, in financial markets with no
apparent maturity. Madan and Yor (2012) introduce valuation models for such
claims termed stochastic perpetuities conducted under a liquid, law of one price
setting. The resulting martingales are uniformly integrable and the explicit ma-
turity is transferred to infinity. Here we extend distortion based G-expectations
to valuation processes with an infinite maturity.
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The theory is illustrated on the two price valuation of stocks. We employ
both the quadratic variation based probability distortion introduced in Eber-
lein, Madan, Pistorius, Schoutens and Yor (2012) and the new measure based
distortion introduced here. We also apply measure distortions to value com-
pound Poisson processes of insurance loss liabilities for both the homogeneous
and inhomogeneous cases.
The outline of the rest of the paper is as follows. Section 2 introduces

measure distortions for the distortion of jump compensators of Lévy systems.
Section 3 summarizes details of the discounted variance gamma stock valuation
model of Madan and Yor (2012). The quadratic variation based probability
distortion is then summarized and applied to construct lower and upper prices
for the discounted variance gamma model in section 4. Specific measure dis-
tortions are introduced in Section 5 and applied to the discounted variance
gamma model. Section 6 presents the use of measure distortions in the two
price valuation of insurance loss processes. Section 7 comments on the design
of measure distortions. Section 9 presents a conjectured solution in the case of
inhomogeneous compound Poisson losses. Section 9 concludes.

2 Measure distortions

This section introduces the use of measure distortions for defining the accept-
ability of a set of random variables in the context of a static one period model. In
continuous time we apply this structure locally to instantaneous risk character-
istics. Consider first the acceptability of a random variable X with distribution
function F (x). When acceptability is defined just in terms of the distribution
function it may be reduced to a positive expectation under a fixed concave dis-
tortion. More precisely, let Ψ be a fixed concave distribution function defined
on the unit interval. The random variable X is acceptable just if the expecta-
tion of X taken with respect to the distorted distribution function Ψ(F (x)) is
nonnegative, or

E(X) =

∫ ∞
−∞

xdΨ(F (x)) ≥ 0, (1)

where E(X) refers to a distorted expectation. X is strictly acceptable when
E(X) > 0. Nonnegative expectations under concave distortions have been used
to define acceptable risks in Cherny and Madan (2009, 2010) with dynamic ex-
tensions being recently developed by Bielecki, Cialenco and Zhang (2011). See
also Madan (2010), Eberlein and Madan (2012), Carr, Madan and Vicente Al-
varez (2011) and Madan and Schoutens (2011a, 2011b, 2012a, 2012b) for other
applications. Wang, Young and Panjer (1997) provide an axiomatic characteri-
zation of insurance prices using such distorted expectations.
After splitting the distorted expectation (1) at zero and integrating by parts

we may write the distorted expectation as a Choquet integral in the form

E(X) =

∫ ∞
0

(1−Ψ(F (x)))dx−
∫ 0

−∞
Ψ(F (x))dx. (2)
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It is now useful to follow Madan, Pistorius and Stadje (2012) and introduce

F̂ (x) = 1− F (x) (3)

and
Ψ̂(x) = 1−Ψ(1− x) (4)

and write the distorted expectation (2) as

E(X) =

∫ ∞
0

Ψ̂(F̂ (x))dx−
∫ 0

−∞
Ψ(F (x))dx. (5)

Measure distortions will follow from expression (5). But first we connect these
expressions to bid and ask prices or lower and upper prices.
Formally, Artzner, Delbaen, Eber and Heath (1999) show that acceptable

random variables form a convex cone and earn their acceptability by having a
positive expectation under a set M of scenario or test measures equivalent to
the original probability P. Cherny and Madan (2010) then introduce the bid,
b(X), and ask, a(X) or upper or lower prices as

b(X) = inf
Q∈M

EQ[X]

a(X) = sup
Q∈M

EQ[X]

with acceptability being equivalent to b(X) ≥ 0. As a consequence b(X) = E(X).
The set of measures Q supporting acceptability or the set M is identified in
Madan, Pistorius and Stadje (2012) as all measures Q, absolutely continuous
with respect to P, with square integrable densities, that satisfy for all sets A,
the condition

Ψ̂(P (A)) ≤ Q(A) ≤ Ψ(P (A)). (6)

We refer the reader to Madan, Pistorius and Stadje (2012) and the references
cited therein for the proof of this result, but offer here some intuition driving
these probability bounds.
Consider the lottery 1A being sold at price Q(A). The empirical distribution

function for the buyer of this lottery has a probability 1 − P (A) of the payoff
−Q(A) and a probability P (A) for the payoff 1 − Q(A). The price Q(A) rules
out strict acceptability if the distorted expectation

−Q(A)Ψ(1− P (A)) + (1−Q(A))(1−Ψ(1− P (A)) ≤ 0

or equivalently that the lower bound holds or

Ψ̂(P (A)) ≤ Q(A).

Similarly the empirical distribution function for the seller has a probability
P (A) of the payoff −1 + Q(A) and a probability 1 − P (A) of the payoff Q(A).
Strict acceptability is avoided by the price Q(A) if

(−1 +Q(A))Ψ(P (A)) +Q(A)(1−Ψ(P (A)) ≤ 0
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or equivalently that
Q(A) ≤ Ψ(P (A)).

The probability bounds (6) rule out the strict acceptability of buying or selling
simple lotteries.
We now remark on the distortion Ψ and its complementary distortion Ψ̂.

Both distortions are monotone increasing in their arguments but Ψ is concave
and bounded below the identity function while Ψ̂ is convex and bounded above
by the identity function. For the bid price or the distorted expectation one em-
ploys the concave distortion on the losses or negative outcomes while one em-
ploys the convex distortion on the gains or positive outcomes. This is reasonable
as distorted expectations are expectations under a change of measure with the
measure change being the derivative of the distortion taken at the quantile. The
concave distortion then reweights upwards the lower quantiles associated with
large losses, while the convex distortion reweights downward upper tail. This
structural reweighting will be maintained on passage to measure distortions.
Consider now in place of an expectation an integration with respect to a

positive, possibly infinite measure µ or the measure integral

m =

∫ ∞
−∞

v(y)µ(dy) <∞. (7)

Though the measure may be infinite, we suppose that all the tail measures are
finite. We may then rewrite the measure integral (7) as

m = −
∫ 0

−∞
µ ((v ≤ x)) dx+

∫ ∞
0

µ ((v > x)) dx. (8)

We now consider two functions Γ+,Γ− defined on the positive half line that
are zero at zero, monotone increasing, respectively concave and convex, and
respectively bounded below and above by the identity function. These functions
will now be used to distort the measure µ and we refer to them as measure
distortions. We then define the distorted measure integral as

m =−
∫ 0

−∞
Γ+ (µ(v ≤ x)) dx+

∫ ∞
0

Γ− (µ (v > x)) dx, (9)

where we assume both integrals are finite.
For computational purposes we shall employ

m =

∫ 0

−∞
xd (Γ+(µ(v ≤ x)))−

∫ ∞
0

xd (Γ− (µ (v > x))) (10)

Acceptability of a random outcome with respect to a possibly infinite measure
with finite tail measures may then be defined by a positive distorted measure
integral. Madan, Pistorius and Stadje (2012) identify the set of supporting
measures as absolutely continuous with respect to µ with square integrable
densities that satisfy for all sets A, for which µ(A) <∞ the condition

Γ−(µ(A)) ≤ Q(A) ≤ Γ+ (µ(A)) .
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We shall replace measure integrals of the form (7) by distorted measure inte-
grals (9) in defining G-expectations as solutions of nonlinear partial integro-
differential equations.

3 The discounted variance gamma model

This section introduces the discounted variance gamma (dvg) model of Madan
and Yor (2012) as the driving uncertainty for the stock price. The discounted
stock price is modeled as a positive martingale on the positive half line. The
discounted stock price responds to positive and negative shocks given by two in-
dependent gamma processes. The variance gamma model of Madan and Seneta
(1990), Madan, Carr and Chang (1998) has such a representation as the dif-
ference of two independent gamma processes, but unlike the variance gamma
process, as we now consider perpetuities, the shocks are discounted in their ef-
fects on the discounted stock price. More specifically, let γp(t) and γn(t) be two
independent standard gamma processes (with unit scale and shape parameters)
and define for an interest rate r the process

X (t) =

∫ t

0

bpe
−rsdγp(cps)−

∫ t

0

bne
−rsdγn(cns).

The parameters bp > 0, cp > 0 and bn > 0, cn > 0 reflect the scale and shape
parameters of the undiscounted gamma processes, however, X(t) accumulates
discounted shocks. The characteristic function for X(t) is explicitly derived in
Madan and Yor (2012) and is shown to be

E [exp (iuX(t))] = exp

( cp
r (dilog (iubp)− dilog (iubpe

−rt))
+ cn

r (dilog (−iubn)− dilog (−iubne−rt))

)
(11)

where the dilog function is given by

dilog(x) = −
∫ x

0

ln(1− t)
t

dt. (12)

The discounted stock price driven by the discounted variance gamma process is
given by the positive martingale

M(t) = exp (X(t) + ω(t)) (13)

where
exp (ω(t)) =

1

E [exp (X(t))]
.

Unlike geometric Brownian motion or exponential Lévy models, the martingale
(13) is uniformly integrable on the half line and the discounted stock price at
infinity is a well defined positive random variable

M (∞) = exp (X(∞) + ω(∞)) (14)

6



where

X (∞) =

∫ ∞
0

bpe
−rsdγp(cps)−

∫ ∞
0

bne
−rsdγn(cns) (15)

and
E [exp (iuX(∞))] = exp

(cp
r
dilog (iubp) +

cn
r
dilog (−iubn)

)
. (16)

Consider now any claim promising at infinity the payout in time zero dollars
of F (M(∞)). Equivalently one may consider the limit as T goes to infinity of
the claim paying at T , the sum erTF (M(T )). Markets in the future and hence
markets at all times t price the claim in time zero dollars at the risk neutral
price of

wF (t) = E [F (M(∞))|Ft] . (17)

By construction the price process wF (t) is a martingale.
Let Y be an independent random variable with the same law as that of

X (∞) . To determine the price wF (t) we note that

X(∞) = X(t) +

∫ ∞
t

bpe
−rudγp(cpu)−

∫ ∞
t

bne
−rudγn(cnu)

(d)
= X(t) + e−rtY. (18)

We thus observe that conditional on t, there is a functionH(X, v), with v = e−rt

such that
wF (t) = H(X(t), e−rt). (19)

The martingale condition on wF (t) then implies that

−rvHv +

∫ ∞
−∞

(H(X + y, v)−H(X, v)) k(y, v)dy = 0 (20)

where k(y, v) is the Lévy system associated with the jumps of the process X(t).
The price process is determined on solving the partial integro-differential

equation (20), subject to the boundary condition

H(X(∞), 0) = F (exp (X(∞) + ω(∞))) (21)

in the interval 0 ≤ v ≤ 1.
For an implementation of the solution we need to identify the Lévy system

k(y, v). Define by

J(t) =

∫ t

0

be−rsdγ(cs).

From the Laplace transform of J(t) we have

E [exp (−λJ(t))] = exp

(∫ t

0

∫ ∞
0

(
e−λbe

−rsx − 1
) dx
x
e−xcds

)
= exp

(∫ t

0

∫ ∞
0

(
e−λy − 1

)
c exp

(
− y

be−rs

) 1

y
dyds

)
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It follows that

k(y, v) =
cp
y

exp

(
− y

bpv

)
1y>0 +

cn
|y| exp

(
− |y|
bnv

)
1y<0. (22)

We now have all the details needed to implement the valuation through time of
claims written on a large and possibly infinite maturity for a dvg driven stock
price.

4 Bid and ask prices for dvg driven stock prices
using probability distortions based on quadratic
variation

The partial integro-differential equation is transformed into a nonlinear partial
integro-differential equation to construct bid and ask prices as G-expectations.
The first transformation we employ uses probability transformations on intro-
ducing a quadratic variation based probability introduced in Eberlein, Madan,
Pistorius, Schoutens and Yor (2012). Specifically we rewrite the equation (20)
as

rvHv =

∫ ∞
−∞

(H(X + y, v)−H(X, v))
∫∞
−∞ y2k(y, v)dy

y2
dFQV (y) (23)

where

FQV (a) =
1∫∞

−∞ y2k(y, v)dy

∫ a

−∞
y2k(y, v)dy. (24)

For the specific case considered here we have

FQV (a) =
cn(bnv)2

cp(bpv)2 + cn(bnv)2

(
exp

(
− |a|
bnv

)
+

(
|a|
bnv

)
exp

(
− |a|
bnv

))
1a<0 +

cn(bnv)2

cp(bpv)2 + cn(bnv)2
1a≥0 +

cp(bpv)2

cp(bpv)2 + cn(bnv)2
×(

1− exp

(
− a

bpv

)
−
(
a

bpv

)
exp

(
− a

bpv

))
1a>0. (25)

We next employ the probability distortionminmaxvar of Cherny and Madan
(2009) where

Ψγ(u) = 1− (1− u
1

1+γ )1+γ .

The nonlinear G-expectation for the bid price is then given by the solution of
the distorted partial integro-differential equation

rvHv =

∫ ∞
−∞

(H(X + y, v)−H(X, v))
∫∞
−∞ y2k(y, v)dy

y2
dΨγ(FQV (y)) (26)
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The ask price is computed as the negative of the bid price of the negative cash
flow.

4.1 Properties of the linear expectation equation for the
stock price

For the specific context of the stock price the function F is the identity function.
In this case the solution of the linear expectation equation can be independently
verified. Firstly one may solve explicitly for H(X, v) as follows. The conditional
law of X(∞) given X(t) = X is that of

X + e−rtY = X + vY

where Y is an independent random variable with the same law as

X (∞) =

∫ ∞
0

bpe
−rudγp(cpu)−

∫ ∞
0

bne
−rudγn(cnu).

It follows that
H(X, v) = exp (X + ω(∞))φY (−iv)

From the characteristic function for Y we have that

φY (−iv) = exp
(cp
r
dilog (bpv) +

cn
r
dilog (−bnv)

)
.

It follows that

H(X, v) = exp (X + ω(∞)) exp
(cp
r
dilog (bpv) +

cn
r
dilog (−bnv)

)
. (27)

Given this solution we now verify directly the differential equation, with a
view to adjusting it to work numerically with a grid on the stock price as opposed
to a space grid in X. The stock price process is driftless while the process X(t)
can have a substantial drift.
Consider then the integral in the equation (20). Explicitly for the claim

paying the stock we have that∫ ∞
−∞

(H(X + y, v)−H(X, v)) k(y, v)dy = H(X, v)

∫ ∞
−∞

(ey − 1) k(y, v)dy.

For the left hand side differentiating (27) we have that

Hv(X, v) = H(X, v)

(
cpbp
r
dilog′ (bpv)− bncn

r
dilog′ (−bnv)

)
.

Now we use the fact that

dilog′ (a) = − ln(1− a)

a
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we write

Hv(X, v) = H(X, v)

(
−cp ln(1− bpv)

rv
− cn ln(1 + bnv)

rv

)
or that

rvHv = H(X, v) (−cp ln(1− bpv)− cn ln(1 + bnv))

The differential equation is then verified on recalling the relationship between
the logarithm of the Laplace transform for the gamma process and its Lévy
measure whereby we have that∫ ∞

0

(
e−λx − 1

) γ
x
e−cxdx = −γ ln

(
1 +

λ

c

)
.

The use of this result with λ = −1, 1 γ = cp, cn and c = 1/(bpv), 1/(bnv) for
the integrals on the positive and negative sides respectively yields∫ ∞

−∞
(ey − 1) k(y, v)dy = −cp ln(1− bpv)− cn ln(1 + bnv).

As commented earlier, for numerical solutions it is preferable to have a sta-
tionary grid for the space variable and this is expected for the discounted stock
price. We are therefore led to write

H(X, v) = exp (X + ω (t) + ω(∞)− ω(t))φY (−iv)

t = − ln v

r
.

Further observing that

M(t) = exp (X(t) + ω(t))

define

G(M(v), v) = M(v) exp

(
ω(∞)− ω(− ln v

r
)

)
φY (−iv).

Dropping for notational convenience the dependence of M on v we write
that∫ ∞

−∞
(G(Mey, v)−G(M,v))k(y, v)dy = G(M, v)

∫ ∞
−∞

(ey − 1) k(y, v)dy.

Also we have that

Gv = G(M,v)

(
∂ lnφY (−iv)

∂v
+

1

rv
ω′
(
− ln v

r

))
= G(M,v)

(
−cp ln(1− bpv)

rv
− cn ln(1 + bnv)

rv
+

1

rv
ω′
(
− ln v

r

))
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It follows that G(M,v) satisfies the differential equation

rvGv =

∫ ∞
−∞

(G(Mey, v)−G(M, v))k(y, v)dy +G(M,v)ω′
(
− ln v

r

)
(28)

One may therefore work on a fixed stock grid centered around unity with the
differential equation (28) on applying the desired distortions to the Lévy system
k(y, v). The function ω′(t) may be precomputed.

The discretized update for the conditional expectation of M(∞) is now

G(M, v+h) = G(M,v)+
h

rv
×
(∫ ∞
−∞

(G(Mey, v)−G(M, v))k(y, v)dy +G(M,v)ω′
(
− ln v

r

))
.

(29)
However, it will be useful to incorporate the analytical solution to (28) into

the numerical scheme. Note that when X(t) = X we have

M(t) = exp (X + ω(t))

but as M(t) is a uniformly integrable martingale we must have

Et [exp (X(∞) + ω(∞))] = M(t)

= exp (X + ω(t))

But this conditional expectation is

exp (X + ω(∞))φY (−iv).

Hence one has the implication that

φY (−iv) = exp

(
ω(− ln v

r
)− ω(∞)

)
This implication may be independently verified on observing that as

ln (φY (−iv)) =
cp
r
dilog (bpv) +

cn
r
dilog (−bnv)

it must be the case that this value coincides with

ω(− ln v

r
)− ω(∞).

From the characteristic function of X(t) we see that

ω(t) =
cp
r

(
dilog

(
bpe
−rt)− dilog (bp)

)
+
cn
r

(
dilog

(
−bne−rt

)
− dilog (bn)

)
From which we see that in fact

ω

(
− ln v

r

)
− ω(∞) = ln (φY (−iv)) .
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It follows that

M exp

(
ω(∞)− ω

(
− ln v

r

))
φY (−iv) = M

and the solution of the differential equation

rvGv =

∫ ∞
−∞

(G(Mey, v)−G(M,v)) k(y, v)dy +G(M,v)ω′
(
− ln v

r

)
(30)

is in fact
G(M,v) = M.

4.2 Implementation details

The pricing is implemented for risk neutral parameter values for the S&P 500
index taken at their median values as reported in Madan and Yor (2012). These
are

r = .02966

bp = 0.0145

cp = 48.4215

bn = 0.5707

cn = 0.3493

The differential equation solved for the bid price is

rvGv =

∫ ∞
−∞

(G(Mey, v)−G(M, v))
∫∞
−∞ y2k(y, v)dy

y2
dΨγ (FQV (y))+G(M,v)ω′

(
− ln v

r

)
.

(31)
In the absence of a distortion the equation has the solution G(M,v) = M. In
the computations we set ω′ to ω̂′ that forces the expectation equation (30) to
solve out at the identity function.
Hence we set

ω̂′(v) = −
∫∞
−∞(G(Mey, v)−G(M,v))k(y, v)dy

G(M,v)

in the solution of the expectation equation (30). This value of ω̂′ is then used
in the bid and ask equations. It was checked that the values for ω̂′ and ω′ were
close.
For this parameter setting and with the minmaxvar stress level set at 10

basis points the bid and ask prices were solved for as a function of the spot on
the initial date. The result is presented in Figure 1.
We also present in Figure 2 a graph of the bid and ask prices as a function

of calendar time for different levels of the initial spot. The prices converge at
infinity to the expected value.
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Figure 1: Bid, ask and expectation as a function of the spot price at time zero.
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and ask for the spot level of 0.75. Red and black are the bid and ask for the
level 1.0 and blue and green are for level 1.25.
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5 Bid and ask for dvg driven stock using mea-
sure distortions

The first step in applying measure distortions is that of choosing specific func-
tional forms for the measure distortions Γ+,Γ−. Recognizing that Γ+ lies above
the identity and Γ− lies below we consider functional forms for the positive gap

G+(x) = Γ+(x)− x
G−(x) = x− Γ−(x)

Both these functions are concave and positive. If we suppose that for large x
associated with large tail measures and therefore events nearer to zero, there
need be no reweighting then one has Γ′+ falling to unity at large x while Γ′−
rises to unity. As a result G+, G− are increasing concave functions that are
eventually constant. We may scale by the final constant and model them to be
multiples of increasing concave functions that are finally unity. We then write

G+(x) = αK+(x)

G−(x) = βK−(x)

where K+,K− are unity at infinity.
Now consider a generic candidate for such a function, say K(x). Suppose the

concavity coeffi cient defined by

−K
′′

K ′

is bounded below by a constant c > 0. Define

Ψ(y) = K

(
− ln(1− y)

c

)
, 0 ≤ y ≤ 1.

The function Ψ is zero at zero, unity at unity, and increasing in its domain.
Furthermore we have

Ψ′(y) = K ′
(
− ln(1− y)

c

)
×
(

1

c(1− y)

)
Ψ′′(y) = K ′′

(
− ln(1− y)

c

)
×
(

1

c2(1− y)2

)
+ K ′

(
− ln(1− y)

c

)
× 1

c(1− y)2

and Ψ′′ ≤ 0 just if
K ′′

c
+K ′ ≤ 0

or

−K
′′

K ′
≥ c.
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With a lower bound on the concavity coeffi cient we have that

K(x) = Ψ
(
1− e−cx

)
and Ψ is a probability distortion.
Hence we take as models for specific measure distortions

Γ+(x) = x+ αΨ+

(
1− e−cx

)
Γ−(x) = x− β

c
Ψ−(1− e−cx)

for any probability distortions Ψ+,Ψ−. The distortions maxvar, Φγmax(u) and
minvar, Φγmin(u) are defined by

Φγmax(u) = u
1

1+γ

Φγmin(u) = 1− (1− u)1+γ .

If one takes maxvar for Ψ+ to get an infinite reweighting of large losses and
minvar for Ψ− we have the specific formulation

Γ+(x) = x+ α
(
1− e−cx

) 1
1+γ+

Γ−(x) = x− β

c
(1− e−c(1+γ−)x)

In the calculations reported we set γ− = 0 and employed a four parameter
specification for the measure distortion with the parameters α, β, c and γ+ = γ.
The maximum downward discounting of gains is Γ

′

−(0) = 1− β.

5.1 Measure distortion results for the dvg stock price

Distorting the integral in equation (30) we get according to equations (8)-(10)
in the case of the dvg stock price

rvGv =

∫ 0

−∞
xd

(
Γ+

(∫
(G(Mey,v)−G(M,v)≤x)

k(y, v)dy

))
−

∫ ∞
0

xd

(
Γ−

(∫
(G(Mey,v)−G(M,v)>x)

k(y, v)dy

))

+ G(M, v)ω′
(
− ln v

r

)
.

The results shown are for

α = 0.01

β = 0.05

c = 1

γ = 0.0010
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Figure 3: Bid, ask and expected values as a function of the spot at the initial
time using measure distortions.

Figure 3 presents the bid, ask and expectation as a function of the initial
spot. We also present the bid and ask as functions of time for three different
spot levels in Figure 4

6 Two price valuation of insurance loss processes

This section applies measure distortions to the two price valuation of insurance
losses. Let L(t) be the process for cumulated losses. A discounted expected
value may be computed as

E

[∫ ∞
0

e−rsdL(s)

]
where L(t) is for example a compound Poisson process with arrival rate λ and
loss sizes that are i.i.d. gamma distributed with scale and shape parameters ζ
and κ respectively. Consider the value process in time zero dollars for these
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Figure 4: Bid and ask as functions of time for three different spot levels using
measure distortions. The lower curves in magenta and cyan are the bid and ask
for the spot level of 0.75. Red and black are the bid and ask for the level 1.0
and blue and green are for level 1.25.
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losses,

V (t) = Et

[∫ ∞
0

e−rsdL(s)

]
, (32)

where Et[.] denotes the operator for expectation conditional on information at
time t.
Let X(t) be the level of discounted losses to date or

X(t) =

∫ t

0

e−rsdL(s).

We then write∫ ∞
0

e−rsdL(s) = X(t) + e−rt
∫ ∞
t

e−r(s−t)dL(s)

(d)
= X(t) + e−rtY

where Y is an independent copy of the random variable∫ ∞
0

e−rsdL(s).

It follows that the conditional expectation is a martingale of the form

H(X(t), e−rt).

Using the time transformation v = e−rt the martingale condition for H once
again yields that

rvHv =

∫ ∞
0

(H(X + w, v)−H(X, v))k(w, v)dw

where k(w, v) is related to the Lévy system for X(t).
We may derive this Lévy system from the characteristic function for X(t).

The characteristic function is developed as follows

E [exp (iuX(t))] = E

[
exp

(
iu

∫ t

0

e−rsdL(s)

)]
= exp

(∫ t

0

∫ ∞
0

(
eiue

−rsx − 1
) λ

Γ (κ)
ζκxκ−1e−ζxdxds

)
= exp

(∫ t

0

∫ ∞
0

(
eiuw − 1

) λ

Γ (κ)

(
ζ

e−rs

)κ
wκ−1 exp

(
− ζ

e−rs
w

)
dwds

)
It follows that the Lévy system for X(t) is

k(w, t) =
λ

Γ (κ)

(
ζ

e−rt

)κ
wκ−1 exp

(
− ζ

e−rt
w

)
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6.1 Remarks on the expectation equation

We already know that
H(X, v) = X + vC

where C = Et[Y ] = E[Y ]. Hence∫ ∞
0

(H(X + w, v)−H(X, v))k(w, v)dw =

∫ ∞
0

wk(w, v)dw

=
λκv

ζ

since k(w, v) is the density of a gamma variable with scale and shape ζ/v and
κ respectively.
Consequently

1

rv

∫ ∞
0

(H(X + w, v)−H(X, v))k(w, v)dw =
λκ

rζ

On the other hand
Hv = C

We now develop the characteristic function for Y. The characteristic function
of Y is

E [exp (iuY )] = E

[
exp

(
iu

∫ ∞
0

e−rsdL(s)

)]
= exp

(∫ ∞
0

ds

∫ ∞
0

(
eiue

−rsx − 1
)
λ
ζκxκ−1e−ζx

Γ(κ)
dx

)
= exp

(∫ ∞
0

ds

∫ ∞
0

(
eiuw − 1

) λζκ
Γ(κ)

(wers)κ−1 exp (−ζwers) ersdw
)

= exp

(∫ 1

0

dv

∫ ∞
0

(
eiuw − 1

) λζκ

Γ(κ)rv2

(w
v

)κ−1
exp

(
−ζw
v

)
dw

)
= exp

(∫ 1

0

dv

∫ ∞
0

(
eiuw − 1

) k(w, v)

rv
dw

)
We may determine C from the derivative of the characteristic function of Y.

φ′Y (u) = exp

(∫ 1

0

dv

∫ ∞
0

(
eiuw − 1

) k(w, v)dw

rv

)∫ 1

0

dv

∫ ∞
0

1

rv
iweiuwk(w, v)dw

Evaluating at u = 0 and multiplying by −i yields

C = −iφ′Y (0) =

∫ 1

0

dv

∫ ∞
0

1

rv
wk(w, v)dw

=
λκ

rζ

Hence the differential equation holds.
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6.2 Implementing insurance loss valuation

We consider an arrival rate λ = 10 with a gamma distribution of mean 5 and
variance 10. Therefore we have ζ = .5, κ = 2.5 and λ = 10.We take the interest
rate at r = .02. The mean of the final discounted loss is

λκ

rζ
= 2500

The process for X starts at zero and finishes at a mean of 2500.
The differential equation is

Hv =
1

rv

∫ ∞
0

(H(X + y, v)−H(X, v))k(y, v)dy

with

k(y, v) =
λ

Γ(κ)

(
ζ

v

)κ
yκ−1 exp

(
−ζ
v
y

)
We fix a grid in X from 0 to 100 measured in thousands for which we take

ζ = 500. We take the grid in X to be in the range 0.25 to 100 in the step size
of 0.25.
We only have positive outcomes for the cumulated discounted loss process.

The bid and ask prices are then respectively the solutions to (see formula (10)
for nonnegative functions v(y))

rvHv = −
∫ ∞
0

xdΓ− (µ (χ > x))

and

rvHv = −
∫ ∞
0

xdΓ+ (µ (χ > x)) ,

where χ(y) = H(X+y, v)−H(X, v) = v(y) in formula (10). The measure µ(dy)
is k(y, v)dy.
We have the same equation but we use Γ− for the bid and Γ+ for the ask.

The measure distortion parameters used were α = .1, β = .2, c = 1 and γ = .02.
We present in Figures 5 and 6 the graphs for the bid, ask and expectation

as functions of the initial loss level and as functions of time for three loss levels
respectively.

7 Remarks on the design of measure distortions

There are four parameters in the proposed measure distortion Γ+,Γ− and they
are α, β, c and γ. The parameter c may be calibrated by a cutoff on what are
viewed as rare events. If the exponential of−cx is below 1/2 then 1−exp(−cx) >
1/2 and these are the likely events. Defining

x∗ =
− ln(1/2)

c
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Figure 5: Bid, ask and expectation as functions of initial loss level with the
lower line being the bid and the upper line the ask.
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we have arrival rates below x∗ constituting the rare events. Hence for c =
− ln(1/2) arrival rates above one per year are the normal events while arrival
rates below one per year are the rare ones. If arrival rates below 2 per year are
to be the rare ones then c = − ln(1/2)/2 = 0.3466 and if rare is viewed as one
every two years then c = 1.3863.

The parameter β sets the discount on gains. For β = 0 there is no gain
discount and Γ− is the identity function. The highest gain discount is unity.
The gain discount should be set below unity.
Once β and c are set then the choice of η in

α =
β

c
η

sets the parameter α. The choice of η = 1 provided a balanced treatment of
gains and losses as the maximum penalty in the gap functions G+ and G− are
then equal. The parameter η is then a balance parameter
The parameter γ is a stress parameter and controls the speed with which

losses are reweighted upwards. This is a parameter familiar from the uses of the
probability distortions maxvar or minmaxvar. The next section provides some
parameter sensitivities.

8 Inhomogeneous compound Poisson losses

Consider an inhomogeneous arrival rate λ(t) for losses, a general discount curve
D(t) and gamma distributed loss sizes. For the loss process L(t) the linear finite
expectation valuation is given by

V (t) = Et

[∫ ∞
0

D(s)dL(s)

]
(33)

Now for any t we may write

V (t) =

∫ t

0

D(s)dL(s) + Et

[∫ ∞
t

D(s)dL(s)

]
Define

C(t) =

∫ ∞
t

D(s)

∫ ∞
0

λ(s)
ζκ

Γ(κ)
xκe−ζxdxds

and observe that N(t) defined as

N(t) =

∫ t

0

D(s)dL(s) + C(t)

is a martingale. In fact

dN(t) = D(t)dL(t)−D(t)

∫ ∞
0

λ(t)
ζκ

Γ(κ)
xκe−ζxdxdt
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and as the compensator of dL(t) is

λ(t)
ζκ

Γ(κ)
xκ−1e−ζxdxdt

we have a martingale.
In general in the current context we have for X(t) =

∫ t
0
D(s)dL(s) that

V (t) = H(X(t), t)

where in fact the function H takes the specific form

H(X(t), t) = X(t) + C(t).

Apply Ito’s lemma to the function H and noting that it is a martingale we
deduce that

Ht +

∫ ∞
0

(H(X(t) + y, t)−H(X(t), t))k(y, t)dy = 0

where again k(y, t) is the Lévy system for X(t). Equivalently in terms of the
compensator for dL(t) we may write

Ht = −
∫ ∞
0

(H(X(t) +D(t)x, t)−H(X(t), t))λ(t)
ζκ

Γ(κ)
xκ−1e−ζxdx.

Now substituting the specific form of the function H yields that

Ct = −
∫ ∞
0

D(t)xλ(t)
ζκ

Γ(κ)
xκ−1e−ζxdx

or that

C(t) =

∫ ∞
t

∫ ∞
0

D(s)xλ(s)
ζκ

Γ(κ)
xκ−1e−ζxdxds.

For the nonlinear measure distorted result we write

Et
[∫ ∞

0

D(s)dL(s)

]
=

∫ t

0

D(s)dL(s) + C̃(t)

C̃(t) =

∫ ∞
t

D(s)

∫ ∞
0

Γ+

(∫ ∞
x

λ(t)
ζκ

Γ(κ)
yκ−1e−ζydy

)
dxds (34)

The computation of C̃(t) as the ask price valuation is what we implement for
the inhomogeneous case as a conjectured solution. For the bid we replace Γ+
by Γ−.
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Figure 7: Discount curve used in inhomogeneous compound Poisson loss model.

8.1 Inhomogeneous example

We employ for the discount curve a Nelson-Siegel discount curve with yield to
maturity y(t) specification

y(t) = a1 + (a2 + a3t)e
−a4t

a1 = .0424

a2 = −.0367

a3 = .0034

a4 = .0686.

The discount curve is graphed in Figure 7.
For the inhomogeneous arrival rate we take an exponential model with

λ(t) =
k

τ
exp

(
− t
τ

)
.

The parameters used were k = 100 and τ = 10. The distribution for losses
are gamma with ζ = κ = 1.2346, consistent with a unit mean and a standard
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Figure 8: Bid and ask premia in basis points relative to expected values for the
inhomogeneous compound Poisson case.

deviation of 0.9. For the measure distortions parameters we employ α = .7214,
β = .5, c = .6931 and γ = 0.25. Presented in Figure 8 are the premia of ask over
expectation and the shave of bid relative to expectation in basis points, for the
function C̃(t) when we use Γ+ for the ask and Γ− for the bid in the expression
(34).
With a view to understanding the effect of various parameters we present

a set of graphs of the effects of various parameters in the gamma compound
Poisson case on the Γ+,Γ− measure distorted compensation premia over the
expectation. The base parameter setting is an arrival rate λ = 50, a mean loss
size of 3 with a volatility of 0.75. The parameter for balance fixes α = β/c.
The base case value for β is 0.25, for c it is 0.6931 and for γ it is 0.25. The
parameters are then varied in turn through a range for which we compute the
measure distorted instantaneous compensation. Figure 9 presents the results.
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Figure 9: The effect of various parameters on the instantaneous measure dis-
torted compensation for the gamma compound Poisson risk.
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9 Conclusion

The use of probability distortions in constructing nonlinear G-expectations for
bid and ask or lower and upper prices in continuous time as introduced in Eber-
lein, Madan, Pistorius, Schoutens and Yor (2012) is here extended to the direct
use of measure distortions. Integrals with respect to a possibly infinite measure
with finite measure in the two sided tails on either side of zero are distorted
using concave measure distortions for losses and convex measure distortions for
gains. It is shown that measure distortions can fairly generally be constructed
as probability distortions applied to an exponential distribution function on the
half line.
The valuation of economic activities as opposed to contracts places the prob-

lem in a context with no apparent maturity. The two price continuous time
methodologies heretofore available for explicit maturities are extended to eco-
nomic activities with infinite lives. This permits the construction of two prices
for stock indices and the coverage of insurance liabilities in perpetuity.
The methods are illustrated with explicit computations using probability

and measure distortions for an infinitely lived stock price model as developed
in Madan and Yor (2012). Measure distortions are applied to infinitely lived
compound Poisson insurance loss processes.
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